用户名: 密码: 验证码:
热流固耦合下的螺旋槽干气密封特性及失稳分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干气密封系统可靠运行的关键在于保证干气密封系统内气膜动态稳定性。端面密封内润滑气膜的稳定性与其温度、动力学特性密切相关,从干气密封系统热流体非线性动力学分析;系统轴向运动失稳分析;系统角向摆动失稳分析;实验验证,这四个方面来进行研究,对应不同的角度分析了系统稳定运行的条件,通过试验验证了所建立模型和数值计算的正确性。
     首先,从热流体力学理论出发,对干气密封系统内密封气膜的热力过程进行了研究,分析了系统内部产生的热导致的密封环的热弹变形,从而对密封性能的影响。基于滑移边界条件下的雷诺方程,不考虑密封环的变形,求解获得气膜压力函数式;根据气膜微尺度流体流动过程中熵变方程,得到螺旋槽内气膜温度场分布;考虑微槽道内气流在不同阶段的熵变过程,分析了气膜温度场在不同多变指数下的分布规律;进而在不同多变指数下计算出密封环的热弹变形量及气膜厚度近似表达式;求出无变形时理论泄漏量和考虑不同多变指数下热弹变形的泄漏量,并与实验值进行比对,验证了泄漏量在采用不同多变指数时更接近试验数据。
     其次,基于非线性振动理论,研究了系统轴向非线性稳定性问题。建立轴向振动下系统流固耦合动力学模型,求解振动方程,分析失稳点振动非线性动力学行为。利用数值算法找到失稳点域,并在特定的螺旋槽结构参数范围内发现了混沌运动,通过选择合理的螺旋槽结构参数进行控制混沌。得到控制系统稳定运行的结构参数区域。在特例下计算并拟合非线性气膜轴向刚度,得到了一个含二次、三次项的非线性受迫振动微分方程。在无外激励情况下,通过求Floquet指数讨论了系统分岔问题,分析了螺旋角对系统稳定性的影响,给出了使干气密封系统稳定运行的螺旋角范围。
     再次,研究了系统角向非线性稳定性问题。建立了角向振动下系统的动力学模型,求解角向摆动的二维振动方程,获得了密封系统失稳时的密封结构参数,分析了临界转动惯量与螺旋角之间的定量关系及失稳点振动的非线性动力学行为,同样得到控制系统稳定运行的结构参数区域。同时建立了气膜-密封环系统角向摆动动力学模型,将气膜厚度表示为含有摆角的变量,在特例下计算并拟合非线性气膜角向刚度,得到了一个含二次、三次项的非线性受迫振动微分方程。在无外激励情况下,通过求Floquet指数讨论了系统分岔问题,分析了螺旋角对系统稳定性的影响,给出了使干气密封系统稳定运行的螺旋角范围。
     最后,在密封试验台上对干气密封样机进行了试验研究,完成了气体端面密封试验台的测试系统的总体方案设计、测试系统的硬件配置。测试了泄漏量、气膜轴向刚度和振动位移,给出了气体端面密封试验的测试结果,并与理论计算近似值比较,进行误差分析。试验测出数值与计算结果较为吻合,表明所建立的螺旋槽干气密封气膜密封环系统的数学和力学模型是正确的,所编制的近似计算程序可行。
It is the key point to ensure reliable and safe operation of gas seal system to keep the dynamic stability of the gas film. The stability of the face seal film is closely related to its temperature and dynamical characteristics, from four aspects:thermal fluid nonlinear dynamical analysis of gas seal system, instability analysis of axial for the dry gas seals system, instability analysis of angular wobbly for the system, experimental validation, the safe operation conditions of the system are analysized form different angles, the accuracy of the mode and the numerical calculation are proved through experiments.
     First, thermal process of the lubricated gas film for the system was stadied based on the thermal hydrodynamics theory, the thermo-elastic deformation of the seals ring caused by the heat of the system and its effect on the seal properties are analysized. The pressure distributions function is obtained not considering the seal rings' deformation based on the Reynolds equation under the slid boundary conditions, the entropy variation equations of fluid in the spiral groove are derived and the temperature field distributions of the gas film are obtained. The temperature distribution of the gas film under the different polytropic exponent is analyzed considering the process of entropy change of the fluid in the spiral groove. The thermo-elastic deformation of the seal rings and the approximate analytic of the gas film thickness is obtained under the different polytropic exponent, the theoretical leakages considering and not considering the thermo-elastic deformation are obtained, then compared with the experimental measurements, the leakage by using the different polytropic exponent is closer to the experimental measurements than the theoretical value.
     Secondly, nonlinear stability of axial for the system was studied based on the nonlinear vibration theory. A fluid-structure interaction dynamic model of axial vibration of the system was established, the vibration equation was solved and the nonlinear dynamics behavior of the instability point was analyzed. Instability point-fields is obtained using the numerical method, the chaotic motion was found under the specific spiral grooved parameters of the structure, and then the chaotic motion was controlled by select reasonable parameters. Nonlinear forced vibration differential equation contains the second and the third order was derived while the nonlinear axial rigidity of the gas film was calculated and simulated, The bifurcation question was discussed according to solve the Floquet exponent unconsidering the outer excitation, and the stability influenced by spiral angle was analyzed in the system, the range of the spiral angle enable system stable was given.
     Again, nonlinear stability of angular wobbly for the system was studied. The dynamic model of the angular wobbly of the system was established, and the angular wobbly two-dimensional vibration equations were solved, then instability parameters of the system were obtained, quantitative relation of critical moment of inertia and the angle and the nonlinear dynamic behavior of the instability point was analyzed, parameters of the structure enable system stable is obtained also. The dynamical angular wobbly vibration model of the gas film and seal rings in the system of dry gas seals was established, a nonlinear forced vibration differential equation contains the second and the third order was derived while the rigidity of the gas film is expressed as a variable containing the swing angle, The bifurcation question was discussed according to solve the Floquet exponent unconsidering the outer excitation, and the stability influenced by spiral angle was analyzed in the system, the range of the spiral angle enable system stable was given.
     At last, the experimental investigation of dry gas seal prototype was conducted on the sealing test device, and the overall plan design and the hardware configuration of the test system is proposed. Leakage, gaseous film axial rigidity and sealing ring axial vibration displacement are tested, test results are obtained and the error between test and calculation data is analyzed.The results show that dynamical and mathematical model for the system of gas film and seal rings of the spiral groove dry gas seal is validated correctly comparing the data from experiments with the approximate calculation, and the developed program of approximate analysis method is practicable.
引文
[1]Fischbach M J. Dry seal applications in centrifugal compressors[J]. Hydrocarbon Processing,1989,68(10):47-51.
    [2]Fort J, Jehl J. Magnetic bearings and dry seals improve compressor operation [J]. Hydrocarbon Processing, October 1988:53-55.
    [3]曹登峰,宋鹏云,李伟等.螺旋槽气体端面密封动力学研究进展[J].润滑与密封,2006(5): 178-182.
    [4]Josef Sedy. Improved performance of film-riding gas seals through enhancement [J]. ASLE Transaction,1967,23(1):35-44.
    [5]Sparrow E M, Lin S H. Laminar heat transfer in tubes under slip-flow conditions [J]. Journal of Heat Transfer,1962,84(4):363-369.
    [6]Gad-el-Hak M. The fluid mechanics of micro devices-the freeman scholar lecture [J]. Transactions of the ASME, Journal of Fluids Engineering.1999,121:5-33.
    [7]Gad-el-Hak M. Review:Flow physics in MEMS [J]. Mecanique and Industries,2001, 2:313-341.
    [8]Kassner M E, Nemat-Nasser S, Suo Z. et al.New directions in mechanics [J]. Mechanics of Materials,2005,37:231-259.
    [9]Hakak Khadem.M, Shams.M, Hossainpour.S. Effects of rarefaction and compressibility on fluid flow at slip flow regime by direct simulation of roughness [J]. World Academy of Science, Engineering and Technology,2008,41:231-237.
    [10]李娜,朱维兵,王和顺等.T型槽干气密封动环稳态温度分布规律研究[J].液压与气动,2009(5):46-49.
    [11]Wipple.R.T.P. Herringbone-Pattern thrust bearings[J].Journal of T Tribo-logy,1951, (29):147-152
    [12]Wipple.R.T.P. Herringbone-Pattern thrust bearings [M]. England:Atomic Energy Research Establishment,1951
    [13]Muijderman E A. Spiral groove bearings [M].The Netherlands:Philips Technical Library.1966.
    [14]Gardner James F. Combined hydrostatic and hydrodynamic principles applied to non-contacting face seals[C]. In:Proceeding of 4th International Conference on Fluid Sealing, Paper H2,1969,351-360.
    [15]Zuk. J, Penkel. H. E. Numerical solutions for the flow and pressure fields in an idealized spiral grooved pumping seal[C]. In:Proceeding of 4th International Conference on Fluid Sealing, Paper G1,1969,290-301.
    [16]Gardner James F. Recent development on non-contacting face seals [J]. Lubrication Engineering,1973,29(2):406-412.
    [17]Hsing F C. Analytical solution for incompressible spiral groove viscous pumps [J]. ASME Journal of Lubrication Technology,1974, (7):365-369.
    [18]Zobens, Arthur. A noncontacting face Seal application for sealing gas at 105psig, 7000 rpm[J]. Lubrication Engineering,1975,31(1):16-19.
    [19]Gabriel R.P. Fundamentals of spiral groove face seals for liquid oxygen[J]. Lubrication Engineering,1979,33:367-375.
    [20]Etsion I. Mechanical face seal dynamic 1985-1989 [J]. Shock Vib Dig,1991,23(4): 3-7.
    [21]Kowalski C A, Basu P. Reverse rotation capability of spiral-groove gas face seals[J]. Tribology Transactions,1995,38(3):549-556.
    [22]Zirkelback N, San Andres L. Effect of frequency excitation on force coefficients of spiral groove gas seals[J]. ASME J Tribol,1999,121:853-863.
    [23]Pecht G G, Netzel J P. Design and application of non-contacting gas lubricated seals for slow-speed service [J]. Lubr Eng,1999,55 (7):20-25.
    [24]Ruan B. Finite element analysis of the spiral groove gas face at the slow speed and the low pressure condition-slip flow consideration [J]. Tribology Trans,2000,43 (3): 411-418.
    [25]Zirkelback N. Parametric study of spiral groove gas face seals[J]. J Tribol Trans, 2000,43:337-343.
    [26]Etsion I. Experimental Observation of the Dynamic Behavior of Noncontacting Coned-face Mechanical Seals[J]. ASLE Trans,1984,27 (3):263-270.
    [27]Kollinger R, et al. Theoretical and Experimental Investigation into the Running Characteristics of Gas-lubricated Mechanical Seals[C].12th Intl Conf on Fluid Scaling,BH RA,1989:307-322.
    [28]Beskok A, Karniadakis G E, Trimmer W. Rarefaction and compressibility effects in gas micro flows [J]. Journal of Fluids Engineering,1996,118(5):448-456.
    [29]S.Offermann. Thermoelastic stress analysis under nonadiabatic conditions [J]. Experimental Mechanics,1997,37(4):409-413.
    [30]Evenson Robert, Peterson Robert, Hanson Rick. Preliminary investigation and application of alternate dry gas seal face materials[J]. Lubrication Engineering,1994, 50(3):247-252.
    [31]王美华.人字型螺旋槽机械密封热变形和力变形[J].流体工程,1991,3:1-6
    [32]王建荣,顾永泉等.圆弧槽气体润滑非接触机械密封的特性[J].流体工程,1991,19(13): 1-6
    [33]蔡文新,朱报.螺旋槽气体密封的研究.流体机械[J],1994,9:2-6
    [34]彭建,左孝桐,顾永泉.螺旋槽干气密封的优化设计.流体机械[J],1995,3:24-27
    [35]胡丹梅,吴宗祥.直线槽端面气体密封分析计算.流体机械,1996,9:16-22
    [36]刘雨川.端面气膜密封特性研究:[D].北京:北京航空航天大学,1999:1-80
    [37]林培峰.螺旋槽气体端面密封稳态特性的有限元分析:[D].北京:北京化工大学,2002:1-17
    [38]李双喜.螺旋槽气体端面密封动态特性的有限元分析:[D].北京:北京化工大学,2002:1-60
    [39]李子涛.T型槽气体端面密封稳态特性的有限元分析:[D].北京:北京化工大学,2003:1-74
    [40]陈伟.螺旋槽气体端面密封稳态温度场的有限元分析:[D].北京:北京化工大学,2003:1-77
    [41]尹晓妮,彭旭东.考虑滑移流条件下干式气体端面密封的有限元分析[J].润滑与密封,2006(4):55-57.
    [42]张伟政,俞树荣,丁雪兴等.螺旋槽干气密封稳态微尺度流动场的动压计算[J].兰州理工大学学报,2006,32(6):72-75.
    [43]杜兆年,丁雪兴,俞树荣等.轴向微扰下干气密封螺旋槽润滑气膜的稳定性分析[J].润滑与密封,2006(10):127-130
    [44]丁雪兴,王悦,张伟政等.螺旋槽干气密封润滑气膜角向涡动的稳定性分析[J].北京化工大学学报,2008,35(2):82-86.
    [45]丁雪兴,陈德林,张伟政等.螺旋槽干气密封微尺度流动场的近似计算及其参数优化[J].应用力学学报,2007,24(3):425-428.
    [46]张伟政,俞树荣,丁雪兴等.螺旋槽干气密封系统轴向振动响应及结构优化[J].排灌机械工程学报,2010,28(3):228-232
    [47]丁雪兴,张伟政,俞树荣等.螺旋槽干气密封系统非线性动力学行为分析[J].中国机械工程,2010,21(9):1083-1087
    [48]张伟政,俞树荣,丁雪兴等.干气密封系统角向摆动的稳定性及其振动响应[J]. 振动与冲击,2011,30(3):96-99.
    [49]徐小峰,张文.一种非稳态油膜力模型下刚性转子的分叉和混沌特性[J].振动工程学报.2000,13(2):247-250
    [50]杨金福,刘占生,于达仁,解永波.滑动轴承非线性动态油膜力及稳定性研究[J].动力工程,2004,24(4):501-504
    [51]孙保苍,周传荣.不平衡转子-轴承系统非线性行为研究[J].振动与冲击,2003,22(2):85-89
    [52]吕延军,张永芳,刘恒,虞烈.滑动轴承-平衡转子系统非线性动力行为[J].润滑与密封,2006(2):6-9
    [53]陈予恕,孟泉.非线性转子轴承系统的分叉[J].振动工程学报,1996,9(3):266-275
    [54]陈予恕,丁千,孟泉.非线性转子的低频振动失稳机理分析[J].应用力学学报,1998,15(1):113-117
    [55]徐万孚.螺旋槽干运行非接触气体密封的理论分析与试验[J].机械工程学报,2003,39(4):124-127
    [56]陈铭,张秋翔,蔡纪宁,等.气体端面密封试验设备[J].流体机械,2005,33(2):14-16
    [57]关家麒.约翰·克兰28型干气密封系列产品介绍[J].流体机械,1995,23(4):34-37
    [58]A.Pannar. Designing Out Distortion Extends Mechanical Face Seal Life Design[J], Engineering,1990,46(8):28-36
    [59]N.M.Wallace. Recent Development in High Duty Seals, Flexibox, Manchester, England,1983
    [60]Fischbach M J. Dry Seal Applications in Centrifugal Compressors [J]. Hydrocarbon Processing,1989,68(10):47-51
    [61]赵亚萍.双向干气密封的研制情况及技术分析[J].流体机械,1996,24(4):46-47
    [62]王玉明.鼎名密封[产品报告].天津鼎名密封有限公司,2001
    [63]王玉明,马将发,陆文高.高速透平压缩机的轴端密封[J].石油化工设备技术,2000,21(4): 62-65
    [64]王超,尹宏伟.循环氢压缩机干气密封的改造和应用[J].石油化工设备技术,2001,22(3): 50-61
    [65]潘春华.干气密封在合成气压缩机中的应用[J].风机技术,2001(1):12-15
    [66]刘艳梅,王海宁等.2MCL606型富气压缩机的轴封改造[J].流体机械,2002(10): 298-301
    [67]李桂芹,王玉华.压缩机干气密封基本原理及使用分析[J].风机技术,2000(1):19-23
    [68]张珊.机械密封环端面流体动压槽的加工方法[J].流体机械,2001,28(3):38-41
    [69]杨惠霞,王玉明.泵用干气密封技术及应用研究[J].流体机械,2005,33(2):1-4
    [70]周卫.双端面干气密封在富气压缩机上的应用[J].流体机械,2002,30(11):40-43
    [71]方卫东,冯辉霞,孔文荣.干气密封在制冷压缩机上的应用[J].石油化工设备,2004,33(2):60-62.
    [72]杨富来.干气密封技术及实际应用[J].石油化工设备技术,2004,25(3):63-66
    [73]李晓忠.高压氨泵的轴封改造[J].石油化工设备技术,2004,25(2):59-61
    [74]赵佰超.离心压缩机干气密封研制与应用[J].化工设计,2002,12(5):27-31
    [75]余金秀.干气密封离心泵上的应用[J].流体机械,2002,30(8):37-39
    [76]郝木明,胡丹梅,杨宝亮.泵用零溢出非接触式机械密封[J].流体机械,2002,30(9): 13-16
    [77]孟昭月.低温乙烯泵用干气密封的研制及应用[J].黑龙江石油化工,2001,12(4):35-37
    [78]喻宁,吕碧超.富气压缩机用干气密封设计和制造[J].流体机械,2003,31(9):11-14
    [79]田宏光.离心氢压机螺旋槽干气密封技术及其应用研究[D].大连:大连理工大学,2003.
    [80]谭清德.28AT型干气密封装置的应用研究及其改进[D].成都:四川大学,2004.
    [81]杜志永.大型离心压缩机密封技术研究[D].大连:大连理工大学,2003.
    [82]郝木明,苏玉柱.上游泵送机械密封在液化汽泵上的应用研究[J].润滑与密封,2001(4): 57-59
    [83]黄文斌,刘文涛.富气压缩机干气密封的改造及应其用[J].石油化工设备技术,2002,23(4):53-56
    [84]陈秀琴,朱维兵,王和顺.干气密封技术的研究现状及发展趋势[J].液压与气动,2008,28(2):52-56
    [85]张金凤,袁寿其,曹武陵.机械端面密封技术研究现状及发展趋势[J].流体机械,2004,32(10):26-31
    [86]于新奇,王振辉,蔡仁良.动压型机械密封技术的应用和发展[J].流体机械,2005, 33(8): 28-32
    [87]顾永泉.机械密封实用技术[M].北京:机械工业出版社,2001。
    [88]顾永泉.流体动密封[M].山东:石油大学出版社,1990
    [89]吴望一.流体力学[M].北京:北京大学出版社,1995
    [90]O.平克斯,B.斯德因李希特.流体动力润滑理论[M].北京:机械工业出版社,1980,1-26
    [91]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995,12-26
    [92]陈伯贤.流体润滑理论及其应用[M].北京:机械工业出版社,1991,1-3
    [93]郝木明.机械密封实用技术[M].北京:中国石化出版社,2010
    [94]蔡仁良,顾伯勤,宋鹏云.过程装备密封技术[M].北京:化学工业出版社,2002,8-12
    [95]林兆福.气体动力学[M].北京:北京航空航天大学出版社,1988,4-7
    [96]顾建中.热学教程(修订本)[M].北京:高等教育出版社,1961,85-89
    [97]周恒,刘延柱.气体动压轴承的原理及计算[M].北京:国防工业出版社,1981.
    [98]B.H.德洛芝道维奇.动压气浮轴承[M].郑丽珠译.北京:国防工业出版社,1982.
    [99]丁雪兴.干气密封螺旋槽润滑气膜的稳、动态特性研究[D].兰州:兰州理工大学,2008:14-65.
    [100]童钧耕.工程热力学[M].北京:高等教育出版社,2007.
    [101]Gabriel R P, Fundamentals of spiral groove non-contacting face seals[J], Stle lubr Eng,1994,50(3):215-224.
    [102]刘雨川,徐万孚,王之栎,等.气膜端面密封角向摆动自振稳定性[J].机械工程学报,2002,38(4):1-6.
    [103]徐万孚,刘雨川,王之栎,等.端面流体膜密封角向摆动自振产生及其半频特性的阐释[J].机械工程学报,2002,38(9):43-46.
    [104]陈铭,张秋翔,蔡纪宁等.气体端面密封试验设备[J].流体机械,2005,33(2):14-16.
    [105]钱恩.气体端面密封试验台的测试系统[D].北京:北京化工大学,2006.
    [106]岑汉钊.化工机械测试技术[M].北京:化学工业出版社,1999.
    [107]张发启.现代测试技术及应用[M].西安:西安电子科技术出版社,2005.
    [108]汉泽西.现代测试技术[M].北京:机械工业出版社,2006.
    [109]魏龙,顾伯勤,孙见君.机械密封性能参数的测量技术[J].流体机械,2003,31(3):21-23.
    [110]Mayer E机械密封[M].姚兆生,译.北京:化学工业出版社,1981.
    [111]宋鹏云,陈匡民,董宗玉等.“零压差零泄漏”液体润滑螺旋槽机械密封性能的实验研究[J].流体机械,2000,28(7):11-13.
    [112]李宝彦,李云鹏,张建中.机械密封端面流体膜压膜厚的测量[J].大庆石油学院学报,1990,14(4):50-54.
    [113]张家犀,左孝桐.机械密封端面膜压的试验研究[J].流体工程,1988,16(2):5-12.
    [114]Batch B A, Iny E H. Pressure Generation in Radial-face Seal [C]. Proc 2nd ICFS, Paper F4,1964.
    [115]余峰,刘学军.虚拟仪器及其应用[J].电机电器技术,2002,3:7-10
    [116]胡飞.面向仪器与测控系统的计算机软件应用平台技术现状与发展[J].测控技术,2001,20(4):34-36
    [117]张继革,段慧玲,彭慧芬.抽空状态下机械密封端面状况的实验研究[J].石油机械,1999,27(11):20-22
    [118]申忠如,郭福田,丁晖.现代测试技术与系统设计[M].西安:西安交通大学出版社,2005。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700