用户名: 密码: 验证码:
首钢板坯连铸二冷水动态控制的模型建立与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸机的二次冷却对铸坯质量至关重要。其他工艺条件不变时,二冷强度增加及拉坯速度的提高,都可以提高铸机的生产率;但同时,二冷参数配置不当是导致铸坯产生各种质量缺陷的主要原因之一。二次冷却方法有静态控制和动态控制,其中动态控制能很好的适应变拉速的情况,将铸坯温度控制在合理范围内。随着计算机性能和自动化水平的日益提高,动态二冷配水已经广泛应用于连铸生产线,对于提高铸坯质量起到了巨大作用。
     本课题以首钢二炼钢板坯连铸机为研发基础,通过对板坯连铸凝固传热数学模型的理论研究,先对其静态配水进行分析,并在此基础上设计了二冷水表和二冷动态配水软件,对其生产工艺参数进行优化。
     在传热数学模型上,采用数值法对方程进行求解。模型根据数据库中存储的钢种的热物性参数、拉速、冷却水量、中间包温度计算铸坯温度与凝固状态。
     动态配水模型以坯龄法为基础,坯龄法是将连铸坯分为众多单元切片,分别对各个切片进行跟踪,根据切片的生成时间进行配水的方法。根据模拟和现场实验证明,坯龄模型能较好地在变拉速条件下控制铸坯表面温度的波动。此外动态配水中还采用目标温度控制法对水量进行校正,进一步减小了铸坯表面温度波动。
     在传热数学模型与坯龄模型的基础上,开发了动态配水软件。此软件包含离线模式与在线模式,利用离线模式设计了水表,并用于现场生产。在线模式将动态配水应用于生产。该软件不仅提供良好的用户界面和方便的数据库管理,还能详细记录生产过程中各类参数,有利于对铸机的生产运行状态进行分析和工艺优化。
     结果表明离线模型所设计的水表能满足铸坯质量的要求,动态配水能较好适应变拉速的情况,使温度控制在合理范围内。这对于提高铸坯质量和新钢种的配水设计与评价都有其现实意义。
The control of secondary cooling holds very important status during continuous casting. When other technical condition remain unchanged, the intensity of cold and increase the speed of casting are all can improve the productivity of casting machine. However, at the same time the cold parameters are not improper is one of the main reason of various defects. Secondary cooling control includes steady cooling control and dynamic cooling control, dynamic cooling control can adaptive the change of the situation very well. the slab temperature control within reasonable limits. With the increasing of computer performance, and automation level, dynamic secondary cooling water distribution has been widely used in continuous casting production lines, It plays a tremendous role in raising the slab quality.
     This subject take the Shougang steel slab continuous casting machine as research and development base, through studying the theory of the slab continuous casting and solidification heat transfer mathematical model, the analysis of its static allocation of water is done firstly. The two cold-water table and the dynamic cold water distribution software, which can optimize the process parameters, is designed based on this.
     In the heat transfer model, numerical methods is used to solve the equation. According to the database model stored in steel thermal physical parameters, casting speed, cooling water, tundish temperature and the temperature calculated solidification state.
     The dynamic cooling system is based on the residence time method in which the slab is divided into many slices which are tracked. The water flow rate is determined mainly by the residence time of the slices. The residence time method can soundly control the fluctuation of slab surface temperature, which is verified by both simulation and plant trial. In addition, the method of aim temperature control is applied to reduce the fluctuation of slab surface temperature further.
     Water distribution software is developed based on the heat transfer model and the old model of billet. This software includes online and offline mode model, using a meter off-line mode design and produce for the scene. Dynamic online distribution model will be applied to production. The software not only provide a good user interface and ease of database management, but also save a detailed of the various parameters of the production process, this is conducive to the production of casting machine running for analyzing and process optimization.
     The results adapting that the water meter designed by the offline model can meet the slab quality requirements. The hydro-dynamic can better adapt the variable speed,it also make the temperature in a reasonable limits. This method has practical significance to improve quality and new steel slab of the water distribution design and evaluation.
引文
1.姜永林.连铸生产概论[M],沈阳:东北工学院出版社,1992,45-107
    2.郑沛然.连续铸钢工艺及设备[M],北京:冶金工业出版社,1991,206-227
    3.熊毅刚.板坯连铸[M],北京:冶金工业出版社,1994
    4.郭戈,乔俊飞. 连铸过程控制理论与技术[M].北京:冶金工业出版社.2003:1-2
    5.孙一康,王京.冶金过程自动化基础[M],北京:冶金工业出版社,2006,2-4
    6.陈登福,孙海峰等.威钢ROKOP小方坯连铸机的二冷制度分析与优化[J].特殊钢,2002,Vol.23,No.2:8-10.
    7.赵家贵,曲秀黎,蔡开科,韩传基等.板坯连铸机二冷水控制模型与应用[J].冶金自动化,2000,No.3:34-36.
    8.毛汉平,潘红等.莱钢莱钢4#矩形板坯板坯连铸机二冷水动态控制模型[J].冶金自动化2001,No.2:35-36.
    9. Stetano Barozzl, Pierglorglo Fontana, Pasquallno. Computer Control and Optimization of Secondary Cooling During Continuous Casting[J]. Iron and Steel Engineer, November, 1986.pp.21-26.
    10. Keigo Okuno, Hideyuki Naruwa, Takashi, Tustomu Takamoto. Dynamic Spray. Cooling Control System for Continuous Casting[J]. Iron and Steel Engineer, April 1987.pp.34-38.
    11.马竹梧,邹立功,孙彦广,邱建平.钢铁工业自动化(炼钢卷)[M].北京:冶金工业出版社.2003:491
    12.蔡开科,陈士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994
    13.贺道中.连续铸钢[M].北京:冶金工业出版社,2007:72
    14.陈雷.连续铸钢[M].北京:冶金工业出版社,1994:70.
    15.韩朋,张兴中.连铸坯二次冷却的非稳态控制[J].钢铁研究学报,2002,14(4):73~76.
    16. B.Lally, L.T.Biegler, H.Henein. Optimization and continuous casting:Part 1.Problem formation and solution strategy[J]. Metallurgical transactions B,1991,22B(5):641~648.
    17. B.Lally, L.T.Biegler, H.Henein. Optimization and continuous casting:Part 2:Application to Industrial Casters[J]. Metallurgical transactions B,1991,22B(5):649~659.
    18.陈志凌,张国贤,韩传基.连铸二次冷却智能优化控制的研究[J].钢铁,2006,41(9):40~43.
    19. Carlos A.Santos, Jaime A.Spim Jr, Maria C.F.Ierardi. The use of artificial intelligence technique for the optimization of process parameters used in the continuous of steel[J]. Applied Mathematical Modelling,,2002,26(10):102~115.
    20. N.Chakraborti, R.S.P.Gupta, T.K.Tiwari. Optimization of continuous casting process using genetic algorithms:studies of spray and radiation cooling regions[J]. Ironmaking and steelmaking,2003,30(4):46~54.
    21.郗安民,曹天明,刘颖.板坯连铸二次冷却控制模型[J].重型机械,2000,No.1:28~29.
    22.陶文铨.数值传热学.西安:西安交通大学出版社[M].2001:16
    23.马竹梧.信息化、自动化的进展与钢铁工业自动化[J],冶金自动化,2003,5-16
    24.白云峰,徐达鸣,郭景杰.采用温度回升法对任意结晶区间的铸件凝固结晶潜热的数值计算[J].金属学报,2003,39(6):623~629.
    25.干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟[J].北京:冶金工业出版社,2001.
    26. Okuno Keigo, Naruwa Hideyuki, Kurlibayashi Takashi, et al.. Dynamic spray cooling control system for continuous casting[J]. Iron and Steel Engineer,1987,64(4):34~38.
    27. H.Jacobi, G.Kaestle, K.Wuennenberg. Heat transfer in cyclic secondary cooling during solidification of steel[J]. Ironmaking and Steelmaking,1984,11(3):132~145.
    28. Lait J.E, Brimacombe J. K., Weinberg F.. Mathematical modelling of heat flow in the continuous casting of steel[J]. Ironmaking and Steelmaking,1974,1(2):90~97.
    29. S.Louhenkilpi, E.Laitinen, R.Nieminen. Real-Time Simulation of Heat Transfer in Continuous Casting [J]. Metallurgical Transactions B,1993,24(4):685~693.
    30. J.P Gabathuler, F.Weinberg. Fluid flow into a dendritic array under forced convection[J]. Metallurgical Transactions B,1983,14(4):733~741.
    31. B.Lally, L.Biegler, H.Henein. Finite difference heat-transfer modeling for continuous casting[J]. Metallurgical Transactions B,1990,21(4):761~770.
    32. A.Etienne, J.-M.Ots. Automatic control of secondary cooling in a slab caster[M]. Solidification Technology in the Foundry and Cast House Conf.Proc., England:The Metals Society,1980:532~535.
    33.宫叔家. 冶金仪表与自动调节[M].北京:冶金工业出版社.1990:55-60
    34. Stefano Barozzi, Piergiorgio Fontana, Pasqualino Pragliola. Computer control and optimization of secondary cooling during continuous casting[J]. Iron and Steel Engineer, 1986,63(11):21~26.
    34. J.Yamasaki, S.Miyahara, M.Kodama. The control of the surface temperature in the continuous slab casting machine by the on-line digital computer.8th Triennial World Congress[M]. Kyoto:IFAC Control Science and Technology,1981:2639~2644.
    36.姚利丽,张炯明,王新华.连铸板坯二冷模型及配水制度的优化.连铸,2003(3):10~13.
    37. M.J.Mundim, J.L R.Pimenta, C.A.GValadares. Mathematical analysis of solidification in continuous casting of steel[M]. Continuous casting '85, London:the Institute of Metals 1985:50.1-50.6.
    38.刘青,王良周,曹立国.连铸二次冷却研究的进展[J].钢铁研究学报,2005,Vol(17):No:6-7.
    39.吴宗雄.OPC技术在EMS系统中的应用[J].冶金自动化,2007,Vol(31):395.
    40.王雅贞,张岩,刘术国.连续铸钢工艺及设备[M].北京:冶金工业出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700