用户名: 密码: 验证码:
高速动静压混合气体轴承转子系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着动力机械对功率密度要求的日益提高,需要转子工作在更高转速下,而限制转子高速运行的关键是轴承。长期以来广泛使用的滚动轴承由于部件间存在接触,在高速运行时磨损严重而影响寿命;液体轴承的摩擦功耗大,失稳转速较低,因此上述两种轴承在高转速下应用受到较大限制。气体轴承由于润滑介质粘度较低,能够有效地克服滚动轴承和液体轴承的缺点,在高速旋转机械中获得日益广泛的应用;动静压混合气体轴承避免了动压气体轴承低速时的磨损问题,并提高了轴承的承载能力和稳定性,成为气体轴承研究的重点之一。
     本文以高速动静混合气体轴承为研究对象,研究轴承的静、动态特性;同时结合非线性动力学的理论和方法,通过数值仿真和试验手段,研究高速动静混合气体轴承-转子系统的耦合动力学特性,为高速旋转机械转子-气体轴承系统设计提供有效的方法。
     针对经典混合气体轴承设计中仅将动压性能参数与静压性能参数分别计算后进行叠加,忽略了动静压之间的相互影响的问题,建立了含小孔节流项的动静混合径向气体轴承可压缩气体润滑雷诺方程,通过牛顿迭代法和有限差分法实现了混合轴承动静压参数耦合求解。同时针对气体轴承承载能力偏低的弱点,提出了薄膜节流器动静混合气体轴承结构,建立了描述薄膜节流器内流动的气体动力学方程,通过流体阻抗法实现了上述方程与径向气体润滑雷诺方程的耦合求解。
     针对气体润滑雷诺方程中考虑转子涡动的气体轴承刚度阻尼系数求解困难的问题,通过多供气孔静压径向气体轴承的压力分布获得了能够准确描述其特性的平均系数及修正系数,给出了节流孔入、出口压力间的关系;采用传递函数法描述了径向气体轴承间隙内气体的流动,推导了非稳态多供气孔动静混合径向气体轴承非线性气膜力的解析表达式,通过对该气膜力进行Laplace变换获得了上述轴承的动力学特性系数。
     针对气体轴承-转子系统动力学特性研究中忽略气膜力中压力和位移对时间偏导数项的问题,采用变方向隐式方法计算气体轴承间隙的瞬态流场,并将其与弹性转子运动学方程耦合求解;针对耦合求解中,气体润滑瞬态雷诺方程和转子运动方程不能同步求解的问题,提出了线性预测多场耦合算法,计算了气体轴承-转子系统的非线性动力学特性;研究表明,线性预测多场耦合算法能够消除弱耦合算法引入的滞后误差并提高计算效率。
     基于线性预测多场耦合求解方法,提出了相应的简谐激振动力学特性系数识别方法,通过考虑激振频率对动力学特性系数的影响获得了耦合转子弹性变形的动力学特性系数。
     针对旋转冲压发动机转子内部流动对结构几何参数变化较为敏感的特点,对旋转冲压发动机转子涡动时压缩进气道的内部流场进行分析,给出了作用在转子上的非线性激振力模型;通过数值仿真获得了旋转冲压发动机复杂激振力作用下动静混合气体轴承-高速转子系统的非线性动力学特性。
     在高速气体轴承-旋转冲压转子系统实验台上,进行转子轴承系统动力学特性实验。通过与计算结果进行对比,比较了在实验转速内的低频分量及静平衡位置分布规律,定性验证了耦合求解建模及研究方法的正确性。
As the increasing of power density for power machinery, the rotor needs to work on high rotating speed. The bearing is the key component for limiting the high speed operation of rotor. The widely used rolling element bearing wears heavily and effects the life as the rotating speed is big, which generate from the contact between the components. For the liquid bearing, the friction waste power is large and the instability speed is low. So that two kinds of bearings are limited in the high speed application. The gas bearing can overcome the disadvantages of liquid bearing and rolling element bearing, which generates from that the low viscosty of lubricated medium for gas bearing. So the gas bearing is more and more widely employed in high speed rotating machinery. The hybrid gas bearing can avoid the bearing bush contact problem of aerodynamic gas bearing at lower rotating speed and increase the load capacity and stability, which become the high light of the research on gas bearing.
     The high speed hybrid gas bearing is studied as the research object in this dissertation. The static and dynamic characteristics of bearing are studied. By employing numerical and experimental method, the coupling dynamics of high speed hybrid gas bearing rotor system is studied by combining with nonlinear dynamic therotical and method. This offers the reference basis and effective therotical method for the rotor bearing system design of high speed rotating machinery.
     For the case that the aerodynamic performance and the aerostatic performance is calculated separately and then superimposed together in the classical hybrid gas bearing design, which ignore the couping effect, the compressible gas lubricated Reynolds equation including the small orifices flow term is established. The coupling solving of aerostatic and aerodynamic parameter for hybrid bearing is carried out by Newton method and finite difference method. To improve the bearing load capacity of gas bearing, the membrane restrictor gas bearing structure is proposed, and then the gas dynamic equation to describe the gas flow in membrane restrictor is established. That equation is couplingly solved with the gas lubricated Reynolds equation by fluid resistance method.
     For the stiffness and damping coefficients with whirling of the rotor in gas lubricated Reynolds equation is complicated to get, the average and modified parameters are acquired by employing the pressure distribution of multi-orifices aerostatic journal bearing. And the relation between the inlet and outlet pressure for orifice is obtained. The flow in the journal gas bearing is described by the transfer function, and the analytical form of nonlinear unsteady gas film forces for multi- orifices hybrid gas bearing is derived. By employing the Laplace transform the dynamic coefficients are acquired.
     For the case that usually the pressure and displacement derived with time is ingored in the research of gas bearing rotor system, the alternating direction implicit method is employed to calculate the transient flow field of gas bearing clearance, and then solved coupling with equations of motion for elastic rotor; For the case that in the coupling solving procedure, the gas lubricated transient Reynolds equation and equation of motion for rotor can not be solved simultaneously, the linear forecast multi-field algorithm is proposed. The nonlinear dynamics characteristics for gas bearing rotor system are studied. It indicates that the linear forecast multi-field algorithm can eliminate the hysteresis error caused by weak coupling algorithm and improve the efficient of calculation.
     Based on the characteristic of linear forecast multi-field coupling solving method, the corrospending harmonic excited dynamic characteristic coefficients identification method is presented. By considering effect of the excited frequency on dynamic characteristic, the dynamic coefficients coupling with the elastic deformation of rotor is acquired.
     Because the inner flow of rotating ramjet is sensitive to the geometry of structure, the internal flow in the rotating ramcompressor as whirling is studied, and then nonlinear coupling excited force model acting on the rotor is obtained. The gas lubricated Reynold equation including time terms is coupling solved with the motion of rotor, and the nonlinear rotor dynamic characteristics of hybrid gas journal bering-high speed rotor system with rotating ramcompressor complicated excited forces are obtained.
     The dynamic characteristics experiment of rotor bearing system is carried out on the high speed gas bearing-rotating ramjet experimental test rig. By comparing with the numerical results, the low frequency component in the experimental speeds and the distribution of statics balancing position are checked, which proves the correctness of coupling solving modeling and research method qualitatively.
引文
1 Lund J W. A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings. ASME J. Lubr. Technol. 1967, 89(2): 154-163.
    2韩吉昂,钟兢军,卜方.旋转冲压压气机压缩转子技术分析及展望.飞航导弹. 2007: 7.
    3 AD Grosvenor, PM Brown. Measured and Predicted Performance of a High Pressure Ratio Supersonic Compressor Rotor.ASME Paper, GT2008-50150, 2008.
    4 SA Howard, C Dellacorte. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation. NASA Report, TM-214115, 2006.
    5 VN Constantinescu. Gas Lubrication. ASME, 1969.
    6 KJ Stoud. The Design of Aerostatic Bearings. Whitestone Business Communications, 1996.
    7 BH德洛芝道维奇.动压气浮轴承.国防工业出版社,1982.
    8韩焕臣.气体轴承设计、制作和应用. 1981.
    9刘暾,刘育华,陈世杰.静压气体润滑.哈尔滨工业大学出版社, 1990.
    10党根茂.气体润滑技术.东南大学出版社, 1990.
    11周恒,刘延柱.气体动压轴承的原理及计算.国防工业出版社, 1981.
    12王云飞.气体润滑理论与气体轴承设计.机械工业出版社. 1999.
    13池长青.气体动静压轴承的动力学及热力学.北京航空航天大学出版社, 2008.
    14姚绍明.气体复合润滑技术.国防工业出版社, 2008.
    15 Cioc S, Dimofte F, Keith T G, et al. Computation of Pressurized Gas Bearings Using the CE/SE Method. Tribology Transactions. 2003, 46(1): 128-133.
    16 Maru PE, Star M. Rigorous Justification of the Reynolds Equations for Gas Lubrication. Comptes rendus-Mécanique. 2005, 333(7): 534-541.
    17 Hsu TC, Chiang HL, Lin CY. Application of Modified Reynolds Equation for Gas Lubrication on Air Bearing Analysis. Industrial Lubrication and Tribology. 2006, 58(5): 269-275.
    18 Arghir M, Lez SL, Frene J. Finite-Volume Solution of the Compressible Reynolds Equation: Linear and Non-linear Analysis of Gas Bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2006, 220(7): 617-627.
    19 Feldman Y, Kligerman Y, Asme M, et al. The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces. Journal of Tribology. 2006, 128: 345.
    20 Lu CJ, Chiou SS. On the Interface Diffusion Coefficient for Solving Reynolds Equation by Control Volume Method. Tribology International. 2003, 36(12): 929-933.
    21 Kim D, Lee S, Bryant M D, et al. Hydrodynamic Performance of Gas Microbearings. Journal of Tribology. 2004, 126: 711.
    22 Elrod HG, Burgdorfer A. Refinement of the Theory of Gas Lubricated Journal Bearing of Infinite Length. Proceedings of the First International Symposium on Gas-Lubrication Bearings, ACR-49. : 93-118.
    23 Szeri AZ. Some Extensions of the Lubrication Theory of Osborne Reynolds. Journal of Tribology. 1987, 109: 21-36.
    24 Mori H, Yabe H. Theoretical Investigation of Externally Pressurized Thrust Collar Gas-Bearings. Tribology Transactions. 1963, 6(4): 337-345.
    25 Constantinescu VN. Note on the Influence of the Heat Transfer between the Surfaces as a Secondary Effect in Gas Lubrication. Journal of Lubrication Technology. 1969, 91(1): 194-198.
    26 Mori H, Miyamatsu Y. Theoretical Flow-Models for Externally Pressurized Gas Bearings. Journal of Lubrication Technology. 1969, 91(1): 181-193.
    27 Mori H. A Theoretical Investigation of Pressure Depression in Externally Pressurized Gas-Lubricated Circular Thrust Bearings. Journal of Basic Engineering. 1961, 83(2): 201-208.
    28孙昂,马文琦,王祖温.环面节流平面气浮轴承大间隙下流场数值模拟.润滑与密封. 2007, 9.
    29 Turchak LI, Shidlovskii VP. Theoretical and Numerical Investigation of Gas Lubrication Processes on the Basis of Aerodynamic Equations. Fluid Dynamics. 2001, 36(5): 691-700.
    30 Cioc S, Keith TG, Dimofte F, et al. Calculation of the Flow in High-Speed Gas Bearings Including Inertia Effects Using the CE/SE Method. Tribology Transactions. 2004, 47(3): 402-412.
    31 Kwan YB, Corbett J. A Simplified Method for the Correction of Velocity Slip and Inertia Effects in Porous Aerostatic Thrust Bearings. Tribology International. 1998, 31(12): 779-786.
    32 Huang W. Three-Dimensional Direct Simulation Monte Carlo Method for Slider Air Bearings. Physics of Fluids. 1997, 9(6): 1764.
    33 Lee NS, Choi DH, Lee YB, et al. The Influence of the Slip Flow on Steady-State Load Capacity, Stiffness and Damping Coefficients of Elastically Supported Gas Foil Bearings. Tribology Transactions. 2002, 45(4): 478-484.
    34 Nguyen SH. Solution of Reynolds Equation With Slip-Flow Effects by a HierarchicalFinite Element Formulation. Tribology Transactions. 1991, 34(4): 565-568.
    35曲全利.静压气体轴承稳定性计算方法的分析.机械工程师. 1999(5).
    36 Wa Gross. A Gas Film Lubrication Study Part I Some Theoretical Analyses of Slider Bearings. IBM Journal of Research and Development, 1957.
    37 Wa Gross. A Gas Film Lubrication Stud Part II Numerical Solution of the Reynolds Equation for Finite Slider Bearings. IBM Journal of Research and Development, 1957.
    38 Raimondi AA. A Numerical Solution for the Gas Lubricated Full Journal Bearing of Finite Length. Tribology Transactions. 1961, 4(1): 131-155.
    39 Malanoski SB, Pan CH. The Solution of Special Squeeze Film Gas Bearing Problems by an Improved Numerical Technique(Computer program for solving squeeze film gas bearing problems). 1966.
    40陈明,徐建民.应用边界元法研究小孔带流空气静压径向车承的运动精度.哈尔滨工业大学学报. 1990(002): 108-113.
    41徐建民,陈明.边界元方法在研究气体静压轴承特性中的应用.润滑与密封.1997(003):27-30.
    42 Nguyen SH. Use of a P-Version Finite-Element Formulation for Compressible Lubrication Calculations. COMMUN NUMER METHODS ENG. 1993, 9(2): 139-145.
    43李连祝.轴颈气浮轴承的流体静力计算.河北煤炭建筑工程学院学报. 1994, 11(003): 26-30.
    44程雪梅,陈海斌.一种研究空气静压轴承工作特性的新方法.渝州大学学报. 1995, 12(003): 11-16.
    45刘暾,彭春野.小孔节流气体静压润滑的离散化和计算收敛.摩擦学学报. 2001, 21(002): 139-142.
    46 Wahl MH, Lee PR, Talke FE. An Efficient Finite Element-Based Air Bearing Simulator for Pivoted Slider Bearings using Bi-Conjugate Gradient Algorithms. Tribology Transactions. 1996, 39(1): 130-138.
    47 Karkoub M, Elkamel A. Modelling Pressure Distribution in a Rectangular Gas Bearing using Neural Networks. Tribology International. 1997, 30(2): 139-150.
    48 Wang N, Chang C. An Application of Newton's Method to the Lubrication Analysis of Air-Lubricated Bearings. Tribology Transactions. 1999, 42(2): 419-424.
    49 Almas EA, De SF. Finite Difference Automatically Generated Non-uniform Grids in the Numerical Solution of the Reynolds' Compressible One-Dimensional Squeeze-film Equation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2003, 217(3): 243-249.
    50 Wang N, Chang YA, Tsai CM. The Application of Nearly Embarrassingly Parallel Computation in the Optimization of Fluid-Film Lubrication. Tribology Transactions. 2004, 47(1): 34-42.
    51 Lo CY, Wang CC, Lee YH. Performance Analysis of High-Speed Spindle Aerostatic Bearings. Tribology International. 2005, 38(1): 5-14.
    52 Yao SM. Incompressible and Analytical Study on Load-Carrying Capacity of a Complex Thrust Gas Bearing. Tribology Transactions. 2006, 49(1): 102-107.
    53 Yao SM. Incompressible and Analytical Study on an Out-Pump Type Complex Thrust Gas Bearing. Tribology Transactions. 2006, 49(1): 96-101.
    54 Liu LQ, Chen CZ. Mathematical Model for Gas Bearing With Holes of Tangential Supply. Journal of tribology. 1999, 121(2): 301-305.
    55 Arghir M, Frene J. Analysis of Tangential-Against-Rotation Injection Lomakin Bearings. Journal of Engineering for Gas Turbines and Power. 2005, 127: 781.
    56秦冬黎,姚英学.小孔节流动静压混合气体润滑球轴承的干扰力矩分析[J].润滑与密封. 2007,32(4):131-135.
    57 Tanaka S, Esashi M, Isomura K, et al. Hydroinertia Gas Bearing System to Achieve
    470 m/ s Tip Speed of 10 mm-Diameter Impellers. Journal of Tribology. 2007, 129: 655.
    58 Yao SM. Incompressible and Analytical Study on a Basic Model of a Complex Journal Gas Bearing. Tribology Transactions. 2006, 49(1): 92-95.
    59 Zhang Q, Shan XC, Guo G, et al. Performance Analysis of Air Bearing in a Micro System. Materials Science & Engineering. 2006, 423(1-2): 225-229.
    60 Jing G, Zhang LP, Hu ZY. On Fundamental Characteristics of a Hybrid Gas-Lubricated Journal Bearing with Surface-Restriction Compensation. Tribology Transactions. 1997, 40(3): 528-536.
    61 Su JC, Lie KN. Rotation Effects on Hybrid Air Journal Bearings. Tribology International. 2003, 36(10): 717-726.
    62 Ahuj BB, Chikate PP, Basu SK. High Speed Supports using Aerostatic Aerodynamic Bearing. Industrial Lubrication and Tribology. 2000, 52(2): 67-75.
    63 Zhang RQ, Chang HS. A New Type of Hydrostatic/Hydrodynamic Gas Journal Bearing and its Optimization for Maximum Stability. Tribology Transactions. 1995, 38(3): 589-594.
    64张君安,呼晓青,方宗德.气体动静压径向轴承试验台研制及实现.西安理工大学学报. 2006, 22(004): 415-418.
    65魏明明,刘波,张君安.空气动静压径向轴承实验台加载装置误差分析.机械与电子. 2007, 6:14-16.
    66 Sescu A, Sescu C, Dimofte F, et al. A Study of the Steady-State Performance of a Pressurized Air Wave Bearing at Concentric Position. Tribology Transactions. 2009, 52(4): 544-552.
    67 Kim D, Park S. Hydrostatic Air Foil Bearings: Analytical and Experimental Investigation. Tribology International. 2009, 42(3): 413-425.
    68 Legaev VP, Klimenkov YS. Gas Bearing with Increased Carrying Capacity and Rigidity. RUSSIAN ENGINEERING RESEARCH. 2008, 28(4): 302.
    69 Klimenkov YS. Improving the Operation of Aerostatic Bearing. Russian Engineering Research. 2008, 28(5): 414-420.
    70 Legaev VP, Klimenkov YS. Static Characteristics of Gas Bearings with a Rotary Bush. Russian Engineering Research. 2008, 28(6): 523-528.
    71 Al-Bender F. On the Modelling of the Dynamic Characteristics of Aerostatic Bearing Films: From Stability Analysis to Active Compensation. Precision Engineering. 2009, 33(2): 117-126.
    72 Lee CC, You HI. Characteristics of Externally Pressurized Porous Gas Bearings Considering Structure Permeability. Tribology Transactions. 2009, 52(6): 768-776.
    73灼王本.空气静压轴承的刚性反馈.杭州机械. 1989(002): 14-15.
    74 Ohsumi T, Ikeuchi K, Mori H, et al. Characteristics of a Hydrostatic Bearing with a Controlled Compensating Element. Wear. 1991, 150(1-2): 177-194.
    75 Singh N, Sharma SC, Jain SC, et al. Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes. Tribology International. 2004, 37(1): 11-24.
    76 Kang Y, Shen PC, Chang YP, et al. Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression[J]. Tribology International. 2007, 40(9): 1369-1380.
    77王本灼.伺服转台用可变节流静压空气轴承.杭州机械. 1990(004): 22-23.
    78齐乃明,崔乃刚.带弹性节流器气体轴承实现高刚度的机理分析.航空兵器. 1994(006): 20-22.
    79葛卫平,齐乃明,刘暾.自主气体轴承控制系统分析及实验研究.摩擦学学报. 2007, 27(002): 172-175.
    80 Sternlicht B. Elastic and Damping Properties of Cylindrical Journal Bearings. Journal of Basic Engineering. 1959, 81: 101-108.
    81 Rentzepis GM, Sternlicht B. On the Stability of Rotors in Cylindrical Journal Bearings. Journal of Basic Engineering. 1962, 84(3): 521-532.
    82 Ausman JS. An Improved Analytical Solution for Self-Acting, Gas-Lubricated Journal Bearings of Finite Length. Journal of Basic Engineering. 1961, 83(2): 188-194.
    83 Lund JW. The Stability of an Elastic Rotor in Journal Bearings with Flexible, Damped Supports. Journal of Applied Mechanics. 1965, 87: 911-920.
    84 Castelli V, Elrod H.G. Solution of the Stability Problem for 360 Degree Self-acting, Gas-lubricated bearing. Journal of Basic Engineering. 1961, 87: 199-212.
    85 Castelli V, Stevenson CH. A Semi-implicit Numerical Method for Treating The time Transient Gas Lubrication Equation. TID-23853, Mechanical Technology Inc., Latham, NY, 1967.
    86 Dimofte F. Fast Methods to Numerically Integrate the Reynolds Equation for Gas Fluid Films. NASA Technical Memorandum. 1992, 105415.
    87 Bou-Sa B, Grau G, Iordanoff I. On Nonlinear Rotor Dynamic Effects of Aerodynamic Bearings With Simple Flexible Rotors. Journal of Engineering for Gas Turbines and Power. 2008, 130: 12503.
    88 Teo CJ, Spakovszky ZS, Jacobson SA. Unsteady Flow and Dynamic Behavior of Ultrashort Lomakin Gas Bearings. Journal of Tribology. 2008, 130: 110-111.
    89 Lihua Y, Huiguang L, Lie Y. Dynamic stiffness and damping coefficients of aerodynamic tilting-pad journal bearings. Tribology International. 2007, 40(9): 1399-1410.
    90 Zhu X, San AL. Rotordynamic Performance of Flexure Pivot Hydrostatic Gas Bearings for Oil-Free Turbomachinery. Journal of Engineering for Gas Turbines and Power. 2007, 129: 1020.
    91 Belforte G, Colombo F, Raparelli T, et al. High-Speed Rotor With Air Bearings Mounted on Flexible Supports: Test Bench and Experimental Results. Journal of Tribology. 2008, 130: 21103.
    92 Kodnyanko VA, Sekatskii VS. Dynamics of Round Gas-static Bearing with a Microgroove and an Internal step. RUSSIAN ENGINEERING RESEARCH C/C OF VESTNIK MASHINOSTROENIIA AND STANKI INSTRUMENT. 2008, 28(5): 489.
    93 Wang CC, Jang MJ, Yeh YL. Bifurcation and Nonlinear Dynamic Analysis of a Flexible Rotor Supported by Relative Short Gas Journal Bearings. Chaos, Solitons and Fractals. 2007, 32(2): 566-582.
    94 Wang C C. Application of a Hybrid Method to the Nonlinear Dynamic Analysis of a Flexible Rotor Supported by a Spherical Gas-Lubricated Bearing System. Nonlinear Analysis. 2009, 70(5): 2035-2053.
    95 Wang CC. Bifurcation and Nonlinear Analysis of a Flexible Rotor Supported by a Eelative Short Spherical Gas Bearing System. Communications in Nonlinear Science and Numerical Simulation. 2009.
    96 Osborne DA, San AL. Experimental Response of Simple Gas Hybrid Bearings forOil-Free Turbomachinery. Journal of Engineering for Gas Turbines and Power. 2006, 128: 626.
    97 Wilde DA, San AL. Comparison of Rotordynamic Analysis Predictions with the Test Response of Simple Gas Hybrid Bearings for Oil Free Turbomachinery. ASME Paper No. GT-2003- 38859: 1-14.
    98 Frew DA, Scheffer C. Numerical Modelling of a High-Speed Rigid Rotor in a Single-Aerostatic Bearing using Modified Euler Equations of Motion. Mechanical Systems and Signal Processing. 2008, 22(1): 133-154.
    99 San AL, Ryu K. Flexure Pivot Tilting Pad Hybrid Gas Bearings: Operation With Worn Clearances and Two Load-Pad Configurations. Journal of Engineering for Gas Turbines and Power. 2008, 130: 42506.
    100 Colombo F, Raparelli T, Viktorov V. Externally pressurized gas bearings: A comparison between two supply holes configurations. Tribology International. 2009, 42(2): 303-310.
    101 Kumar M, Kim D. Parametric Studies on Dynamic Performance of Hybrid Airfoil Bearing. Journal of Engineering for Gas Turbines and Power. 2008, 130: 62501.
    102 Yang DW, Chen CH, Kang Y, et al. Influence of Orifices on Stability of Rotor-Aerostatic Bearing System. Tribology International. 2009,42(8):1206-1209.
    103 Ertas BH, Camatti M, Mariotti G. Synchronous Response to Rotor Imbalance Using a Damped Gas Bearing. Journal of Engineering for Gas Turbines and Power. 2010, 132: 32501.
    104 Lund JW. Evaluation of Stiffness and Damping Coefficients for Fluid-Film Bearings. Shock and Vibration Digest. 1979, 11(1): 5-10.
    105 Stanway R, Burrows CR, Holmes R. Pseudo-Random Binary Sequence Forcing in Journal and Squeeze-Film Bearings. Tribology Transactions. 1979, 22(4): 315-322.
    106 Conner KJ. Rotordynamic Coefficient Test Results for a Four-Stage Brush Seal. Journal of Propulsion and Power. 1993, 9(3): 462-465.
    107 Swanson EE, Kirk RG. Survey of Experimental Data for Fixed Geometry Hydrodynamic Journal Bearings. Journal of Tribology. 1997, 119: 704.
    108 Hamrock BJ. Fundamentals of fluid film lubrication. McGraw-Hill Science, Engineering & Mathematics, 1994.
    109 Chen JH, Lee AC. Estimation of Linearized Dynamic Characteristics of Bearings using Synchronous Response. International Journal of Mechanical Sciences. 1995, 37(2): 197-219.
    110 Chen JH, Lee AC. Identification of Linearized Dynamic Characteristics of Rolling Element Bearings. Journal of Vibration and Acoustics. 1997, 119: 60.
    111 Tiwari R, Lees AW, Friswell MI. Identification of Speed-Dependent BearingParameters[. Journal of Sound and Vibration. 2002, 254(5): 967-986.
    112 Marquette OR, Childs DW, San Andres L. Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals: Theory versus Experiment. Journal of Tribology. 1997, 119: 443.
    113 Kurtin KA, Childs D, San Andres Let al. Experimental versus Theoretical Characteristics of a High-Speed Hybrid (Combination Hydrostatic and Hydrodynamic) bearing. Journal of Tribology. 1993, 115: 160.
    114 Franchek NM, Childs DW. Experimental Test Results for Four High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearings. Journal of Tribology. 1994, 116: 147.
    115 Fayolle P, Childs DW. Rotordynamic Evaluation of a Roughened-Land Hybrid Bearing. Journal of Tribology. 1999, 121: 133.
    116 Xu S. Experimental Investigation of Hybrid Bearings. Tribology Transactions. 1994, 37(2): 285-292.
    117 Tiwari R, Lees AW, Friswell MI. Identification of Speed-Dependent Bearing Parameters. Journal of Sound and Vibration. 2002, 254(5): 967-986.
    118 Khan AA, Vyas NS. Application of Volterra and Wiener Theories for Nonlinear Parameter Estimation in a Rotor-Bearing System. Nonlinear Dynamics. 2001, 24(3): 285-304.
    119 Chatterjee A, Vyas NS. Nonlinear Parameter Estimation in Rotor-Bearing System using Volterra Series and Method of Harmonic Probing. Journal of vibration and acoustics. 2003, 125(3): 299-306.
    120潘锦珊.气体动力学基础.国防工业出版社, 1989.
    121 Powell JW. A Review of Progress in Gas Lubrication[J]. Review of Physics in Technology. 1970, 1(2): 96-129.
    122 Pan C, Sternlicht B. On the Translatory Whirl Motion of a Vertical Rotor in Plain Cylindrical Gas-Dynamic Journal Bearings. NP-10394, General Electric Co. General Engineering Lab, Schenectady, NY, 1961.
    123 Rentzepis GM, Sternlicht B. On the Stability of Rotors in Cylindrical Journal Bearings. Journal of Basic Engineering. 1962, 84(3): 521-532.
    124 Ausman JS. Linearized Ph Stability Theory for Translatory Half-Speed Whirl of Long Self-Acting Gas-Lubricated Journal Bearings. Journal of Basic Engeering. 1963, 83: 611-619.
    125 Castelli V, Elrod HG. Solution of the Stability Problem for 360 Deg Self-Acting, Gas-Lubricated Bearings. Journal of Basic Engeering. 1965, 87(1): 199-212.
    126 Lund JW. Calculation of Stiffness and Damping Properties of Gas Bearings. J. Lubrication Technology, 1968, 90: 793-801.
    127 Lund JW. Linear Transient Response of a Flexible Rotor Supported in Gas-LubricatedBearings. 1975.
    128 Belforte G, Raparelli T, Viktorov V. Modeling and Identification of Gas Journal Bearings: Self-Acting Gas Bearing Results. Journal of Tribology. 2002, 124: 716.
    129 Viktorov V, Belforte G, Raparelli T. Modeling and Identification of Gas Journal Bearings: Externally Pressurized Gas Bearing Results. Journal of Tribology. 2005, 127: 548.
    130霍林J.摩擦学原理[M].北京:机械工业出版社, 1981.
    131 Malik M, Bert C W. Differential Quadrature Solutions for Steady-State Incompressible and Compressible Lubrication Problems. Journal of tribology. 1994, 116(2): 296-302.
    132 Grosvenor AD, Brown PM, Lawlor SP. Design Methodology and Predicted Performance for a Supersonic Compressor Stage. ASME Conference Proceedings ASME Conference Proceedings. 2006, 2006(4241X): 205-219.
    133 Koopman A. Development and Testing of a Pre-Prototype Ramgen Engine. Ramgen Power Systems, Inc.(US), 2003.
    134王云,孟香.旋转冲压发动机冲压转子动应力分析.南昌航空工业学院学报. 2006, 20(004): 13-16.
    135孟香,王云,朱保利.旋转冲压发动机冲压转子的强度分析.科学技术与工程. 2007: 19.
    136田新,刘占生.旋转冲压发动机进气道流场及气流对转子的作用力研究.第八届全国转子动力学学术讨论会论文集. 2008.
    137 Steele R, Baldwin P, Kesseli J. Insertion of Shock Wave Compression Technology Into Micro Turbines for Increased Efficiency and Reduced Costs. ASME Conference Proceedings. 2005, 2005(46997): 857-862.
    138 Lawlor SP,Baldwin P. Conceptual Design of a Supersonic CO2 Compressor. Proceedings of the ASME Turbo Expo. New York: American Society of Mechanical Engineers, 2005: 309-316.
    139 Steele R, Baldwin P, Kesseli J. Insertion of Shock Wave Compression Technology into Micro Turbines for Increased Efficiency and Reduced Costs. ASME Conference Proceedings, 2005 (46997): 857-862
    140 Shawn PL, Robert CS, Peter B.Advanced Supersonic Component Engine for Military Applications. ASME Conference Proceedings, 2007 (27336): 1-6
    141王云,赵小路,徐建中.新概念旋转冲压发动机的研究与分析.北京航空航天大学学报. 2004, 30(8): 777-782.
    142邓洋波,钟兢军.旋转冲压发动机驻涡燃烧技术研究现状分析.燃气涡轮试验与研究. 2006, 19(3): 58-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700