用户名: 密码: 验证码:
可调谐光纤法布里—珀罗滤波器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可调谐滤波器是实现动态DWDM网络的关键器件之一,它不仅可以为接收机提供所要求的波长以建立完整的通信链路,而且可以与其他元件组合成智能、高效和稳定的功能模块,对提高动态DWDM网络的灵活性、改善网络性能和降低网络成本都具有重要意义。可调谐光纤法布里-珀罗(FFP)滤波器因具有带宽窄、调谐范围大和调谐速度快等优良特性而受到广泛地关注和研究。本论文围绕可调谐FFP滤波器的传输特性、调谐特性及波长跟踪锁定应用等方面展开了深入地研究,具体研究内容如下:
     (1)根据FP干涉仪中多光束干涉的基础理论,分析了插入损耗与峰值透射率和精细度的关系。并模拟分析了可调谐FFP滤波器的峰值透射率、线性直流电压驱动FP干涉仪的输出特性和交流正弦电压驱动洛仑兹谱线型滤波器的输出特性,为研究可调谐FFP滤波器奠定了理论基础。
     (2)理论研究了可调谐FFP滤波器的插入损耗。在无限镜面尺寸和有限镜面尺寸两种情况下,对空气隙腔型可调谐FFP滤波器中开腔的衍射损耗、镀膜镜面与单模光纤的模场耦合损耗进行了分析,结合开腔与单模光纤的模式失配损耗,完善了任意镜面尺寸时可调谐FFP滤波器的插入损耗分析理论。
     (3)提出了一种可调谐FFP滤波器的优化设计方案。在研究空气隙腔型可调谐FFP滤波器的峰值透射率与镜面尺寸对应关系的基础上,利用双向光束传输法模拟计算了不同条件下可调谐FFP滤波器的反射和透射谱特性,研究结果表明当镀膜镜面半径为光纤芯层半径的2~3倍时,插入损耗最小。因此提出了一种减小可调谐FFP滤波器插入损耗的结构设计方案。此外,还分析了波导空气隙腔混合型可调谐FFP滤波器中有限镜面尺寸对插入损耗和设计工艺的影响。
     (4)实验研究了可调谐FFP滤波器的静态调谐特性。在分析双峰测量、单峰测量、综合测量等三种测量方法的基础上,实验研究了静态调谐时可调谐FFP滤波器的腔长变化与线性驱动电压的关系。另外还探讨了可调谐FFP滤波器对动态相位调制信号的单边带和高次谐波的抑制作用。
     (5)利用信号处理领域的冲激响应不变法和傅里叶变换研究了可调谐FFP滤波器在调谐时的动态光谱和时域特性。仿真和测试结果表明:采用该方法得到的动态调谐特性不仅能通过可调谐FFP滤波器的光输出信号也能通过电输出信号确定动态响应与交流驱动信号参数的具体关系。
     (6)实验研究了可调谐FFP滤波器的动态调谐特性。通过在动态时域特性中引入PZT的延迟因子,提出了一种用于精确测量可调谐FFP滤波器相频特性的方法。实际测量了一种可调谐FFP滤波器的频域特性和谐振频率,给出了滤波器的工作频率范围。实验研究了不同幅度的阶跃函数激励下滤波器的阶跃响应,给出了滤波器透射信号不失真时的最大改变电压值。
     (7)针对波长扫描和自动跟踪锁定应用,研制了可调谐FFP滤波器的控制系统。通过分析开环系统中PZT的延迟时间和功率放大电路的控制时间以及闭环系统中积分滤波器的时间,提出了一种利用锁定时探测信号的理论时间分量与实际时间分量之差,计算波长锁定精度的方法。之后,采用单片机对控制系统进行了数字化改进设计。最后提出了一种基于FPGA和自适应滤波算法的数字控制系统设计方案。
Optical tunable filters have been considered as one of critical components in dynamic dense wavelength division multiplexing (DWDM) networks. They can provide the required wavelength for the receiver to establish the communication links. Also they can be combined into intelligent, efficient and stable optical modules with other components. Therefore, they are helpful for the flexibility, efficiency and cost of the dynamic DWDM networks. Due to the advantages of narrow bandwidth, large tuning range and high tuning speed, tunable fiber Fabry-Perot (FFP) filters have attracted much attention. In this dissertation, optical transfer properties, tuning characteristics, wavelength tracking and locking applications of the tunable FFP filters have been investigated thoroughly. The main contents are as follows:
     (1) The relationship between the insertion loss and the peak transmission as well as the finesse of Fabry-Perot (FP) interferometer is analyzed based on the basic theories of the multiple beam interference. The peak transmissions of tunable FFP filters, the transfer property of FP interferometer driven by linear voltage, and the time domain response of the filter with Lorentizan spectrum driven by alternating voltage are derived are analyzed simulatedly. These can be considered as the theoretical basis to investigate e tunable FFP filters in the following chapters.
     (2) In the cases of infinite mirror size and finite mirror size of air gap type tunable FFP filter, the insertion losses (IL) including the diffraction loss and the mode field coupling loss between the fiber-mirror and the mode of single-mode fiber (SMF) are studied systematically. Combining with the mode mismatch loss between the air gap resonant mode and the mode of SMF regardless of the mirror optical boundary, the theory of IL of tunable FFP filer with arbitrary mirror size is supplemented.
     (3) A novel design of the tunable FFP filter is proposed. Based on analysis of the diffraction loss and the mode coupling loss between the mirror mode field and the mode of SMF, the optimum mirror size corresponding to the maximum peak transmission is obtained. The spectral properties of reflection and transmission are simulated by using a bi-directional beam propagation method for different situations of tunable FFP filters. And the results demonstrate that the IL of the FFP filter can be improved by selecting the fiber-mirror radius to be about 2-3 times of fiber-core radius. Therefore, a novel design for reducing the IL of the tunalble FFP filter is presented. Meanwhile, the effect of finite mirror size on the IL and practical factors of waveguide mixed air gap type tunable FFP filter are also simulated and analyzed.
     (4) Static tuning characteristics of a tunable FFP filter are investigated experimentally. The three methods of measuring the cavity length-voltage are compared including the peak-to-peak method, the two adjacent peaks method and the synthesis method. Static tuning characteristics of a tunable FFP filter are measured with the synthesis method. The effects of a tunable FFP filter on the side band and high frequency harmonics have been also investigated experimentally.
     (5) An impulse response method and Fourier transformation is proposed to theoretically analyze the dynamic characteristics of tunable FFP filter. The dynamic optical spectrum and time domain characteristic of a FFP tunable filter modulated by an alternating current (AC) dithering signal are derived. The simulated and experimental results show that the method can be used to determine the relation between the ac signal parameters and dynamic response through either the output optical signal or the output electrical signal.
     (6) Dynamic tuning characteristics of a tunable FFP filter are investigated experimentally. The phase frequency characteristics of tunable FFP filter is described by the dynamic time domain model by introducing a factor of PZT delay time, and a simple and accurate measuring method is propsed to measure the phase frequency of tunable FFP filter. And the frequency response including the phase frequency response and amplitude frequency response is measured. The resonant frequency and the working frequency range of the tunable FFP filter are determined. Instantaneous responses of tunable FFP filter with different amplitudes of step function are also measued and discussed.
     (7) For applications of wavelength scanning and locking, a controller of tunable FFP filter is designed. Through analysis of the time delay of open loop circuit and PZT, and the time constant of the closed-loop system, a wavelength measurement method utilizing the time difference between the theory time and measured time of the output signal is presented. The experimental results show that relative error of wavelength measurement is lower than the resolution ratio of optical spectrum analyzer at the scanning mode, and the preferable locking precision is obtained under the short-time stability with the designed wavelength controller. A digital controller based on MCU (Microcomputer Unit) for improvement is also designed. Finally we propose a design based on FPGA and adaptive filter algorithem.
引文
[1]Hsu, K., Cormack, R. H. Tunable optical filters for dynamic networks, in: Electronic Components and Technology Conference,2003. Proceedings.53rd: 2003.776-781.
    [2]Sadot, D., Boimovich, E. Tunable optical filters for dense WDM networks. Communications Magazine, IEEE.1998,36(12):50-55.
    [3]Lee, B. Review of the present status of optical fiber sensors. Optical Fiber Technology.2003,9(2):57-79.
    [4]Giallorenzi, T., Bucaro, J., Dandridge, A., Sigel, G., et al. Optical fiber sensor technology. J. Quantum Electronics.1982,18(4):626-665.
    [5]董天临.光纤通信与光纤信息网.北京:清华大学出版社,2005.
    [6]Pan, Z., Yu, C., Willner, A. E. Optical performance monitoring for the next generation optical communication networks. Optical Fiber Technology.2010, 16(1):20-45.
    [7]Onaka, H., Miyata, H., Kai, Y., Yoshida, S., et al. Compact photonic gateway for dynamic path control using acousto-optic tunable filter. Optical Switching and Networking.2008,5(2-3):75-84.
    [8]Barrie, P. K. ROADM Subsystems and Technologies. in:Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference:Optical Society of America,2005.OWB5.
    [9]Liaw, S.-K., Ho, K.-P., Lin, C., Chi, S. Experimental investigation of wavelength-tunable WADM and OXC devices using strain-tunable fiber Bragg gratings. Optics Communications.1999,169(1-6):75-80.
    [10]Hsu, D. Y., Lin, J. W., Shaw, S. Y. Wide-range tunable Fabry-Perot array filter for wavelength-division multiplexing applications. Appl. Opt.2005,44(9): 1529-1532.
    [11]Niemi, T., Uusimaa, M., Tammela, S., Heimala, P., et al. Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter. Photonics Technology Letters.2001,13(1):58-60.
    [12]Taranenko, N. L., Tenbrink, S. C., Hsu, K., Miller, C. M. Fiber Fabry-Perot tunable filter for high-speed optical packet switching. in:Koteles, E. S. and Willner, A. E., editors. Boston, MA, USA:SPIE, vol.2918,1997.26-37.
    [13]Taranenko, N. L., Tenbrink, S. C., Hsu, K., Miller, C. M., et al. Use of a fiber Fabry-Perot tunable filter for high-speed optical packet switching:towards an experimental prototype. in:Osinski, M., Blood, P. and Ishibashi, A., editors. San Jose, CA, USA:SPIE, vol.3283,1998.883-893.
    [14]向民.基于MEMS技术的Fabry-Perot腔可调光学滤波器研究:[博士论文].中国科学院上海微系统与信息技术研究所,2004.
    [15]Bucaro, J. A., Dardy, H. D., Carome, E. F. Optical fiber acoustic sensor. Appl. Opt.1977,16(7):1761-1762.
    [16]Mallinson, S. R. Crosstalk limits of Fabry-Perot demultiplexers. Electronics Letters.1985,21(17):759-761.
    [17]Yoshino, T., Kurosawa, K., Itoh, K., Ose, T. Fiber-optic Fabry-Perot interferometer and its sensor applications. J. Quantum Electronics.1982,18(10): 1624-1633.
    [18]Franzen, D. L., Kim, E. M. Long optical-fiber Fabry-Perot interferometers. Appl. Opt.1981,20(23):3991-3992.
    [19]Petuchowski, S., Giallorenzi, T., Sheem, S. A sensitive fiber-optic Fabry-Perot interferometer. J. Quantum Electronics.1981,17(11):2168-2170.
    [20]Kist, R., Sohler, W. Fiber-optic spectrum analyzer. J. Lightwave Technology. 1983,1(1):105-110.
    [21]Marcuse, D. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J.1977, 56(5):703-718.
    [22]Marcuse, D., Stone, J. Coupling efficiency of front surface and multilayer mirrors as fiber-end reflectors. J. Lightwave Technology.1986,4(4):377-381.
    [23]Stone, J., Glodis, P. F., Marcuse, D., Stulz, L. W. Large mode-size fibre Fabry-Perot interferometers. Electronics Letters.1989,25(25):1698-1699.
    [24]Marcatili, E. A. J., Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J.1964,43: 1783-1789.
    [25]Marcuse, D., Stone, J. Fiber-coupled short Fabry-Perot resonators. J. Lightwave Technology.1989,7(5):869-876.
    [26]Stone, J., Stulz, L. W. Pigtailed high-finesse tunable fibre Fabry-Perot interferometers with large, medium and small free spectral ranges. Electronics Letters.1987,23(15):781-783.
    [27]Stone, J. Optical-fibre Fabry-Perot interferometer with finesse of 300. Electronics Letters.1985,21(11):504-505.
    [28]Stone, J., Marcuse, D. Ultrahigh finesse fiber Fabry-Perot interferometers. J. Lightwave Technology.1986,4(4):382-385.
    [29]Stone, J., Stulz, L. W. High-performance fibre Fabry-Perot filters. Electronics Letters.1991,27(24):2239-2240.
    [30]Kaminow, I. P. FSK with direct detection in optical FDM networks. in:Global Telecommunications Conference,1989, and Exhibition. Communications Technology for the 1990s and Beyond. GLOBECOM'89., IEEE:1989.1-9 vol.1.
    [31]Kaminow, I. P., Iannone, P. P., Stone, J., Stulz, L. W. FDMA-FSK star network with a tunable optical filter demultiplexer. J. Lightwave Technology.1988,6(9): 1406-1414.
    [32]Kaminow, I. P., Iannone, P. P., Stone, J., Stulz, L. W. A tunable Vernier fiber Fabry-Perot filter for FDM demultiplexing and detection. Photonics Technology Letters.1989,1(1):24-26.
    [33]Saleh, A. A. M., Stone, J. Two-stage Fabry-Perot filters as demultiplexers in optical FDMA LANs. J. Lightwave Technology.1989,7(2):323-330.
    [34]Mallinson, S. R. Wavelength-selective filters for single-mode fiber WDM systems using Fabry-Perot interferometers. Appl. Opt.1987,26(3):430-436.
    [35]Miller, C. M., Janniello, F. J. Passively temperature-compensated fibre Fabry-Perot filter and its application in wavelength division multiple access computer network. Electronics Letters.1990,26(25):2122-2123.
    [36]Bao, Y., Hsu, K., Miller, C. M. Polarization-maintaining fiber Fabry-Perot tunable filters. Opt. Lett.1994,19(24):2098-2100.
    [37]Hsu, K., Miller, C. M., Bao, Y. Fiber Fabry-Perot interferometers with very low polarization sensitivity. Appl. Opt.1994,33(28):6617-6620.
    [38]Miller, C. M. Passive tunable fiber Fabry-Perot filters for transparent optical networks. in:Pierpaolo, G., editor.:SPIE, vol.1975,1993.201-212.
    [39]Miller, C. M., Miller, J. W. Wavelength-locked, two-stage fibre Fabry-Perot filter for dense wavelength division demultiplexing in erbium-doped fibre amplifier spectrum. Electronics Letters.1992,28(3):216-217.
    [40]Fishman, D. A., Nagel, J. A., Cline, T. W., Tench, R. E., et al. A high capacity noncoherent FSK lightwave field experiment using Er3+ -doped fiber optical amplifiers. Photonics Technology Letters.1990,2(9):662-664.
    [41]Dong, L., Loh, W. H., Caplen, J. E., Minelly, J. D., et al. Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers. Opt. Lett.1997,22(10):694-696.
    [42]Haber, T., Hsu, K., Miller, C., Yufei, B. Tunable erbium-doped fiber ring laser precisely locked to the 50-GHz ITU frequency grid. Photonics Technology Letters.2000,12(11):1456-1458.
    [43]Hsu, K., Miller, C. M., Babic, D., Houng, D., et al. Continuously tunable photopumped 1.3-um fiber Fabry-Perot surface-emitting lasers. Photonics Technology Letters.1998,10(9):1199-1201.
    [44]Hsu, K., Miller, C. M., Kringlebotn, J. T., Payne, D. N. Continuous and discrete wavelength tuning in Er:Yb fiber Fabry-Perot lasers. Opt. Lett.1995,20(4): 377-379.
    [45]Hsu, K., Miller, C. M., Kringlebotn, J. T., Taylor, E. M., et al. Single-mode tunable erbium:ytterbium fiber Fabry-Perot microlaser. Opt. Lett.1994,19(12): 886-888.
    [46]Huber, R., Wojtkowski, M., Taira, K., Fujimoto, J., et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging:design and scaling principles. Opt. Express.2005,13(9):3513-3528.
    [47]Feng, X. X., Bai, C., Chen, J. L., al., E. Study of self mode-locking in Q-Switched and in all-fiber Fabry-Perot cavity ytterbium-doped fiber laser. Passive Components and Fiber-Based Devices, Pts 1 and 2.2005,5623:88-95.
    [48]Guo, D., Lin, R., Wang, W. Gaussian-optics-based optical modeling and characterization of a Fabry-Perot microcavity for sensing applications. J. Opt. Soc. Am. A.2005,22(8):1577-1588.
    [49]Sztefka, G., Nolting, H. P. Bidirectional eigenmode propagation for large refractive index steps. Photonics Technology Letters.1993,5(5):554-557.
    [50]Ging, J. A., Larkin, A. G., O'Dowd, R., Ou, H., et al. A generic lightwave integrated chip (GLIC) for fast high-resolution wavelength monitoring. in: Giancarlo, C. R., editor.:SPIE, vol.6183,2006.618302.
    [51]Hongling, R., Scarmozzino, R., Osgood, R. M., Jr. A bidirectional beam propagation method for multiple dielectric interfaces. Photonics Technology Letters.1999,11(7):830-832.
    [52]Pui Lin, H., Ya Yan, L. A bidirectional beam propagation method for periodic waveguides. Photonics Technology Letters.2002,14(3):325-327.
    [53]Bittebierre, J. Three-dimensional simulation of diffraction and absorption losses in all-fiber multilayer filters. Appl. Opt.2008,47(13):C13-C24.
    [54]廖青.可调谐光纤Fabry-Perot光滤波器的研究:[博士论文].清华大学,1993.
    [55]廖青,彭江德,周炳琨.高细度、低损耗光纤滤波器的研制.光学学报.1995,15(5):631-635.
    [56]朱宁,陶尚平.单模光纤的FP扫描干涉仪的制作.in:第四届全国光电技术与系统学术会议论文详细摘要专集:vol.1,1991.139-140.
    [57]江毅,唐才杰.光纤Fabry-Perot干涉仪原理及应用.北京:国防工业出版社,2009.
    [58]赵雷.光纤法-珀传感器端面反射率优化及镀膜试验研究:[硕士论文].重庆大学,2006.
    [59]童杏林,吕大娟,刘恋,等.新型全光纤型可调法-珀滤波器的制备与实验.武汉理工大学学报.2009,31(1):132-134.
    [60]Bao, Y., Ferguson, Stephen K., Snyder,Donald Q., Waferless fiber Fabry-Perot filters, in, Editor(?)Editors.2005, Micron Optics, Inc.,:U. S. p.25.
    [61]Hunger, D., Steinmetz, T., Colombe, Y., Deutsch, C., et al. A fiber Fabry-Perot cavity with high finesse. New Journal of Physics.2010,12:
    [62]Cimini, L. J., Stone, J., Buhl, L. L. Optical-fibre Fabry-Perot frequency discriminator for communications applications. Electronics Letters.1987,23(9): 463-464.
    [63]Winnall, S. T., Lindsay, A. C. A Fabry-Perot scanning receiver for microwave signal processing. Microwave Theory and Techniques, IEEE Transactions on. 1999,47(7):1385-1390.
    [64]Park, P. K. J., Shin, S. K., Ji, H. C., Chung, Y. C. Frequency stabilization of multiple semiconductor lasers using digital feedback loop. Optics Communications.2007,272(1):217-220.
    [65]Bondu, F., Debieu, O. Accurate measurement method of Fabry-Perot cavity parameters via optical transfer function. Appl. Opt.2007,46(14):2611-2614.
    [66]Uehara, N., Ueda, K. Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions. Applied Physics B:Lasers and Optics.1995,61(1):9-15.
    [67]Park, P. K., Chung, Y. C. Analysis of frequency offset in the frequency stabilization of semiconductor laser based on frequency dithering technique. Opt. Express.2007,15(21):14213-14218.
    [68]Ge, P., Jouaneh, M. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Engineering.1997,20(2):99-111.
    [69]Ping, G., Musa, J. Tracking control of a piezoceramic actuator. Control Systems Technology, IEEE Transactions on.1996,4(3):209-216.
    [70]Ding, H., Wu, X., Liang, J., Li, X. Online calibration of PZT driven fiber Fabry-Perot filter nonlinearity using FBG array and PSO algorithm. Measurement.2009,42(7):1059-1064.
    [71]Liu, K., Jing, W. C., Peng, G. D., Zhang, J. Z., et al. Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system. Optics Communications.2008,281(12):3286-3290.
    [72]Chung, W. H., Tam, H. Y., Demokan, M. S., Wai, P. K. A., et al. Wavelength and power monitoring of DWDM systems using scanning F-P filter calibrated with a F-P laser. Optics Communications.2002,210(3-6):219-224.
    [73]Helmcke, J., Lee, S. A., Hall, J. L. Dye laser spectrometer for ultrahigh spectral resolution:design and performance. Appl. Opt.1982,21(9):1686-1694.
    [74]Dangor, A. E., Fielding, S. J. The response of the Fabry-Perot interferometer to rapid changes in optical length. J. Phys. D:Appl. Phys.1970,3(3):413-421.
    [75]Huber, D. R., Carroll, J. B. Time domain response of an optically frequency swept Fabry-Perot interferometer. Appl. Opt.1986,25(14):2386-2390.
    [76]Poirson, J., Bretenaker, F., Vallet, M., Le Floch, A. Analytical and experimental study of ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses. J. Opt. Soc. Am. B.1997,14(11):2811-2817.
    [77]Hsu, K., Miller, C. M. Theory and measurements of speed-of-light effects in long cavity fiber Fabry-Perot scanning interferometers. J. Lightwave Technology. 1993,11(7):1204-1208.
    [78]Nakazawa, M. Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers. Journal of Applied Physics.1986, 59(7):2297-2305.
    [79]Lawrence, M. J., Willke, B., Husman, M. E., Gustafson, E. K., et al. Dynamic response of a Fabry-Perot interferometer. J. Opt. Soc. Am. B.1999,16(4): 523-532.
    [80]Kevin, H., Calvin, M. M., Yufei, B. Characterization of microsecond tuning speed in miniature fiber Fabry-Perot tunable filters. in:Optical Society of America, vol.8,1995. TuE4.
    [81]Redding, D., Regehr, M., Sievers, L. Dynamic Models of Fabry-Perot Interferometers. Appl. Opt.2002,41(15):2894-2906.
    [82]Rakhmanov, M., Savage, R. L., Reitze, D. H., Tanner, D. B. Dynamic resonance of light in Fabry-Perot cavities. Physics Letters A.2002,305(5):239-244.
    [83]Yeh, Y., Park, D., Park, S. H. High-speed measurement of free spectral range voltage of tunable filters. Opt. Lett.2009,34(1):52-54.
    [84]Saito, T., Sunohara, Y., Fukagai, K., Ishikawa, S., et al. High receiver sensitivity at 10 Gb/s using an Er-doped fiber preamplifier pumped with a 0.98 mu m laser diode. Photonics Technology Letters, IEEE.1991,3(6):551-553.
    [85]Williams, K. J., Dennis, M. L., Duling, I. N., Ⅲ, Villarruel, C. A., et al. A simple high-speed high-output voltage digital receiver. Photonics Technology Letters, IEEE.1998,10(4):588-590.
    [86]Kazovsky, L. G., Tonguz, O. K. Sensitivity of direct-detection lightwave receivers using optical preamplifiers. Photonics Technology Letters, IEEE.1991, 3(1):53-55.
    [87]Nielsen, C. K., Andersen, T. V., Keiding, S. R. Stability analysis of an all-fiber coupled cavity Fabry-Perot additive pulse mode-locked laser. Quantum Electronics, IEEE Journal of.2005,41(2):198-204.
    [88]Dahms, T., ouml, vel, P., Sch, et al. Stabilizing continuous-wave output in semiconductor lasers by time-delayed feedback. Physical Review E.2008,78(5): 056213.
    [89]Jongdeog, K., Byung Seok, C., Hogyeong, Y., Su Hwan, O., et al. Thermally controlled wavelength locker integrated in widely tunable SGDBR-LD module. Photonics Technology Letters, IEEE.2004,16(11):2430-2432.
    [90]Miller, C. M. Characteristics and applications of high performance, tunable, fiber Fabry-Perot filters. in:Electronic Components and Technology Conference,1991. Proceedings.,41st:1991.489-492.
    [91]Stone, J. A., Stejskal, A. Wavelength-tracking capabilities of a Fabry-Perot cavity. in:Decker, J. E. and Brown, N., editors. San Diego, CA, USA:SPIE, vol.5190, 2003.327-338.
    [92]Cheng, Q., Jin, X., Chi, H., Zhang, X. Tunable fiber Fabry-Perot filter for optical carrier-suppression and single-sideband modulation in radio over fiber links. International Journal of Infrared and Millimeter Waves.2006,27(3):381-390.
    [93]Ji, Y. B., Zheng, S. L., Li, Z., Jin, X. F., et al. Tunable Fiber Fabry-Perot Filter for Pm-Im Conversion and Efficiency Improvement in Radio-over-Fiber Links. Microwave and Optical Technology Letters.2010,52(9):2090-2095.
    [94]郁道银,谈恒英.工程光学.(第2版).机械工业出版社,2006.
    [95]Keiser, G. Optical Fiber Communications. (3nd). McGraw-Hill,2000.
    [96]Kogelnik, H., Li, T. Laser beams and resonators. Proceedings of the IEEE.1966, 54(10):1312-1329.
    [97]Kim, S.-H., Lee, J.-J., Lee, D.-C, Kwon, I.-B. A Study on the Development of Transmission-Type Extrinsic Fabry-Perot Interferometric Optical Fiber Sensor. J. Lightwave Technol.1999,17(10):1869.
    [98]Kilic, O., Digonnet, M. J. F., Kino, G. S., Solgaard, O. Asymmetrical Spectral Response in Fiber Fabry-Perot Interferometers. Journal of Lightwave Technology. 2009,27(24):5648-5656.
    [99]Hadley, G. R. Wide-angle beam propagation using Pade approximant operators. Opt. Lett.1992,17(20):1426-1428.
    [100]Yih-Peng, C., Hung-Chun, C. Analysis of optical waveguide discontinuities using the Pade approximants. Photonics Technology Letters, IEEE.1997,9(7): 964-966.
    [101]Ding, H., Wu, X. N., Liang, J. Q., Li, X. L. Online calibration of PZT driven fiber Fabry-Perot filter nonlinearity using FBG array and PSO algorithm. Measurement.2009,42(7):1059-1064.
    [102]Yu, B., Wang, A., Pickrell, G., Xu, J. Tunable-optical-filter-based white-light interferometry for sensing. Opt. Lett.2005,30(12):1452-1454.
    [103]Boulet, C., Hathaway, M., Jackson, D. A. Fiber-optic-based absolute displacement sensors at 1500 nm by meansof a variant of channeled spectrum signal recovery. Opt. Lett.2004,29(14):1602-1604.
    [104]Rao, Y. J., Wang, X. J., Zhu, T., Zhou, C. X. Demodulation algorithm for spatial-frequency-division-multiplexed fiber-optic Fizeau strain sensor networks. Opt. Lett.2006,31(6):700-702.
    [105]Jiang, Y. High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method. Applied Optics. 2008,47(7):925-932.
    [106]Park, N., Dawson, J. W., Vahala, K. J. Frequency locking of an erbium-doped fiber ring laser to an external fiber Fabry?Perot resonator. Opt. Lett.1993,18(11): 879-881.
    [107]Martin, W. A., Lin, C. C., Sighwo, F., Harris, J. S., Jr. Frequency locking of micromachined tunable VCSELs to external wavelength selective filters. in: Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks,2000. Digest of the LEOS Summer Topical Meetings:2000.115-116.
    [108]Jiang, Q., Xie, L. Z. Frequency stabilisation of FDM optical signals by time division multiplexing. Electronics Letters.1989,25(24):1626-1628.
    [109]Barger, R. L., Sorem, M. S., Hall, J. L. Frequency stabilization of a cw dye laser. Applied Physics Letters.1973,22(11):573-575.
    [110]Okumura, K., Ohi, M. Frequency stabilization under very small modulation and its stability estimation of a PbSnTe diode laser. Quantum Electronics, IEEE Journal of.1985,21(8):1229-1235.
    [111]Patel, J. S., Wullert, J. R., II, Maeda, M. W. Frequency tracking of tunable liquid-crystal wavelength filter for WDM transmission. Photonics Technology Letters, IEEE.1991,3(12):1094-1096.
    [112]Jianping, W., Xianwei, Z., Yongxia, X., Wen, W. Performance improvement of OFDM-ROF system with clipping and filtering technique. Consumer Electronics, IEEE Transactions on.2008,54(2):296-299.
    [113]Lingze, D., Kurt, G. Locking Lasers with Large FM Noise to High Q Cavities. in: Optical Society of America,2005. FMF6.
    [114]Lu, H.-H., Patra, A. S., Wu, H.-W., Tzeng, S.-J., et al. Employing split-band technique and Fabry-Perot etalon filter to improve directly modulated fiber optical CATV system performances. Optical Fiber Technology.2008,14(3): 227-231.
    [115]Youngkwon, Y., Jongin, S., Donghoon, J., Jongryeol, K., et al. Transmission spectra of Fabry-Perot etalon filter for diverged input beams. Photonics Technology Letters, IEEE.2002,14(9):1315-1317.
    [116]du Burck, F., Lopez, O., El Basri, A. Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy. Instrumentation and Measurement, IEEE Transactions on.2003,52(2):288-291.
    [117]Jaatinen, E., Hopper, D. J., Back, J. Residual amplitude modulation mechanisms in modulation transfer spectroscopy that use electro-optic modulators. Measurement Science & Technology.2009,20(2):
    [118]Sasaki, O. Sinusoidal wavelength-scanning interferometers for shape measurements, in:Wang, A., Zhang, Y. and Ishii, Y., editors. Beijing, China: SPIE, vol.6829,2007.682908-682911.
    [119]Cabral, A., Abreu, M., Rebordao, J. M. Dual-frequency sweeping interferometry for absolute metrology of long distances. Optical Engineering.2010,49(8): 085601-085614.
    [120]马平,何昌伟,柳森,等.一种新颖的三角波扫频式微波干涉仪及信号处理方法研究.微波学报.2007,23(4):58-63.
    [121]Takano, T., Tomikawa, Y., Aoyagi, M., Kusakabe, C. Piezoelectric actuators driven by the saw-tooth-like motion of a stator. Ultrasonics.1996,34(2-5): 279-282.
    [122]Kersey, A. D., Berkoff, T. A., Morey, W. W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry?Perot wavelength filter. Opt. Lett.1993, 18(16):1370-1372.
    [123]Wang, L. L., Kowalcyzk, T. A novel locking technique for very narrow tunable optical filters with sub-GHz 3-dB bandpass. Photonics Technology Letters.2010, 22(17):1267-1269.
    [124]Taranenko, N. L., Tenbrink, S. C., Hsu, K., Miller, C. M. Fiber Fabry-Perot tunable filter for high-speed optical packet switching. Emerging Components and Technologies for All-Optical Photonic Systems Ii.1997,2918:26-37,260.
    [125]Taranenko, N. L., Tenbrink, S. C., Hsu, K., Miller, C. M., et al. Using fiber Fabry-Perot tunable filter for high-speed optical packet switching:towards an experimental prototype. Physics and Simulation of Optoelectronic Devices Vi, Pts 1 and 2.1998,3283:883-893,1010.
    [126]Furutani, K., Iida, K. A driving method of piezoelectric actuator by using current pulses. Measurement Science & Technology.2006,17(9):2387-2394.
    [127]Christi K. Madsen, J. H. Z., Optical Filter Design and Analysis—A Signal Processing Approach, in, Chang, K., Editor Editors.1999, Wiley:New York. p. 96-106.
    [128]周炳琨,高以智,陈倜嵘,等.激光原理.(第5版).北京:国防工业出版社,2004.
    [129]Karimi-Ghartemani, M., Iravani, M. R. A Nonlinear Adaptive Filter for Online Signal Analysis in Power Systems:Applications. Power Engineering Review, IEEE.2002,22(1):72-72.
    [130]Lee, J., Kim, B. A low-noise fast-lock phase-locked loop with adaptive bandwidth control. Ieee Journal of Solid-State Circuits.2000,35(8):1137-1145.
    [131]齐海兵.流水线自适应格型联合处理器的FPGA设计.微电子学与计算机.2010,27(7):49-52.
    [132]齐海兵.梯度自适应格型联合处理器的FPGA设计.压电与声光.2010,32(3):483-486.
    [133]齐海兵,孙松.梯度自适应格型滤波联合算法的性能分析.探测与控制学报.2009,31(2):37-40.
    [134]Damian, C., Fosalau, C., Zet, C., Ilinca, M. Efficient Implementation of Digital Signal Processing Algorithms with Field Programmable Gate Arrays. Management of Technological Changes, Vol 1.2009:613-616,764.
    [135]Osebik, D., Babi, R. The practicability of adaptive FIR digital filter implementation with FPGA circuits. Informacije Midem-Journal of Microelectronics Electronic Components and Materials.2002,32(3):157-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700