用户名: 密码: 验证码:
基于波谱单元法的结构动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土木工程中广泛应用的数值仿真软件都是基于各种离散的数值计算方法:有限元法、有限差分法、无网格法等等,离散的数值计算方法都具有一个共同的特点,就是依赖于结构划分的单元或节点,划分单元或节点不仅使得以上各种离散算法在应用时受到了一定程度的限制,也降低了计算精度和效率,在结构动力分析领域尤其如此。而基于连续介质力学的波谱单元法对结构进行动力分析时,对于连续均匀构件,无需划分单元,是一种精确的动力学计算方法。传统的波谱单元法主要应用于求解集中动荷载作用下结构的动力响应问题,而对于分布动荷载和其他形式动荷载的分析并不多见。本文在现有波谱单元法的基础上,通过理论公式推导和数值计算分析等手段在以下几个方面展开了研究,取得了一些有价值的研究成果:
     (1)通过在结构平衡微分方程中引进阻尼项,推导了考虑结构外部粘滞阻尼和内部粘弹性阻尼的轴向振动杆、扭转振动杆以及弯曲振动梁的波谱单元刚度矩阵。推导结果表明,与不考虑阻尼的波谱单元法相比,只需要通过修改波谱刚度矩阵中的波数就可以方便的计算阻尼对结构动力响应的影响。将波谱单元法中的中阻尼系数与有限元法Rayleigh阻尼系数的推导过程进行对比,得到了波谱单元法阻尼系数与有限元法Rayleigh阻尼系数的关系。对考虑阻尼的桁架结构,多跨连续梁和框架结构进行分析,数值分析结果表明,波谱单元法能十分简便的计算结构考虑了外部粘滞阻尼和内部粘弹性阻尼后的动力响应,并大大减少计算单元数量,提高计算效率。
     (2)分别利用基于线性叠加原理的等效方法和基于虚功原理利用波谱形函数积分的等效方法得到分布动荷载的等效节点荷载的计算公式,利用等效节点荷载对分布动荷载作用下的结构进行动力分析。推导了均布动荷载、三角形分布动荷载以及梯形分布动荷载三类特殊荷载作用的伯努利-欧拉梁的等效节点荷载的表达式以及承受轴向均布动荷载的轴向振动杆和承受均布扭转动荷载的扭转振动杆的等效节点荷载的表达式。利用分布动荷载等效为节点集中动荷载的方式,采用得到的等效节点荷载对分布动荷载作用下的结构进行动力分析并与有限元法的结果对比,数值分析结果表明,利用等效节点荷载能十分方便有效的计算分布动荷载作用下结构的动力响应。
     (3)地震荷载是施加于结构上的惯性力,利用均布动荷载等效的方式得到地震荷载的等效节点荷载。在相同位置的节点上对不同单元的等效节点荷载进行叠加,得到每个节点总的地震等效节点荷载,把总的地震等效节点荷载看成集中荷载施加于结构上用来计算结构受地震荷载作用的动力响应。为证明这种地震等效节点荷载计算方法的有效性,利用波谱单元法对空间桁架和框架结构进行地震响应分析,结果表明,在波谱单元法中把地震荷载看成均布惯性力再进行节点荷载等效的方式能精确有效的计算结构的地震响应。
     (4)现有的波谱单元法都是应用于荷载作用位置固定不变的问题,本文将波谱单元法推广到移动荷载作用下桥梁的动态响应问题。通过引进单位脉冲函数描述移动荷载的空间位置变化,再利用数值Laplace变换将时域内的移动荷载转换频域内,基于能量原理,在频域内通过波谱形函数将作用在桥梁上的移动荷载等效为桥梁端部位置固定不变的节点集中荷载,利用波谱单元法对移动荷载作用下的桥梁结构进行分析。不论移动荷载的个数多少和方向如何,波谱单元法都能通过简单叠加求得结构的动力响应,从而有效回避了有限元法中由于移动荷载位置变化带来的单元划分问题。将波谱单元法的计算结果分别与解析解和高精度精细积分法比较,结果表明,波谱单元法不但精度高,而且具有很高的计算效率。
Numerical simulation software, which has been widely used in Civil Engineering, is based on all kinds of discrete numerical methods, such as the finite element method (FEM), the finite difference method (FDM), the meshless Method, etc. All these numerical methods have a common characteristic. That is the structure must be meshed before analysis. Elements or nodes meshed form structures are necessary in the analysis process of these numerical methods. The calculation accuracy and efficiency will decrease greatly because of the discrete mesh in these numerical methods, especially for structural dynamic analysis. Sometimes, these discrete numerical methods may not converge or may be failure because mesh generation is not simple under certain circumstances. The spectral element method (SEM), which is based on the theory of continuum mechanics, is a high precise method in structural dynamics. Only one spectral element need be placed between any two joints for structures with uniform area. Conventional SEM can be applied only to structures subjected to concentrated loads applied on nodes. Furthemore, there are few literatures about dynamic analysis for structures under distributed loads and other complex loads. In this dissertation, the following aspects are studied by theoretical and numerical analysis, some important results and conclusions have been achieved as follows:
     (1) The spectral stiffness matrices of axial vibration rod, torsional vibration rod and flexural vibration Bernoulli-Euler beam were derived from the vibration differential equations of these members. Both internal viscoelastic damping and external viscous damping were considered in the vibration equations. The derived results indicate that the damping effect in SEM can be easily considered by modifying the wave number in the spectral stiffness matrix. The relationship of damping coefficients in SEM and classic Rayleigh damping coefficients in FEM was obtained in the derivation process. The space truss, multi-span continuous beam and space frame structures were analyzed. The SEM has been proved to be an efficient method to analyze the dynamic responses of structures while the number of elements can greatly decrease.
     (2) The dynamic analysis of structures under distributed loads using Laplace-based SEM was proposed. The distributed loads applied on structures were equivalent to concentrated nodal forces using two different methods. The first method is based on the principle of linear superposition and the other is based on the principle of virtual work. The computational expressions were derived in both two methods. While the equivalent forces were obtained, the dynamic responses of structures can be calculated without any difficulty by use of traditional SEM which solved the vibration problem of structures under concentrated forces. The analytical expressions of equivalent nodal forces under uniform distributed dynamic loads, triangle distributed dynamic loads and trapezium distributed dynamic loads were derived. The equivalent nodal forces of rod subjected to uniform axial dynamic loads and torsional dynamic loads were also presented. By comparison of the numerical results obtained from SEM and those from FEM, the ability and effectiveness of SEM under distributed dynamic loads have been proved.
     (3) The seismic load applied on structures could be considered as inertia force of structures. Therefore, for homogeneous structures, the seismic loads were uniform distributed loads acted on structures. In other words, the seismic loads can also be equivalent to concentrated forces applied on nodes based on the principle of virtual work, which is the same way as the uniform distributed loads. The equivalent nodal forces got form adjacent elements were superimposed at the same node. The total seismic equivalent nodal forces were the sum of the equivalent nodal forces obtained form adjacent elements. The calculated total seismic equivalent forces are then used to analyze seismic responses of structures. To evaluate the accuracy of SEM, the dynamic responses of space truss and frame structures under seismic load are analyzed. It has been found that the SEM provides good dynamic results under seismic load by using the equivalent forces.
     (4) The traditional SEM is limited to structures subjected to loads with fixed positions. An extended SEM for dynamic analysis of bridges subjected to moving loads was proposed here. The Dirac function was introduced to simulate the moving loads applied on beam bridge. The moving loads in time domain were transformed into frequency domain by use of Laplcace tranform. The moving loads in frequency were then equivalent to fixed concentrated nodal forces by integrating the shape function in SEM based on the principle of virtual work. These equivalent nodal forces were used to calculate the dynamic responses of bridges in SEM. No matter how many moving loads and their directions acted on the continuous beam bridge, their equivalent nodal forces could be simply superimposed using linear superposition principle at the end of bridges. Only one spectral element need to be placed between any two joints in SEM and this avoid the element meshing in other discrete numerical methods. The numerical results calculated by SEM were compared with those obtained from FEM and the precise time integration method. It has been shown that the present extended SEM provides very high precision results while high efficiency could be obtained.
引文
[1]Courant R. Variational Methods for the solutions of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society.1943,49(1):1-23.
    [2]Turner M J, Clough R W, Martin H C, et al. Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences.1956,23(9):805-823,854.
    [3]Clough R W and Tocher J L. Analysis of thin arch dams by the finite element method. in:Rydzewski J R. International Symposium on the Theory of Arch Dams. New York:Pergamon Press,1964:112-124.
    [4]Zienkiewicz O C and Cheung Y K. Finite elements in the Solution of field problems. Engineer,1965,220(9):345-378.
    [5]Clough R W. The finite element method after twenty-five years:A personal view. Compute and Structures.1980,12(4):361-370.
    [6]Griebel M and Sehweitzer M A. A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs.2000,22(3):853-890.
    [7]Lee U. Vibration analysis of one-dimensional structures using the spectral transfer matrix method. Engineering Structures.2000,22(6):681-690.
    [8]Reddy J N. An introduction to the finite element method (Engineering Series). New York:McGraw-Hill Science.2005.
    [9]Courant R, Friedrichs K O and Lewy H. On the partial difference equations of mathematical physics. IBM Journal of Resarch and Development.1967,11(2): 215-234.
    [10]Brebbia C A, Telles J C F, Wrobel L C. Boundary element techniques:Theory and applications in engineering. Berlin:Springer-Verlag.1984.
    [11]Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal.1977,82(12):1013-1024.
    [12]Gingold R A and Monaghan J J. Smoothed particle hydrodynamics-Theory and application to non-spherical stars. Royal Astronomical Society.1977,181(5): 375-389.
    [13]Atluriz S N and Shen S. The Meshless Local Petrov-Galerkin (MLPG) Method. California: Tech.Science Press.2002.
    [14]Liu G R. Meshfree methods:moving beyond the finite method. Singapore:CRC Press.2002
    [15]Qin Q H. The Trefftz finite and boundary element method. Boston: WIT Press.2000
    [16]Herrera I. Boundary methods:A criterion for completeness. Proceedings of the National Academy of Sciences.1980,77(8):4395-4398.
    [17]Finlayson B A. The method of weighted residuals-a review. Applied mechanics reviews.1966,19(9):735-748.
    [18]Finlayson B A. The method of weighted residuals and variational principles:with application in fluid mechanics, heat and mass transfer. New York: Academic Press. 1972.
    [19]Eversman W, Cook E L and Beckemeyer R J. A method of weighted residuals for the investigation of sound transmission in non-uniform ducts without flow. Journal of Sound and Vibration.1975,38(1):105-123.
    [20]徐次达.固体力学加权残值法.上海:同济大学出版社.1987.
    [21]徐次达.加权残值法计算力学在我国十六年中的进展国际近期进展概要及展望.上海力学.1995,16(3):173-185.
    [22]Doyle J F. A spectrally formulated finite element for longitudinal wave propagation. The international journal of Analytical and Experimental Modal Analysis.1988,3(1): 1-5.
    [23]Doyle J F, Farris T N. A spectrally formulated finite element for flexural wave propagation in beams. The international journal of Analytical and Experimental Modal Analysis.1990,5(2):99-107.
    [24]Doyle J F. Wave propagation in structures. Berlin:Springer-Verlag.1989.
    [25]Turner M J, Clough R W, Martin H C, et al. Stiffness and deflection analysis of complex structures. Journal of Aeronautical Sciences.1956,23(9):805-823.
    [26]Clough R W. The finite element method in plane stress analysis. in:Clough R W. Proceedings of 2nd ASCE Conference on Electronic Computation. Pittsburgh: American Society of Civil Engineers,1960:345-378.
    [27]Zienkiewicz O C and Cheung Y K. The finite element method in structural and continuum mechanics:Numerical solution of problems in structural and continuum mechanics. New York:McGraw-Hill.1967.
    [28]Clough R W and Johnson C P. A finite element approximation for the analysis of thin shells. International Journal of Solids and Structures.1968,4(1):43-60.
    [29]Hibbitt H D, Marcal P V and Rice J R. A finite element formulation for problems of large strain and large displacement. International Journal of Solids and Structures. 1970,6(8):1069-1086.
    [30]Valathur M, Dove R C and Albrecht B. Wave propagation in a thin hollow cone by a finite element method. Journal of Sound and Vibration.1972,24(2):211-218.
    [31]Kikuchi F and Ando Y. Some finite element solutions for plate bending problems by simplified hybrid displacement method. Nuclear Engineering and Design.1972, 23(2):155-178.
    [32]Dawe D J. High-order triangular finite element for shell analysis. International Journal of Solids and Structures.1975,11(10):1097-1110.
    [33]Wolf J P. Stress finite-element models with independent strains. International Journal of Solids and Structures.1975,11(5):555-568.
    [34]Distefano N and Samartin A. A dynamic programming approach to the formulation and solution of finite element equations. Computer Methods in Applied Mechanics and Engineering.1975,5(1):37-52.
    [35]Woodhead A L and Calladine C R. A novel finite-element method for use in classical elastic plate problems. International Journal of Mechanical Sciences.1976,18(7-8): 357-363.
    [36]McKnight R L and Sobel L H. Finite element cyclic thermoplasticity analysis by the method of subvolumes. Computers & Structures.1977,7(3):417-424.
    [37]Knowles N C. Finite element analysis. Computer-Aided Design.1984,16(3): 134-140.
    [38]Strang G and Fix G. An Analysis of the Finite Element Method. Upper Saddle River: Prentice Hall.1976.
    [39]交玉玲.弹性结构动力计算中的无网格法及精度分析[博士学位论文].长春:吉林大学.
    [40]荚颖.地基地震液化问题的无网格相关方法研究[博士学位论文].大连:大连理工大学.
    [41]Courant R, Friedrichs K O and Lewy H. Uber die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen.1928,100:32-74.
    [42]Crank J and Nicholson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proceedings of the Cambridge Philosophical Society.1947,43:50-67.
    [43]Vonneumann J.and Richtmyer R D. A Method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics.1950,21(3):232-237.
    [44]Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics.1954,7(1): 159-193.
    [45]Peaceman A W and Rachford H H. The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics. 1955,3(1):28-41.
    [46]Evans M W and Harlow F H. The particle-in-cell method for hydrodynamic calculations. Los Alamos Scientific Laboratory report.1957.
    [47]Lax P D and Wendroff B. Systems of conservation laws. Communications on Pure and Applied Mathematics.1960,13(1):217-237.
    [48]Hirt C W. Heuristic Stability theory for finite-difference equations. Journal of Computational Physics.1968,2(4):339-355.
    [49]Warming R F and Hyett B J. The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods. Journal of Computational Physics. 1974,14(2):159-179.
    [50]Cockburn B, Johnson C and Shu C, et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Belin:Springer.1997.
    [51]Ritchmyer R D and Morton K W. Difference methods for initial-value problems. New York: Interscience Publishers.1967.
    [52]Leveque R J. Numerical mehtods for conservation laws. Basel:Birkhauser Basel. 1992.
    [53]Leveque R J. Finite Dierence Methods for Dierential Equations. Washington: University of Washington.1998.
    [54]Chu C K and Sereny A. Boundary conditions in finite difference fluid dynamic codes. Journal of Computational Physics.1974,15(4):476-491.
    [55]Raman V M. Assessment of solutions of finite difference equations in fluid mechanics. Letters in Heat and Mass Transfer.1982,9(1):73-75.
    [56]Reuven T. Reassessment of solutions of finite difference equations in fluid mechanics. Letters in Heat and Mass Transfer.1982,9(3):227-229.
    [57]Mochimaru Y. Extension of spectral finite difference schemes for computational fluid dynamics. Computers & Fluids.1998,27(5-6):563-569.
    [58]沈孟育.计算流体力学-差分方法的原理和应用.北京:国防工业出版社.1999.
    [59]Lim K M and Li H L. A coupled boundary element/finite difference method for fluid-structure interaction with application to dynamic analysis of outer hair cells. Computers & Structures.2007,85(11-14):911-922.
    [60]Evseev E G and Morozov E V. The finite-difference technique for static and dynamic problems in mechanics of composite structures. New York: Allerton Press. 1994.
    [61]Evseev E G and Morozov E V. Explicit finite difference method in the dynamic analysis of composite structures. First International Conference on Composite Science and Technology.1997,39(3-4):215-221.
    [62]Moczo P, Johan O A and Robertsson, et al. The Finite-Difference Time-Domain Method for Modeling of Seismic Wave Propagation. Advances in Geophysics.2007, 48:421-516.
    [63]Xiong J, He J J and Zang C Y. Dynamic Analysis of Contact Bounce of Aerospace Relay Based on Finite Difference Method. Chinese Journal of Aeronautics.2009, 22(3):262-267.
    [64]刑誉峰,杨蓉.动力学平衡方程的Euler中点辛差分求解格式.力学学报.2007,39(1):100-105.
    [65]Jaswon M A. Integral Equation Methods in Potential Theory. Part Ⅰ. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1963, 275(1360):23-32.
    [66]Symm G T. Integral Equation Methods in Potential Theory. Part Ⅱ. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1963, 275(1360):33-46.
    [67]Rizzo F J. An integral equation approach to boundary value problems of classical elastostatics. Quarterly of Applied Mathematics.1967,25(1):83-95.
    [68]Swedlow J L and Cruse T A. Formulation of boundary integral equations for three dimensional elastoplastic flow. International Journal of Solids and Structures.1971, 7(12):1673-1683.
    [69]Cruse T A. Application of the boundary-integral equation method to three-dimensional stress analysis. Computers & Structures.1973,3(3):509-527.
    [70]Brebbia C A. The boundary element method for engineers. Plymouth:Pentech Press. 1978.
    [71]Banerjee P K and Butterfield R. Boundary element methods in engineering science. New York:McGraw-Hill.1981.
    [72]Mukherjee S. Boundary element methods in creep and fracture. London:Applied Science Publishers.1982.
    [73]Mukherjee Y X and Mukherjee S. The boundary node method for potential problems. International Journal for Numerical Methods in Engineering.1997,40(2):797-815.
    [74]Mukherjee S and Mukherjee Y X. The hypersingular boundary contour method for three-dimensional linear elasticity. Journal of Applied Mechanics.1998,65(2): 300-309.
    [75]Du Q H, Cen Z Z, and Lu X L. Some recent investigation on linear elastic and inelastic problems for solid mechanics by boundary element method. in:Du Q H. Proceedings of the International Conference on Boundary Element Method in Engineering. Beijing:Pergamon Press,1986:3-18.
    [76]杜庆华.关于连续介质力学工程数值分析方法.全国有限元会议,北京,1978:352-359.
    [77]杜庆华,姚振汉.边界积分方程-边界元法的基本理论及其在弹性力学中的若干工程应用.固体力学学报.1982,3(1):1-22.
    [78]Du Q H, Yao Z H and Song G S. Solution of some plate bending problems using the boundary element method. Applied Mathematica Modelling.1984,18:15-22.
    [79]杜庆华,岑章志,稽醒,等.边界积分方程边界元法.北京:高等教育出版社.1989.
    [80]Du Q H, Yao Z H and Cen Z Z. Some applications of boundary element methods, boundary element-finite element coupling techniques in elasto-plastic stress analysis. Acta Mechanics Solida Sinica.1990,13(3):1-17.
    [81]Gingold R A and Moraghan J J. Smoothed particle hydrodynamics:theory and applications to non-spherical stars. Monthly Notices of the Royal Astronomical Society.1977,181:375-389.
    [82]Monaghan J J. Why particle methods work. SIAM Journal on Scientific and Statistical Computing.1982,3(4):422-433.
    [83]Monaghan J J. An introduction to SPH. Computer Physics Communications.1988, 48(1):89-96.
    [84]李小林.基于边界积分方程的Galerkin无网格方法[博士学位论文].重庆:重庆大学.
    [85]Johnson G. R and Beissel S R. Normalized smoothing functions for SPH impact computations. International Journal for Numerical Methods in Engineering.1995, 39(16):2725-2741.
    [86]Johnson G R, Stryk R A and Beissel S R. SPH for high velocity impact computations. Computer Methods in Aapplied Mechanics and Engineering.1996,139(1-4): 347-373.
    [87]Swegle J W and Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Computational.Mechanics. 1995,17(3):151-168.
    [88]Swegle J W, Hicks D L and Attaway S W. Smoothed Particle hydrodynamics stability analysis. Journal of Computational Physics archive.1995,16(1):123-134.
    [89]Dyka C T and Ingel R P. Addressing tension instability in SPH Methods. Naval Research Laboratory Report.1994.
    [90]Chen J K, Beraun J E and Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics. Computational Mechanics.1999,23(4):279-287.
    [91]Nayroles B, Touzot G and Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements. Computational Mechanics.1992,10(12): 307-318.
    [92]Belytschko T, Lu Y Y and Gu L. Element-free Galerkin methods. Computer Methods in Applied Mechanics and Engineering.1994,113(3-4):397-414.
    [93]Cordes L W and Moran B. Treatment of material discontinuity in the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering.1996, 139(1-4):75-89.
    [94]Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkin method.Computational Mechanics.1997,19(4):264-270.
    [95]Zhu T and Atluri S N. A modified collocation and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics.1998,21(3):211-222.
    [96]Liszka T J, Duarte C and Tworzydlo W W. Hp-meshless cloud method. Computer Methods in Applied Mechanics and Engineering.1996,139(1-4):263-288.
    [97]Onate E, Idelsohn S and Zienkiewica O C. A finite point method in computational mechanics:applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering.1996,39(22):3839-3866.
    [98]Liu W K, Chen Y and Chang C T, et al. Advances in multiple scale kernel particle method. Computational Mechanics.1996,18(2):73-111.
    [99]Babuska I and Melenk J M. The partition of unity methods. International Journal of Numerical Methods in Engineering.1997,40(4):727-758.
    [100]Atluri S N and Zhu T. A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics. Computational Mechanics.1998,22(2):117-127.
    [101]Sukumar N, Moran B and Belytschko T. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering.1998,43(5): 839-887.
    [102]Venini P and Morana P. An adaptive wavelet-Galerkin method for an elastic-plastic-damage constitutive model.2001,190(42):5619-5638.
    [103]张雄,刘岩.无网格法.北京:清华大学出版社.2004.
    [104]Zhang X, She J Y and Ma S. An explicit material point finite element method for hyper velocity impact. International Journal for Numerical Methods in Engineering. 2006,66(4):689-706.
    [105]张雄,刘岩,马上.无网格法的理论及应用.力学进展.2009,39(1):1-36.
    [106]马上,张雄.弹丸超高速碰撞成坑问题的三维物质点法.振动工程学报.2006,19(S):19-22.
    [107]Ma S, Zhang X and Lian Y P, et al. Simulation of high explosive explosion using adaptive material point method Computer Modeling in Engineering and Sciences. 2009,39(2):101-123.
    [108]Ma Z H, Chen H Q and Zhou C H. A study of point moving adaptivity in gridless method. Computer Methods in Applied Mechanics and Engineering.2008, 197(21-24):1926-1937.
    [109]孙海涛,王元汉.基于节点计算的自适应数值积分及其程序实现.岩土力学.2007,28(5):995-1000.
    [110]刘更,刘天祥,谢琴.无网格法及其应用.西安:西北工业大学出版社.2005
    [111]庞作会,葛修润,王水林.无网格伽辽金法(EFGM)在边坡开挖问题中的应用.岩土力学.1999,20(1):61-64.
    [112]张伟星,庞辉.弹性地基板计算的无单元法.工程力学.2000,17(3):138-144.
    [113]Monaghan J J andGingold R A. Kernel estimates as a basis for general particle methods in hydrodynamics. Journal of Computational Physics.1982,46(3): 429-453.
    [114]Liu W K, Jun S and Sihlingy D T, et al. Multiresolution reproducing kernel paritcle method for computational fluid dynamics. International Journal of Numerical Method in Fluids.1997,24(12):1391-1415.
    [115]Liu W K, Jun S and Li S F, et al. Reproducing kernel particle methods for structural dynamics. International journal for numerical methods in engineering.1995,38(10): 1655-1679.
    [116]江兴贤,陈红全.多段翼型无网格算法及其布点技术.南京理工大学学报.2005,29(1):22-25.
    [117]Han Z D, Liu H T and Rajendran A M, et al. The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems. Computer Modeling in Engineering and Sciences.2006,14(2): 119-128.
    [118]Chena J S, Roqueb C and Pana C, et al. Analysis of metal forming process based on meshless method. Journal of Materials Processing Technology.1998,80-81: 642-646.
    [119]马上.冲击爆炸问题的物质点无网格法研究[博士学位论文].北京:清华大学大学.
    [120]李晶.金属体积成形数值模拟的无网格Galerkin法研究[博士学位论文].哈尔滨:哈尔滨工业大学.
    [121]Belytschko T, Rogan. D. A coupled finite element-element-free Galerkin method. Computational Mechanics.1995,17(3):186-195.
    [122]Hegen D. Element-free Galerkin methods in combination with finite element approaches. Computer Methods in Applied Mechanics and Engineering.1995, 135(1-2):143-166.
    [123]张祖军,阮锋,张赛军.混合元法及其在本质边界条件处理中的应用.华南理工大学学报(自然科学版).2010,38(6):140-145.
    [124]Kolousek V. Anwendung des Gesetzes der virtuellen Verschiebungen und des Reziprozitatssatzes in der Stabwerksdynamik. Archive of Applied Mechanics.1941, 12(2):363-370.
    [125]Przemieniecki S P. Theory of Matrix Structural Analysis. New York:McGraw-Hill 1968.
    [126]Mohsin M E and Sadek E A. The distributed mass-stiffness technique for the dynamical analysis of complex frameworks.1968,46(11):345-351.
    [127]Wittrick W H. General sinusoidal stiffness matrices for buckling and vibration analyses of thin flat-walled structures.1968,10(12):949-966.
    [128]Cheng F Y. Vibrations of Timoshenko beams and frameworks. Journal of the Structural Division.1970,96(3):551-571.
    [129]Wanga T M, Kinsmanb T A. Vibrations of frame structures according to the Timoshenko theory. Journal of Sound and Vibration.1971,14(2):215-227.
    [130]Wittrick W H, Williams F W. A general algorithm for computing natural frequencies of elastic structures. Quarterly Journal of Mechanics and Applied Mathematics.1971, 24(3):263-284.
    [131]Williams F W. Computation of natural frequencies and initial buckling stresses of prismatic plate assemblies. Journal of Sound and Vibration.1972,21(1):87-106.
    [132]Howson W P, Williams F W. Natural frequencies of frames with axially loaded Timoshenko Members. Journal of Sound and Vibration.1973,26(4):503-515.
    [133]Cheng F Y, Tseng W H. Dynamic matrix of Timoshenko beam column. Journal of Structural Division-ASCE.1973,99(3):527-549.
    [134]Wittrick W H, Williams F W. Buckling and vibration of anisotropic or isotropic plate assemblies under combined loadings. International Journal of Mechanical Sciences. 1974,16(4):209-239.
    [135]Bengt A, Akesson B. PFVIBAT-A computer program for plane frame vibration analysis by an exact method. International Journal for Numerical Methods in Engineering.1976,10(6):1221-1231.
    [136]Gustafsson T, Carlsson K G. PRVIBAT-DAMP commputer program for harmonic vibration of plane frames considering damping. Report T47, Division of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden.1977.
    [137]Swannell P, Tranberg C H. Procedures for the forced, damped vibration analysis of structural frames using distributed parameter models. Computer Methods in Applied Mechanics and Engineering.1978,16(3):291-302.
    [138]Akesson B Tagnfors H. SFVIBAT-A computer program for space frame vibration analysis. Pub.27, Division of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden.1980.
    [139]Banerjee J R, Williams F W. User's guide to the computer program BUNVIS (Buckling or Natural Vibration of Space Frames). Report of University of Wales Institute on Science and Technology.1982,2.
    [140]Hallauer W L.; Liu R Y L. Beam bending-torsion dynamic stiffness method for calculation of exact vibration modes. Journal of Sound and Vibration.1982 85(1): 105-113.
    [141]Friberg P O. Coupled vibrations of beams-an exact dynamic element stiffness matrix. International Journal for Numerical Methods in Engineering.1983,19(4):479-493.
    [142]Lunden R, Akesson B. Damped second-order Rayleigh-Timoshenko beam vibration in space:an exact complex dynamic member stiffness matrix. International Journal for Numerical Methods in Engineering.1983,19(3):431-449.
    [143]Friberg P O. Beam element matrices derived from Vlasov's theory of open thin-walled elastic beams. International Journal for Numerical Methods in Engineering.1985,21(7):1205-1228.
    [144]Banerjee J R, Williams F W. Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams.1985,21(12):2289-2302.
    [145]Anderson M S, Williams F W and Banerjee, et al. User manual for BUNVIS-RG:An exact buckling and vibration programe for lattice structures, with repetitive geometry and substructuring options. NASA Technical Memo 87669.1986.
    [146]Pearson D, Witrrick W H. An exact solution for the vibration of helical springs using a Bernoulli-Euler model. International Journal of Mechanical Science.1986,28(2): 83-96.
    [147]Akesson B Tagnfors H. SFVIBAT-DAMP-A computer program for space frame vibration analysis. Pub.29, Division of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden.1987.
    [148]Dokumaci E. An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional symmetry. Journal of Sound and Vibration.1987,119(3):443-449.
    [149]Williams F W, Kennedy D. Exact dynamic member stiffness and a beam on an elastic foundation. Earthquake Engineering & Structural Dynamics.1987,15(1): 133-136.
    [150]Capon M D, Williams F W. Exact dynamic stiffness for an axially loaded uniform Timoshenko member embedded in an elastic medium.1988,124(3):453-466.
    [151]Issa M S. Natural frequencies of continuous curved beams on Winkler-type foundation. Journal of Sound and Vibration.1988,127(2):291-301.
    [152]Leung A Y T. Dynamic stiffness analysis of follower force. Journal of Sound and Vibration.1988,126(3):533-543.
    [153]Banerjee J R.. Coupled bending-torsional dynamic stiffness matrix for beam elements. International Journal for Numerical Methods in Engineering.1989,28(6): 1283-1298.
    [154]Bishop R E D, Cannon S M and Miao S. On coupled bending and torsional vibration of uniform beams. Journal of Sound and Vibration.1989,131(3):457-464.
    [155]Langley R S. Application of the dynamic stiffness method to the free and forced vibrations of aircraft panels. Journal of Sound and Vibration.1989,135(2):319-331.
    [156]Leung A T Y. Exact stiffness matrix for twisted Helix beam. Finite Element in Analysis and Design.1991,9(1):23-32.
    [157]Leung A T Y. Natural shape functions of a compressed Vlasov element. Thin-Walled Structures.1991,11(5):431-438.
    [158]Bnaerjee J R. A FORTRAN routine for computation of coupled bending-torsional dynamic stiffness matrix of beam elements. Advances in Engineering Software and Workstations.1991,13(1):17-24.
    [159]Banerjee J R, Fisher S A. Coupled bending-torsional dynamic stiffness matrix for axially loaded beam elements. International Journal for Numerical Methods in Engineering.1992,33(4):739-751.
    [160]Banerjee J R., Williams F W. Coupled bending-torsional dynamic stiffness matrix for timoshenko beam elements. Computers & Structures.1992,42(3):301-310.
    [161]Langley R S. A dynamic stiffness technique for the vibration analysis of stiffened shell structures. Journal of Sound and Vibration.1992,156(3):521-540.
    [162]Leung A Y T. Dynamic stiffness and substructures. London:Springer.1993.
    [163]Banerjee J R, Williams F W. An exact dynamic stiffness matrix for coupled extensional-torsional vibration of structural members. Computers & Structures.1994, 50(2):161-166.
    [164]Eisenberger M, Abramovich H and Shulepov O. Dynamic stiffness analysis of laminated beams using a first order shear deformation theory. Composite Structures. 1995,31(4):265-271.
    [165]Banerjee J R; Williams F W. Free vibration of composite beams-an exact method using symbolic computation. Journal of Aircraft.1995,32(3):636-642.
    [166]Leung A Y T, Zhou W E. Dynamic stiffness analysis of laminated composite plates. Thin-Walled Structures。
    [167]Berein A N, Langley R S. Application of the dynamic Stiffness technique to the in-plane vibration of plate structures. Computers and Struetures.1996,59(5): 869-875.
    [168]Bercin A N. Natural frequencies of cross-ply laminated singly curved panels. Mechanics Research Communications.1996,23(2):165-170.
    [169]Bercin AN. Analysis of energy flow in thick plate structure. Computer & Structures. 1997,62(4):747-756.
    [170]Banerjee J R. An Exact Analytical Method of Flutter Analysis Using Symbolic Computation, AIAA Paper.1999,99-1354.
    [171]Gupta S, Manohar C S. Dynamic stiffness method for circular stochastic Timoshenko beams:response variability and reliability analyses. Journal of Sound and Vibration.20042,253(5):1051-1085.
    [172]Banerjee J R. Free vibration of sandwich beams using the dynamic stiffness method. Computers & Structures.2003,81(18-19):1915-1922.
    [173]Banerjee J R. Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. Journal of Sound and Vibration.2004, 270(1-2):379-401.
    [174]Banerjee J R. Comments on "A dynamical basis for computing the modes of Euler-Bernoulli and Timoshenko beams". Journal of Sound and Vibration.2004, 275(1-2):459-460.
    [175]Banerjee J R, Su H. Development of a dynamic stiffness matrix for free vibration analysis of spinning beams. Computers & Structures.2004,82(23-26):2189-2197.
    [176]Banerjee J R, Sobey A J. Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam. International Journal of Solids and Structures. 2005,42(8):2181-2197.
    [177]Casimir J B, Kevorkian S and Vinh T. The dynamic stiffness matrix of two-dimensional elements:application to Kirchhoffs plate continuous elements. Journal of Sound and Vibration.2005,287(3):571-589.
    [178]Kim N I, Lee J H and Kim M Y. Exact dynamic stiffness matrix of non-symmetric thin-walled beams on elastic foundation using power series method. Advances in Engineering Software.2005,36(8):518-532.
    [179]Kim N I, Kim M Y. Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects. Thin-Walled Structures.2005,43(5):701-734.
    [180]Kim N I, Lee J H and Kim M Y. Exact dynamic stiffness matrix of non-symmetric thin-walled curved beams subjected to initial axial force. Journal of Sound and Vibration.2005,284(3-5):851-878.
    [181]Girgin Z C, Girgin K. A numerical method for static or dynamic stiffness matrix of non-uniform members resting on variable elastic foundations. Engineering Structures.2005,27(9):1373-1384.
    [182]Howson W P, Zare A. Exact dynamic stiffness matrix for flexural vibration of three-layered sandwich beams. Journal of Sound and Vibration.2005,282(3-5): 753-767.
    [183]Banerjee J R, Sobey A J. Dynamic stiffness formulation and free vibration analysis of a three-layered sandwich beam. International Journal of Solids and Structures. 2005,42(8):2181-2197.
    [184]Banerjee J R, Su H and Jackson D R. Free vibration of rotating tapered beams using the dynamic stiffness method. Journal of Sound and Vibration.2006,298(4-5): 1034-1054.
    [185]Banerjee J R, Su H. Dynamic stiffness formulation and free vibration analysis of a spinning composite beam. Computers & Structures.2006,84(19-20):1208-1214.
    [186]Rafezy B, Howson W P. Exact dynamic stiffness matrix of a three-dimensional shear beam with doubly asymmetric cross-section. Journal of Sound and Vibration.2006, 289 (4-5):938-951.
    [187]Casimir J B, Nguyen M C and Tawfiq I. Thick shells of revolution: Derivation of the dynamic stiffness matrix of continuous elements and application to a tested cylinder. Computers & Structures.2007,85(23-24):1845-1857.
    [188]Banerjee J R, Cheung C W and Morishima R, et al. Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment. International Journal of Solids and Structures.2007,44(22-23):7543-7563.
    [189]Viola E, Ricci P and Aliabadi M H. Free vibration analysis of axially loaded cracked Timoshenko beam structures using the dynamic stiffness method. Journal of Sound and Vibration.2007,304(1-2):124-153.
    [190]Banerjee J R, Gunawardana W D. Dynamic stiffness matrix development and free vibration analysis of a moving beam. Journal of Sound and Vibration.2007, 303(1-2):135-143.
    [191]Kim N I, Fu C C and Kim M Y. Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations. Advances in Engineering Software.2007,38(3):158-171.
    [192]Kim N I, Shin D K and Park Y S. Dynamic stiffness matrix of thin-walled composite I-beam with symmetric and arbitrary laminations. Journal of Sound and Vibration. 2008,318(1-2):364-388.
    [193]Luis G A M, David G Z M and J Dario A O. Timoshenko beam-column with generalized end conditions on elastic foundation:Dynamic-stiffness matrix and load vector. Journal of Sound and Vibration.2008,310(4-5):1057-1079.
    [194]Banerjee J R, Su H and Jayatunga C. A dynamic stiffness element for free vibration analysis of composite beams and its application to aircraft wings. Computers & Structures.2008,86(6):573-579.
    [195]Leung A Y T. Exact dynamic stiffness for axial-torsional buckling of structural frames. Thin-Walled Structures.2008,46(1):1-10.
    [196]Ozgen G O, Kim J H. Error analysis and feasibility study of dynamic stiffness matrix-based damping matrix identification. Journal of Sound and Vibration.2009, 320(1-2):60-83.
    [197]Khalili S M R, Nemati N, Malekzadeh K, et al. Free vibration analysis of sandwich beams using improved dynamic stiffness method. Composite Structures.2010,92(2): 387-394.
    [198]Khadimallah M A, Casimir J B and Chafra M, et al. Dynamic stiffness matrix of an axisymmetric shell and response to harmonic distributed loads. Computers & Structures.2011,89(5-6):467-475.
    [199]Boscolo M, Banerjee J R. Dynamic stiffness elements and their applications for plates using first order shear deformation theory. Computers & Structures.2011, 89(3-4):395-410.
    [200]Boscolo M, Banerjee J R. Dynamic stiffness method for exact inplane free vibration analysis of plates and plate assemblies. Journal of Sound and Vibration.2011, In Press.
    [201]张阿舟,林佳铿.杆元素和梁元素的动刚度矩阵.南京航空航天大学学报.1980,3:45-53.
    [202]张阿舟,林佳铿.具有轴向力的连续质量梁元素.南京航空航天大学学报.1982,2:94-101.
    [203]陈显钧,赵令诚.弯曲板固有振动分析的动态有限元素法.振动与冲击.1982,1(2):1-11.
    [204]马淦林.讨论转轴动力学问题的动态有限元-兼论假设形态函数的近似性.东华大学学报(自然科学版).1986,12(5):83-91.
    [205]赵令诚,徐宏.动态有限元的阻抗阵.力学季刊.1986,2:58-65.
    [206]赵令诚,陈敬焴.动态有限元的阻抗阵及误差估计.力学季刊.1986,2:227-240.
    [207]周叮.环形板元素的动刚度矩阵.南京理工大学学报(自然科学版).1987,4:33-37.
    [208]沙德松,孙焕纯,费新芳.杆系结构动力计算的精确解法.大连理工大学学报.1988,27(1):1-7.
    [209]张崇文,桂国庆,曾思庄.结构动力分析的动态有限元法.地震工程与工程振动.1992,12(1):90-106.
    [210]张诗德.结构动力分析中的动态有限条法.固体力学学报.1998,19(2):170-175.
    [211]贺国京,陈大鹏.动态有限元法及其在薄板弯曲振动中的应用.长沙铁道学院院报.1999,17(1):1-6.
    [212]李俊,金咸定.Timoshenko薄壁梁弯扭耦合振动的动态传递矩阵法.振动与冲击.2001,20(4):57-59,61.
    [213]王静,赵德有,郑治国.用动态有限元法计算加筋板固有频率.大连理工大学学报.2001,41(1):90-93.
    [214]唐斌,薛冬新,宋希庚.复杂分支轴系扭振计算的动态矩阵法.船舶工程.2003,35(3):24-27.
    [215]Yuan S, Ye K S and F. W. Williams F W. Second order mode-finding method in dynamic stiffness matrix methods. Journal of Sound and Vibration.2004,269(3-5): 689-708.
    [216]Li J, Shen R Y and Hua H X, et al. Coupled bending and torsional vibration of axially loaded Bernoulli-Euler beams including warping effects. Applied Acoustics. 2004,65(2):153-170.
    [217]Li J, Shen R Y and Hua H X, et al. Bending-Torsional coupled dynamic response of axially loaded composite Timoshenko thin-walled beam with closed cross-section. Composite Structures.2004,64(1):23-35.
    [218]周平.基于动态刚度矩阵法的船舶结构动力分析[硕士学位论文].大连:大连理工大学.
    [219]周平,赵德有.动态刚度矩阵法的研究概况.振动与冲击.2006,25(4):104-108.
    [220]周平,赵德有.动态刚度矩阵法在船体总振动计算中的应用.船舶力学.2006,10(4):126-132.
    [221]周平.船舶与海洋结构动力分析中的动态刚度矩阵法研究[博士学位论文].大连:大连理工大学.
    [222]唐斌.基于精确动态刚度矩阵法的内燃机轴系扭转、纵向及弯曲三维耦合振动研究[博士学位论文].大连:大连理工大学.
    [223]肖琼冠.索杆梁高精度动力单元研究[硕士学位论文].杭州:浙江大学.
    [224]Yang L H, Li H G and Yu L. Dynamic stiffness and damping coefficients of aerodynamic tilting-pad journal bearings. Tribology International.2007,40(9): 1399-1410.
    [225]Yang L H, Li H G and Yu L. Corrigendum to "Dynamic stiffness and damping coefficients of aerodynamic tilting-pad journal bearings". Tribology International. 2010,43(1-2):518-521.
    [226]Yuan S, Ye K S and Cheng Xiao, et al. Exact dynamic stiffness method for non-uniform Timoshenko beam vibrations and Bernoulli-Euler column buckling. Journal of Sound and Vibration.2007,303(3-5):526-537.
    [227]周平,赵德有.带有加强筋的Mindlin板动态刚度阵法.振动与冲击.2007,26(6):139-147.
    [228]杨杰,赵德有.动态刚度阵法在海洋平台随机响应中的应用.石油机械.2008,36(11):32-34.
    [229]Bin Tang. Combined dynamic stiffness matrix and precise time integration method for transient forced vibration response analysis of beams. Journal of Sound and Vibration. 2008,309(3-5):868-876.
    [230]Li J, Hua H X. Dynamic stiffness vibration analysis of an elastically connected three-beam system. Applied Acoustics.2008,69(7):591-600.
    [231]Li J, Hua H X and Shen R Y. Dynamic stiffness analysis for free vibrations of axially loaded laminated composite beams. Composite Structures, Volume 84, Issue 1, June 2008, Pages 87-98
    [232]Li J, Chen Y and Hua H X. Exact dynamic stiffness matrix of a Timoshenko three-beam system. International Journal of Mechanical Sciences.2008,50(6): 1023-1034.
    [233]Li J, Hua H X. Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory. Composite Structures.2009,89(3): 433-442.
    [234]周平,赵德有.基于动态刚度矩阵法的加筋板间能量流研究.大连理工大学学报.2008,48(1):98-104.
    [235]唐斌.连续梁单元动态刚度矩阵数值问题的研究.力学与实践.2009,31(4):32-36.
    [236]唐斌.动态刚度矩阵在曲轴动态特性分析中的应用.船舶力学.2009,13(3):465-676.
    [237]Bao-hui Li, Hang-shan Gao and Hong-bo Zhai, et al. Free vibration analysis of multi-span pipe conveying fluid with dynamic stiffness method. Nuclear Engineering and Design.2011, In Press.
    [238]Beskos D E, Boley B A. Use of dynamic influence coefficients in forced vibration problems with the aid of Laplace transform. Computers & Structures.1975,5(5-6): 263-269.
    [239]Manolis G D, Beskos D E. Dynamic response of beam structures with the aid of numerical Laplace transform. Mechanisms of Development.1979,10:85-89.
    [240]Beskos D E and Narayanan G. V. Dynamic response of frameworks by numerical laplace transform. Computer Methods in Applied Mechanics and Engineering.1983, 37(3):289-307.
    [241]Spyrakos C C, Beskos D E. Dynamic response of frameworks by fast fourier transform. Computers & Structures.1982,15(5):495-505.
    [242]Doyle J F. An experimental method for determining the dynamic contact law. Experimental Mechanics.1984,24(1):10-16.
    [243]Doyle J F. Application of the Fast-Fourier Transform (FFT) to wave propagation problems. The international journal of Analytical and Experimental Modal Analysis. 1986,1(3):18-28.
    [244]Doyle J F, Kamle S. An experimental study of the reflection and transmission of flexural waves at an arbitrary T-joint. Journal of Applied Mechanics.1987,54(1): 136-140.
    [245]Farris T N, Doyle J F. Wave propagation in a split Timoshenko beam. Journal of Sound and Vibration.1989,130(1):137-147.
    [246]Doyle J F, Farris T N. A spectrally formulated finite element for wave propagation in 3-D frame structures. The international journal of Analytical and Experimental Modal Analysis.1990,5(4):223-237.
    [247]Gopalakrishnan S, Martin M and Doyle J F. A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beams. Journal of Sound and Vibration.1992,158(1):11-24.
    [248]Martin M, Gopalakrishnan S and Doyle J F. Wave propagation in multiply connected deep waveguides. Journal of Sound and Vibration.1994,174(4):521-538.
    [249]Gopalakrishnan S, Doyle J F. Wave propagation In connected waveguides of varying cross-section. Journal of Sound and Vibration.1994,175(3):347-363.
    [250]Gopalakrishnan S, Doyle J F. Spectral super-elements for wave propagation in structures with local non-uniformities. Computer Methods in Applied Mechanics and Engineering.1995,121(1-4):77-90.
    [251]Danial A N, Doyle J F. Dynamic analysis of folded plate structures on a massively parallel computer. Computers & Structures.1995,54(3):521-529.
    [252]Lee U. Equivalent continuum models of large platelike lattice structures. International Journal of Solids and Structures.1994,31(4):457-467.
    [253]Lee U. Equivalent continuum representation of lattice beams:spectral element approach. Engineering Structures.1998,20(7):587-592.
    [254]Lee U, Kim J. Dynamics of elastic-piezoelectric two-layer beams using spectral element method. International Journal of Solids and Structures.2000,37(32): 4403-4417.
    [255]Lee U, Kim J. Spectral element modeling for the beams treated with active constrained layer damping. International Journal of Solids and Structures.2001, 38(32-33):5679-5702.
    [256]Lee U, Kim J and Shin J. Development of a Wittrick-Williams algorithm for the spectral element model of elastic-piezoelectric two-layer active beams. International Journal of Mechanical Sciences.2002,44(2):305-318.
    [257]Lee U, Oh H. The spectral element model for pipelines conveying internal steady flow. Engineering Structures.2003,25(8):1045-1055.
    [258]Kim J, Cho J and Lee U, et al. Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Computers & Structures.2003, 81(20):2011-2020.
    [259]Lee U, Kim J and Oh H. Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. Journal of Sound and Vibration.2004,271(3-5): 685-703.
    [260]Lee U, Oh H. Dynamics of an axially moving viscoelastic beam subject to axial tension. International Journal of Solids and Structures.2005,42(8):2381-2398.
    [261]Lee U, Jang I. On the boundary conditions for axially moving beams. Journal of Sound and Vibration.2007,306(3-5):675-690.
    [262]Lee U, Kim S and Cho J. Dynamic analysis of the linear discrete dynamic systems subjected to the initial conditions by using an FFT-based spectral analysis method. Journal of Sound and Vibration.2005,288(1-2):293-306.
    [263]Lee U, Lee C. Spectral element modeling for extended Timoshenko beams. Journal of Sound and Vibration.2009,319(3-5):993-1002.
    [264]Lee U, Jang I and Go H. Stability and dynamic analysis of oil pipelines by using spectral element method. Journal of Loss Prevention in the Process Industries.2009, 22(6):873-878.
    [265]Lee U, Jang I. Spectral element model for axially loaded bending-shear-torsion coupled composite Timoshenko beams. Composite Structures.2010,92(12): 2860-2870.
    [266]Lee U, Shin J. A structural damage identification method for plate structures. Engineering Structures.2002,24(9):1177-1188.
    [267]Lee U, Shin J. A frequency response function-based structural damage identification method. Computers & Structures.2002,80(2):117-132.
    [268]Lee U, Cho K and Shin J. Identification of orthotropic damages within a thin uniform plate. International Journal of Solids and Structures.2003,40(9): 2195-2213.
    [269]Lee U, Kim S. Identification of multiple directional damages in a thin cylindrical shell. International Journal of Solids and Structures,2006,43(9):2723-2743.
    [270]Krawczuk M. A new finite element for the static and dynamic analysis of cracked composite beams. Computers & Structures.1994,52(3):551-561.
    [271]Palacz M, Krawczuk M. Analysis of longitudinal wave propagation in a cracked rod by the spectral element method. Computers & Structures.2002,80(24):1809-1816.
    [272]Krawczuk M. Application of spectral beam finite element with a crack and iterative search technique for damage detection. Finite Elements in Analysis and Design. 2002,38(6):537-548.
    [273]Krawczuk M. Palacz M and Ostachowicz W. The dynamic analysis of a cracked Timoshenko beam by the spectral element method. Journal of Sound and Vibration. 2003,264(5):1139-1153.
    [274]Krawczuk M, Palacz M and Ostachowicz W. Wave propagation in plate structures for crack detection. Finite Elements in Analysis and Design.2004,40(9-10): 991-1004.
    [275]Ostachowicz W. Damage detection of structures using spectral finite element method. Computers & Structures.2008,86(3-5):454-462.
    [276]Kudelaa P, Krawczuka M. and Ostachowicz W. Wave propagation modelling in 1D structures using spectral finite elements. Journal of Sound and Vibration.2007,300 (1-2):88-100.
    [277]Kudela P, Zak A and Krawczuk M, et al. Modelling of wave propagation in composite plates using the time domain spectral element method. Journal of Sound and Vibration.2007,302(4-5):728-745.
    [278]Peng H K, Meng G and Li F C. Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection. Journal of Sound and Vibration.2009,320 (4-5):942-954.
    [279]Sankar D S, Lee U. Two-fluid non-linear model for flow in catheterized blood vessels. International Journal of Non-Linear Mechanics.2008,43(7):622-631.
    [280]Jang I, Lee U. Spectral element analysis of the blood flow in human arteries. Journal of Biotechnology.2008,136(S1):99-100.
    [281]Sankar D S, Lee U. Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries. Communications in Nonlinear Science and Numerical Simulation.2009,14(7):2971-2981.
    [282]Sankar D S, Lee U. Two-fluid Casson model for pulsatile blood flow through stenosed arteries:A theoretical model. Communications in Nonlinear Science and Numerical Simulation.2010,15(8):2086-2097.
    [283]Igawa H, Komatsu K and Yamaguchi I, et al. Wave propagation analysis of frame structures using the spectral element method. Journal of Sound and Vibration.2004, 277(4-5):1071-1081.
    [284]克拉夫,彭津.结构动力学.王光远等译.北京:高等教育出版社.
    [285]李红,谢松法.复变函数与积分变换.北京:高等教育出版社.
    [286]Igawa H, Komatsu K and Yamaguchi I, et al. Wave propagation analysis of frame structures using the spectral element method. Journal of Sound and Vibration.2004, 277(4-5):1071-1081.
    [287]Dumir P C, Saha D C and Sengupta S. Dynamic stiffness method for space frames under distributed harmonic loads. Computers & Structures.1992,45(3):495-503.
    [288]Lee J K, Lee U. Spectral element analysis of the structure under dynamic distributed loads. in:AIAA.37th Aiaa/asme/asce/ahs/asc Structures, Structural Dynamics, And Materials Conference. Reston V A:American Institute of Aeronautics & Astronautics,1996:1605-1614.
    [289]刘树堂.杆系结构有限元分析与Matlab应用.北京:中国水利水电出版社.
    [290]肖新标,沈火明.移动荷载作用下的桥梁振动及其TMD控制.振动与冲击.2005,24(2):58-61.
    [291]张亚辉,张守云,赵岩,等.桥梁受移动荷载动力响应的一种精细积分法.计算力学学报.2006,23(3):290-294.
    [292]Henchi R, Fafard M and Dhatt G, et al. Dynamic behavior of multi-span beams under moving loads. Computers & structures.1997,199(1):33-50.
    [293]夏禾.车辆与结构动力相互作用.北京:科学出版社.
    [294]张志超,林家浩.移动质量作用下桥梁响应的精细积分.大连理工大学学报.2006,46(增刊):22-28.
    [295]沈火明,肖新标.插值形函数法求解移动荷载作用下等截面连续梁的动态响应.振动与冲击.2005,24(2):27-32.
    [296]蒲军平,王晓臣.梁桥受移动荷载作用的数值模拟.浙江工业大学学报.2007,35(2):228-230.
    [297]胡伟鹏,邓子辰,吴子燕,等.桥梁在移动荷载作用下动力学响应的广义多辛算法.振动与冲击,2008,27(4):66-69,97.
    [298]Hillerborg A. Dynamic influences of smoothly running loads on simply loads on simply supported girders. Stockholm:Kungliqa Tekn Hogskolan.
    [299]钟万勰.结构动力方程的精细时程积分法.大连理工大学学报.1994,34(2):131-136.
    [300]储德文,王丰元.精细直接积分法的积分方法选择.工程力学.2002,19(6):115-119.
    [301]张守云.移动荷载作用下桥梁响应的高效计算[硕士学位论文].大连:大连理工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700