用户名: 密码: 验证码:
导管架式海洋平台振动智能自适应逆控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋开发的不断发展,越来越多大型柔性结构的海洋平台被用于海底钻探和石油开采。海洋平台长期在恶劣的海洋环境中工作,经常要承受风、浪、流和潮汐等环境载荷的作用,在这些环境载荷的作用下海洋平台可能发生有害振动。振动响应过大不但会危害人员的身心健康,使平台设备仪器失灵或损坏,还会导致海洋平台结构疲劳破坏,降低平台可靠性,威胁平台结构安全,因此如何有效地控制海洋平台的有害振动就显得非常重要。采用被动控制方法控制海洋平台的振动,控制的频带范围有限。应用基于精确数学模型的主动控制方法控制海洋平台的振动,对于海洋平台这种结构复杂、参数易变,外载荷具有随机性和不确定性的系统很难达到理想的控制效果。在海洋平台振动主动控制过程中,控制信号传输延时会使控制系统发生振荡、不稳定甚至发散,因此如何减小控制过程中的时延也是一个急待解决的问题。近些年发展起来的智能控制方法可有效地解决海洋平台振动控制中存在的问题,为此本文应用智能自适应逆控制方法对随机波浪载荷和风载荷激励下导管架式海洋平台的振动响应进行控制。本文的主要工作如下:
     (1)基于动态刚度阵法的导管架式海洋平台动力响应计算
     本文通过数值方法模拟作用在导管架式海洋平台上的波浪载荷和风载荷。动态刚度阵法是一种非常有效的结构动力分析方法,具有计算速度快、计算准确的特点,所以本文应用动态刚度阵法计算导管架式海洋平台在波浪载荷和风载荷作用下的动力响应,为导管架式海洋平台振动主动控制研究提供了前提条件。
     (2)建立了基于动态刚度阵法的导管架式海洋平台振动智能自适应逆控制模型
     本文将动态刚度阵法、智能算法和自适应逆控制方法相结合,建立了基于动态刚度阵法的导管架式海洋平台振动智能自适应逆控制模型。自适应逆控制是通过建立被控系统的逆模型,然后将逆模型作为控制器,分别利用前馈控制器和扰动消除控制器控制被控对象的动态性能和扰动。智能算法具有很强的辨识和泛化能力,适合处理具有不确定性和非线性的问题,为此本文应用智能算法辨识导管架式海洋平台的逆模型。将动态刚度阵法计算出的波浪载荷作用下海洋平台振动响应作为前馈控制器的输入信号,利用前馈控制器对波浪载荷激励下的平台振动响应进行控制,将前馈控制后的平台响应作为扰动消除控制器的输入信号,利用扰动消除控制器对风载荷等扰动进行控制。
     (3)智能算法及导管架式海洋平台振动智能自适应预测逆控制研究
     (a)本文应用模糊神经网络辨识导管架式海洋平台的逆模型,将逆模型作为逆控制器,对随机波浪载荷和风载荷激励下导管架式海洋平台的有害振动进行控制,通过数值算例验证了本文的控制模型是有效、可行的。
     (b)本文首次将支持向量机应用于导管架式海洋平台振动主动控制中,应用支持向量机辨识海洋平台的逆模型,并将辨识的逆模型作为逆控制器,对导管架式海洋平台进行自适应预测逆控制,通过数值算例验证了该控制方法可有效地控制平台的振动响应。
     (c)本文将粗糙集和神经网络相结合构造一种新的神经网络结构,利用粗糙集理论简化网络结构,提高网络的训练、计算速度。应用粗神经网络对导管架式海洋平台进行自适应预测逆控制,数值算例验证了粗神经网络具有计算速度快,辨识和泛化能力强等特点,基于粗神经网络的自适应逆控制方法可有效地控制导管架式海洋平台的振动响应。
     (d)本文将灰局势决策理论和神经网络相结合构造一种新的神经网络结构,基于以往效果测度的神经网络辨识和泛化能力比较弱,为此本文提出一种新的效果测度,通过定义和数值算例证明了本文所提出效果测度的合理性和有效性。将基于新效果测度的灰局势决策理论和神经网络相融合,构建了一个新型的灰神经网络,该神经网络结构明确,计算简单,充分发挥了灰局势决策理论和神经网络各自的优点。将构建的灰神经网络作为自适应预测逆控制器,对导管架式海洋平台进行振动主动控制。通过数值仿真结果可以看出,基于灰神经网络的自适应预测逆控制方法可以有效地控制在波浪载荷和风载荷共同作用下导管架式海洋平台的振动响应。
     (e)本文将灰预测理论、动态刚度阵法、智能算法和自适应逆控制方法结合,建立了一种新的基于灰预测理论和动态刚度阵法的导管架式海洋平台振动智能自适应逆控制模型,通过灰预测控制解决控制过程中的时延对控制系统控制性能的影响。数值算例证明本文所提出的方法是有效的。
     (4)导管架式海洋平台振动主动质量阻尼控制系统设计
     本文对主动质量阻尼控制系统进行了设计,这为基于智能算法的导管架式海洋平台振动自适应逆控制系统的物理实现提供了理论基础。
With the development of ocean exploitation, more and more large-scale flexible offshore platforms are used for drilling operations and oil exploration. In a hostile ocean environment, offshore platforms usually experience various environmental loads such as wind, wave, flow and tidal loads, which will induce continuous vibration of the offshore platforms. Excessive vibrations will result in injury to human health, capacity degradation or even halt of the equipments and apparatus. Also, the vibrations can cause structural fatigue damages, decrease the reliability and threat the structure safety of the platforms. Hence, it is important to find effective control schemes for mitigating the vibrational response of the offshore platforms. When passive control methods are used to control vibrations in jacket offshore platforms, the cotrolled frequency band range is narrow. Active control methods using accurate mathematical models cannot achieve ideal purposes, because the jacket offshore platform is a system with complex structure, undetermined structural parameters and stochastic uncertain external load. Moreover, the delay of control signal transmission may cause instability and surge problems of the system. Therefore, in vibration control of jacket offshore platform, it is urgent to find methods of reducing the effects of the delay. The problems in vibration control can be solved effectively by intelligent methods. To better control the vibration of the jacket offshore platform under the wave and wind load, this paper applies intelligent adaptive inverse control methods. The main work includes:
     (1) Dynamic response calculation of jacket offshore platforms based on dynamic stiffness matrix method
     In this dissertation, we carried out the simulation of wave load and wind load that act on jacket offshore platforms via numerical methods. Dynamic stiffness matrix method is a quite effective method of dynamic structural analysis, which can increase the computation speed and precision. Therefore, we apply the dynamic stiffness matrix method to analysize dynamic response of jacket offshore platforms under wave and wind load. This has provided precondition for control vibration of jacket offshore platforms.
     (2) Based on dynamic stiffness matrix method, a model is established for vibration intelligent adaptive inverse control of jacket offshore platform
     Combining the advantages of dynamic stiffness matrix method, intelligent method and adaptive inverse control method, we proposed a new model for intelligent adaptive inverse control of jacket offshore platform based on dynamic stiffness matrix method. The adaptive inverse control method identifies the inverse model of the controlled system, then the inverse model is used as a controller that utilize feed-forward controller and disturbance eliminator controller to control the dynamic performance and disturbance of the controlled object. In this research, the intelligent method is adopted to identify the inverse model of the jacket offshore platform, because it has strong capability of handling uncertain and nonlinear information. Vibration responses of the offshore platform under random wave loads are calculated by the dynamic stiffness matrix method, the calculated responses are taken as the input signals of feed-forward controller, which controls the vibration responses correspondingly. The responses of feed-forward control are taken as the input signals of disturbance eliminator controller, which hinders the influence of the above factors on the control system performance.
     (3) Study on the intelligent methods and vibration intelligent adaptive inverse control of jacket offshore platform
     (a) Fuzzy neural network was used to identify the predictive inverse model of the jacket offshore platform in this paper. The inverse model is used as the adaptive inverse controller, which controls the vibration of jacket offshore platform under random wave and wind load. Simulation results show that our model is effective and practical.
     (b) Support vector machine was firstly applied to control vibration of the jacket offshore platform. Inverse control method based on a support vector machine can be adopted to estimate the inverse plant model. The inverse model is used as the adaptive inverse controller, which controls the vibration of jacket offshore platform. Simulation results indicate that the method is effective for control vibration responses of jacket offshore platform.
     (c) A novel rough neural network was proposed in this paper by combining rough set and neural network. In our study, the rough set theory is used to simplify network structure and increase the speed of training and calculation. Rough neural network is implemented in the active control vibration of jacket offshore platform. Simulation results show that the obtained rough neural network has advantages of fast calculation, better identification and generalization capacity, the adaptive inverse control method based on rough neural network is effective to control vibrations of jacket offshore platform.
     (d) Combining the grey situation decision theory with the neural network, we propose a new structure for construction of the neural network. Neural network based on quondam effect measure has weak capacity of identification and generalization, so we provide a new effect measure. Theoretical proofs and simulation results show the new measure is effective and reasonable. A novel grey neural network was proposed by combining neural network and grey situation decision theory using the new effect measure. The grey neural network has advantages such as clear structure, simple calculation. The grey neural network takes full advantages of grey situation decision theory and neural network, and it is used as the adaptive inverse controller, which controls vibrations of jacket offshore platform. Simulation results show that the adaptive inverse control method based on grey neural network can effectively decrease the harmful vibration of jacket offshore platform under the wave and wind load.
     (e) Combining the advantages of grey forecasting theory, dynamic stiffness matrix method, intelligent methods and adaptive inverse control method, we proposed a new model for intelligent adaptive inverse control of jacket offshore platform based on grey forecasting theory and dynamic stiffness matrix method. In addition, the problem of time delay during the control process was solved using the grey predictive control method. Simulation results show that our method is effective.
     (4) Design of vibration active mass damper control system of jacket offshore platform
     Furthermore, we designed an active mass damper control system, which provided a theoretical basis for physical realization of jacket offshore platform adaptive inverse control system based on intelligent methods.
引文
[1]卢布,吴凯,杨瑞珍等.我国“十一五”海洋资源科技发展的战略选择[J].中国软科学,2006,7:42-47.
    [2]周庆凡.我国石油资源分布与勘探状况[J].石油科技论坛,2008,6:13-17.
    [3]董艳秋.深海采油平台波浪载荷及响应[M]。天津:天津大学出版社,2005.
    [4]陆文发,李林普,高明道.近海导管架平台[M].北京:海洋出版社,1992.
    [5]周亚军.导管架海洋平台结构振动智能主动控制研究[D].大连:大连理工大学,2004.
    [6]YAO J P T.Concept of structure control[J].ASCE Journal of Structural Control,1972,98(7):1567-1574.
    [7]欧进萍.结构振动控制[M].北京:科学出版社,2003.
    [8]李宏男,霍林生.结构多维减震控制[M].北京:科学出版社,2008.
    [9]Kelly J M,Skinner R I and Heine A J.Mechanism of energy absorption in special devices for use in earthquake resistant structure[J].Earthquake Engineering,1972,5(3):63-88.
    [10]Piero Colajanni,Maurizio Papia.Seismic response of braced frames with and without friction dampers[J].Engineering Structures,2005,17(2):129-140.
    [11]Samali B,Kwok K C S.Use of viscoelastic dampers in reducing wind and earthquake induced motion of building structures[J].Engineering Structures,1995,17(9):639-654.
    [12]Park S W.Analytical modeling of viscoelastic dampers for structural and vibration control[J].International Journal of Solids and Structures,2001,38(44-45):8065-8092.
    [13]Tanaka H,Mak C Y.Effect of tuned mass dampers on wind induced response of tall buildings[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,14(1-3):357-368.
    [14]Das A K,Dey S S.Effects of tuned mass dampers on random response of bridges[J].Computers & Structures,1992,43(4):745-750.
    [15]Sun L M,Fujino Y and Pacheco B M et al.Modelling of tuned liquid damper[J].Journal of Wind Engineering and Industrial Aerodynamics,1992,43(1-3):1883-1894.
    [16]Kazuya Yamamoto,Mutsuto Kawahara.Structural oscillation control using tuned liquid damper[J].Computers & Structures,1999,71(4):435-446.
    [17]卢伯英,于海勋译.现代控制工程[M].北京:电子工业出版社,2007.
    [18]Xu Y L.Parametric study of active mass dampers for wind-excited tall buildings[J].Engineering Structures,1996,18(1):64-76.
    [19]Mackriell L E,Kwok K C S,Samali B.Critical mode control of a wind-loaded tall building using an active tuned mass damper.Engineering Structures[J],1997,19(10):834-842.
    [20]Ricciardelli Francesco,Pizzimenti A David,Mattei Massimiliano.Passive and active mass damper control of the response of tall buildings to wind gustiness[J].Engineering Structures,2003,25(9):1199-1209.
    [21]Cao H,Li Q S.New control strategies for active tuned mass damper systems[J].Computers & Structures,2004,82(2?):2341-2350.
    [22]Kobori T,Takahashi M,Nasu T,et al.Seismic response controlled structure with active variable stiffness system[J].Earthquake Engineering and Structural Dynamics,1993,22:925-941.
    [23]Yang J N,Wu J C,Li Z.Control of seismic-excited buildings using active variable stiffness systems[J].Engineering Structures,1996,18(8):589-596.
    [24]Hrovat D,Barak P,Rabins M.Semi-Active versus Passive or Active Tuned Mass Dampers for Structural Control[J].Journal of Engineering Mechanics,1983,109(3):691-705.
    [25]Symans M D,Constantinou M C.Semi-active control systems for seismic protection of structures:a state-of-the-art review[J].Engineering Structures,1999,21(6):469-487.
    [26]梁启智,丁海成.基础隔震加AMD混合控制结构的抗震分析[J].华南理工大学学报,1995,23(1):83-90.
    [27]赵斌,吕西林,吴敏哲,梅占馨.基础隔震建筑混合控制的变结构趋近律方法[J].地震工程与工程振动,1999,19(3):96-101.
    [28]Maebayashi K,Shiba E,Mira A,et al,Hybrid Mass Damper System for Response Control of Building[J].Earthquake Engineering,10th World Conference Balkema,Rotterdam,1992:(2359-2364).
    [29]Craig J I,Calisle A J,et al.Active Passive Damping for Structural Response Attention in Building[J].Proceeding of ATC-17-1 Seminar on Seismic Isolation,Passive Dissipation,and Active Control,1993,2:(11-12).
    [30]Widrow B,Walach E.Adaptive Inverse Control[M].New Jersey:Prentice-Hall Inc.,1996.
    [31]卢志刚,吴士昌,于灵慧.非线性自适应逆控制及其应用[M].北京:国防工业出版社,2004.
    [32]Widrow B.Adaptive model control applied to real-time blood-pressure regulation[M].Proceedings pattern recognition and machine learning.New York:Plenum Rress,1971:310-324.
    [33]Widrow B,Mccool J and Medoff B.Adaptive control by inverse modeling[J].12th Asilomar Conference on Circuits,1978:90-94.
    [34]Widrow B,Shur D and Shaffer S.On Adaptive Inverse Control[J].Conf.Rec.of 15th Asilomar Conference on Circuits,1981:185-189.
    [35]Shaffer S.Adaptive inverse-model control[D].Ph.D.diss,Stanford University,1982.
    [36]Wirow B,Stearns S D.Adaptive Signal Processing[M].Englewood Cliffs:Prentice Hall,1985.
    [37]Walach E and Widrow B.Adaptive signal processing for adaptive control[J].IFAC Workshop on Adaptive Systems in Control and Signal Processing,1983.
    [38]Psaltis D,Sideris A and Yamamamura A A.A Multilayered Neural Network Controller [J].IEEE Control Systems Magazine,1988,8:17-21.
    [39]Hunt K J,Sbarbaro D.Neural networks for Nonlinear Internal Model Control[J].IEEE Proceedings-D,1991,38(5):431-438.
    [40]Hunt K J,Sbarbaro D,Zbikowski R,et al.Neural Networks for Control Systems-a Survey[J].Automatica,1992,28(6):1083-1112.
    [41]戴先中,刘军,冯纯伯.神经网络α阶逆系统在离散非线性系统控制中的应用[J]。控制与决策,1997,12(5):217-221.
    [42]李春文,苗原,冯元琨,杜继宏.非线性系统控制的逆系统方法(Ⅰ)-单变量控制理论[J].控制与决策,1997,12(5):529-535.
    [43]李春文,苗原,冯元琨,杜继宏.非线性系统控制的逆系统方法(Ⅱ)-单变量控制理论[J].控制与决策,1997,12(6):525-530.
    [44]戴先中,刘军,冯纯伯.连续非线性系统的神经网络α阶逆系统控制方法.自动化学报,1998,24(4):463-468.
    [45]Xianzhong Dai,Jun Liu,Yong Tang,et al.Neural network α th-order inverse control of thyristor controlled series compensator[J].Electric Power Systems Research,1998,45(1)19-27.
    [46]JinTsong Jeng.Nonlinear adaptive inverse control for the magnetic bearing system [J].Journal of Magnetism and Magnetic Materials,2000,209(1-3):186-188.
    [47]Raied Salman.Neural networks of adaptive inverse control systems[J].Applied Mathematics and Computation,2005,163(2):93-939.
    [48]Hui Wang,Daoying Pi,Youxian Sun.Online SVM regression algorithm-based adaptive inverse control[J].Neurocomputing,2007,70(4-6):952-959.
    [49]卢志刚,于灵慧,柳晓菁,高美静,吴士昌.克服扰动的混沌逆控制同步系统[J].物理学报,2002,51(10):2211-2215.
    [50]于灵慧,房建成.混沌神经网络逆控制的同步及其在保密通信系统中的应用[J].物理学报,2005,(9):4012-4018.
    [51]胡文霏,黄金泉.航空发动机自适应逆控制研究[J].航空动力学报,2005,20(2):293-297.
    [52]袁朝辉,李凌.基于自适应逆控制的无人机负载模拟器复合控制[J].西北工业大学学报,2005,23(2):256-260.
    [53]王彪,唐超颖.航天器姿态的神经网络动态逆控制[J].系统工程与电子技术,2007,29(2):246-249.
    [54]杜刚,战兴群,张卫明,钟山.基于改进型径向基函数网络的船舶非线性航向自适应逆控制[J].上海交通大学学报,2006,40(6):988-992.
    [55]吴振顺,付丙勤,冯玉宾,赖海江.自适应逆控制在电液伺服系统中的应用[J].哈尔滨工业大学学报,2005,37(3):385-387.
    [56]杨立永,李正熙,李华德,王久和.感应电动机调速系统的自适应逆控制[J].控制理论与应用,2007,24(1):95-98.
    [57]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,1999.
    [58]蔡自兴.智能控制原理与应用[M].北京:清华大学出版社,2007.
    [59]李世勇.模糊控制神经网络控制和智能控制论[M].哈尔滨:哈尔滨工程大学,1998.
    [60]Lee G S.System identification and control of smart structures using neural networks[J].Acta Astronautica,1996,38(4-8):269-276.
    [61]Malur K,Sundareshan,Craig Askew.Neural network-assisted variable structure control scheme for control of a flexible manipulator arm[J].Automatica,1997,33(9):1699-1710.
    [62]Al-Nassar Y N,Siddiqui M,AI Garni A Z.Artificial neural networks in vibration control of rotor-bearing systems[J].Simulation Practice and Theory,2000,7(8):729-740.
    [63]阎石,林皋,黎海林.人工神经网络在结构振动控制中应用[J].大连理工大学学报,2000,40(5):589-592.
    [64]周丽,张志成.基于磁流变阻尼器的结构振动优化控制[J].振动工程学报,2003,16(1):109-113.
    [65]黄永安,邓子辰,姚林晓.基于神经网络混合建模的结构振动滑模控制[J].振动工程学报,2005,18(4):465-470.
    [66]Kumar R,Singh S P,Chandrawat H N.MIMO adaptive vibration control of smart structures with quickly varying parameters:Neural networks vs classical control approach[J].Journal of Sound and Vibration,2007,307(3-5):639-661.
    [67]郭军慧,周岱,李磊,黄剑伟.空间网壳结构振动问题的改进神经网络控制[J].工程力学,2008,25(10):86-91.
    [68]钟骏平,程远胜.基于磁流变阻尼器的舰船桅杆振动半主动模糊控制[J].船舶力学,2008,12(4):657-662.
    [69]张吉礼.模糊-神经网络控制原理与工程应用[M].哈尔滨:哈尔滨工程大学,2004.
    [70]诸静.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.
    [71]王凌云,林建华.用模糊神经网络实现结构的主动控制[J].工程力学,1998,15(1):105-109.
    [72]颜桂云,陈福全,孙炳楠.模糊神经网络在高层建筑横风向振动控制中的应用研究[J].振动与冲击,2007,26(1):69-72.
    [73]Kai Zheng,Yuquan zhang,Yiyong Yang,et al.Active vibration control of adaptive truss structure using fuzzy neural network[J].Control and Decision Conference,2008,4872-4875.
    [74]Madkour A,Hossain M A,Dahal K P,et al.Intelligent Learning Algorithms for Active Vibration Control[J].IEEE TRANSACTIONS ON SYSTEMS,2007,37,1022-1033.
    [75]Nello Cristianini,John Shawe-Taylor.Support Vector Machines and other Kernel-Based Learning Methods[M].London:Cambridge University Press,2000.
    [76]邓乃扬,田英杰.数据挖掘中的新方法--支持向量机[M].北京:科学出版社,2004.
    [77]张学工.关于统计学习理论的支持向量机[J].自动化学报,2000,26(1):32-42.
    [78]Sebald D J,Bucklew J A.Support vector machinetechniques for nonlinear equalize-ation [J].Signal Processing,2000,48(11):3217-3226.
    [79]刘胜,李妍妍.基于支持向量机的锅炉过热系统建模研究[J].热能动力工程,2007,22(1):38-41.
    [80]李丽娟,苏宏业,诸建.基于在线最小二乘支持向量机的广义预测控制[J].自动化学报,2007,33(11):1182-1188.
    [81]Zhiwei Shi,Min Han.Support Vector Echo-State Machine for Chaotic Time-Series Prediction[J].Neural Networks,2007,18(2):359-372.
    [82]胡守松,何亚群.粗糙决策理论与应用[M].北京:北京航空航天大学出版社,2006.
    [83]张文修,吴志伟,梁吉业等.粗糙集理论与方法[M].北京:科学出版社,2001.
    [84]Qiu Dan L,Zhong Xian Chi,Wen Bing Shi.Application of rough set theory and artificial neural network for load forecasting[J].Machine Learning and Cybernetics,2002,3:1148-1152.
    [85]何明,冯博琴,马兆丰,傅向华.一种基于粗糙集的粗糙神经网络构造方法[J].西安交通大学学报,2004,38(2):1240-1246.
    [86]张赢,李琛.基于粗糙集理论的神经网络研究及应用[J].控制与决策,2007,22(4):462-464.
    [87]张东波,王耀南.一种适用于模式分类的模糊粗隶属函数神经网络[J].湖南大学学报,2007,34(5):39-43.
    [88]王劲松,张仁忠,张好.基于粗糙集的模糊神经网络控制器的研究[J].电机与控制学报,2008,12(4):473-477.
    [89]张东波,王耀南,黄辉先.基于变精度粗糙集的粗集神经网络[J].电子与信息学报,2008,30(8):1914-1917.
    [90]Jiafu Jiang,Dingqiang Yang,He Wei.Image segmentation based on rough set theory and neural networks[J].Visual Information Engineering,2008,361-365.
    [91]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2002.
    [92]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [93]刘思峰,党耀国,方致更.灰色系统理论及其应用[M]。北京:科学出版社,2004.
    [94]宋子齐,谭成仟,吴少波,杨贵凯,靳晓杰.灰色系统与神经网络技术在水淹层测井评价中的应用[J].石油勘探与开发,1999,26(3):90-92.
    [95]邢棉.季节性预测的组合灰色神经网络模型研究[J].系统工程理论与实践,2001,(1):31-35.
    [96]李斌,许仕荣,柏光明,李黎武.灰色-神经网络组合模型预测城市用水量[J].中国给水排水,2002,18(2):6-68.
    [97]牛东晓,陈志业,邢棉等.具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型[J].中国电机工程学报,2002,22(1):29-32.
    [98]朱玉萍.正交异性薄板最大应力值的灰色神经网络算法[J].农业机械学报,2002,33(6):119-120.
    [99]谭羽非.城市燃气管网日负荷预测的灰色神经网络模型[J].哈尔滨工业大学学报,2003,35(6):679-682.
    [100]马歆,侯志俭,蒋传文等.基于组合灰色神经网络模型的电力远期价格预测[J].上海交通大学学报,2003,37(9):1329-1332.
    [101]张大海,毕研秋,毕研霞等.基于串联灰色神经网络的电力负荷预测方法[J].系统工程理论与实践,2004,(12):128-132.
    [102]李晶,吴启勋.灰色神经网络模型及其应用[J].计算机与应用化学,2007,24(8):1078-1080.
    [103]白燕,马光思.基于灰色径向基神经网络模型的流量预测与分析[J].计算机工程与科学,2008,30(10):122-124.
    [104]夏宏泉,谈德辉,梁常宝等。基于灰色神经网络的测井预测地层破裂压力[J].西南石油学院学报,1996,18(4):1-8.
    [105]魏文秋,孙春鹏.灰色神经网络水质预测模型[J].武汉大学学报(,1998,31(4):26-28.
    [106]吴国平,徐忠祥.隐蔽油气圈闭场源信息靶中灰色BP网络标定法[J].西安石油学院学报,2002,17(3):11-14.
    [107]岳建平.灰色动态神经网络模型及其应用[J].水利学报,2003,(7):120-122.
    [108]万星,周建中.改进灰色神经网络模型在电量预测中的应用[J].水力发电,2007,33(6):69-72.
    [109]桂洪斌,金咸定,肖熙.海洋平台振动控制研究综述[J].中国海洋平台,2003,18(5):19-25.
    [110]赵东,王威强,马汝建等.海洋平台振动控制研究现状及其近期发展[J].石油机械,2005,33(5):69-72.
    [111]于政,庄表中.海洋平台装置阻尼型减振的探索[J].浙江大学学报,1992,(S1):107-117.
    [112]Lee H H.Stochastic Analysis for Offshore Platform with Added Mechanical Dampers [J].Ocean Engineering,1997,24(9):817-834.
    [113]周云,邓雪松,徐赵东.铅粘弹性阻尼器性能实验研究[J].地震工程与工程振动,2001,21(1):139-144.
    [114]Patil K C,Jangid R S.Passive control of offshore jacket platforms[J].Ocean Engineering,2005,32(16):1933-1949.
    [115]欧进萍,肖仪清,段忠东等.设置粘弹性耗能器的JZ20-2MUQ平台结构冰振控制[J].海洋工程,2000,18(3):9-14.
    [116]欧进萍,龙旭,肖仪清等.导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J].地震工程与工程振动,2002,22(3):115-122.
    [117]张纪刚,吴斌,欧进萍.海洋平台结构SMA阻尼隔振振动台试验与分析[J].地震工程与工程振动,2007,27(6):241-247.
    [118]马海龙,陆建辉,李宇生.平台振动控制中粘弹性阻尼器及其位置优化[J].振动、测试与诊断,2003,23(3):179-182.
    [119]马海龙,陆建辉,李宇生.基于极点配置的海洋平台粘弹性阻尼振动控制[J].船舶力学,2004,18(4):116-120.
    [120]陆建辉,彭临慧,李华军.海洋石油平台TMD振动控制及参数优化[J].青岛海洋大学学报,1999,29(4):733-738.
    [121]陆建辉,彭临慧,李华军.固定式近海石油平台振动控制研究[J].中国造船,2000,41(3):63-68.
    [122]陆建辉,梅宁.海洋平台离散模型振动控制研究[J].力学与实践,2001,23(2):26-29.
    [123]孙树民.独桩平台波浪反应的TMD控制[J].港工技术,2001,(04):1-3.
    [124]赵东,马汝建,王威强等.ETMD减振系统及其在海洋平台振动控制中的应用[J].西安石油大学学报,2006,21(2):57-61.
    [125]嵇春艳.调谐质量阻尼器对海洋平台的减振效果分析[J].海洋技术,2005,24(2):114-120.
    [126]张力,张文首,岳前进.海洋平台冰激振动吸振减振的实验研究[J].中国海洋平台,2007.22(5):33-37.
    [127]Vandiver J K,Mitome S.Effect of liquid storage tanks on the dynamic response of offshore platform[J].Applied Ocean Research,1979,(1):67-74.
    [128]李宏男,马百存.固定式海洋平台利用TLD的减展研究.海洋工程[J],1996,14(3):91-96.
    [129]贾影;李宏男,宋岩升.TLD对海洋平台地震反应控制的简化计算方法[J].地震工程与工程振动,2002,22(3):160-164.
    [130]何晓宇,李宏男.波浪荷载作用下导管架海洋平台利用TLCD的振动控制[J].振动工程学报,2008,21(1):71-78.
    [131]Lee S C,Reddy D V.Frequency turning of offshore platform by liquid sloshing[J].Applied Ocean Research,1982,(1):226-231.
    [132]Lee H H,Wong S H,Lee R S.Response mitigation on the offshore floating platform system with tuned liquid column damper[J].Ocean Engineering,2006,33(8-9):1118-1142.
    [133]Vincenzo G,Roger G.Adaptive control of flow-induced oscillation including vortex effects[J].International Journal of Non-Linear Mechanics,1999,34:853-868.
    [134]Ahmad S K,Ahmad S.Active control of non-linearly coupled TLP response under wind and wave environments[J].Computers and Structures,1999,72:735-747.
    [135]Li H J,Hu S L,Takayama J,et al.Optimal active control of wave-induced vibration for offshore platforms[J].China Ocean Engineering,2001,15(1):1-14.
    [136]Suhardjo J,Kareem A.Feedback-feedforward control of offshore platforms under random waves[J].Earthquake Engineering and Structural Dynamics,2001,30(2):213-235.
    [137]Suhardjo J,Kareem A.Structural control of offshore plarforms[J].Proceeding of 7~(th) ISOPB,USA,Honolulu.1997,416-424.
    [138]李华军,嵇春艳,吴永宁.随机波浪载荷作用下海洋平台的前馈-反馈振动控制研究[J].青岛海洋大学学报 2001,31(6):917-924.
    [139]嵇春艳,李华军.随机波浪作用下海洋平台主动控制的时滞补偿研究[J].海洋工程,2004,22(4):95-101.
    [140]嵇春艳.固定式导管架平台的H_2振动控制技术研究[J].振动工程学报,2004,17(4):483-487.
    [141]嵇春艳,张枢文,万乐坤.H_2控制方法中加权函数对海洋平台振动控制效果的影响分析[J].江苏科技大学学报,2007,21(1):1-6.
    [142]Abdel-Rohman M.Structural control of a steel jacket plaform[J].Structural Engineering and Mechanics,1996,4(2):125-138.
    [143]张春巍,欧进萍.海洋平台结构振动的AMD主动控制参数分析[J].地震工程与工程振动,2002,22(4):151-156.
    [144]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,(10):85-90.
    [145]Eawano,Kenji,Ishizawa.Active control effects on dynamic response of offshore structures[J].Proceedings of the 3~(rd) ISOPE,1993,594-598.
    [146]孙树民,梁启智.隔震独桩平台地震反应的半主动磁流变阻尼器控制研究[J].振动与冲击,2001,20(3):61-64.
    [147]管友海,李华军,黄维平.海洋平台磁流变阻尼器半主动控制研究[J].青岛海洋大学学报,2002,32(4)650-656.
    [148]何鹏,管友海,钟涛.MR阻尼器在海洋平台半主动振动控制中的应用[J].青岛建筑工程学院学报,2002,17(3):25-28.
    [149]陆建辉,赵增奎,李宇生,刘玲.非平稳随机载荷下海洋平台振动半主动控制[J].振动与冲击,2004,23(3):107-110.
    [150]冷冬梅,吴斌.JZ20-2NW平台结构冰振作用下磁流变阻尼半主动控制研究[J].低温建筑技术,2006,(5):47-48.
    [151]万乐坤,嵇春艳,尹群.海洋平台磁流变模糊半主动振动控制研究[J].船舶工程,2007,29(4):28-31.
    [152]霍发力,嵇春艳,李珊珊等.基于模糊理论海洋平台的MRFD半主动控制理论研究[J].中国海洋平台,2009,24(1):31-35.
    [153]欧进萍,杨飚.导管架式海洋平台结构的磁流变阻尼隔震控制[J].高技术通讯,2003,13(6):66-73.
    [154]杨飚,欧进萍.导管架式海洋平台结构磁流变阻尼隔震的振动台试验[J].地震工程与工程振动,2005,25(4):141-148.
    [155]张纪刚,吴斌,欧进萍.海洋平台冰振控制试验研究[J].东南大学学报,2005,35:31-34.
    [156]张纪刚,吴斌,欧进萍.渤海某平台磁流变智能阻尼隔振控制[J].沈阳建筑大学学报,2006,22(1):68-72.
    [157]杨飚,欧进萍.导管架式海洋平台模型结构磁流变阻尼隔震数值分析[J].应用基础与工程科学学报,2007,15(2):183-189.
    [158]李宏男,霍林生,刘洋.采用神经网络半主动TLCD对海洋固定式平台的振动控制[J].防灾减灾工程学报,2003,23(2):22-27.
    [159]金峤,周晶,李昕.半主动TLCD对固定式海洋平台的离散神经网络滑模控制[J].世界地震工程,2005,21(3):28-34.
    [160]ZHOU Ya-jun,ZHAO De-you.Neural Network-Based Active Control for Offshore Platforms[J].China Ocean Engineering,2003,17(3):461-468.
    [161]周亚军,赵德有.基于结构参数随机性的海洋平台振动模糊逻辑控制研究[J].大连理工大学学报,2004,44(5):700-703.
    [162]Kolousek V.Anwendung des gesetzes der virtuellen verschiebungen und des rezipro-zitatssatzes in der stabwerksdynamik[J].Ingenieur-Archiv,1941,12:363-370.
    [163]周平.船舶与海洋结构动力分析中的动态刚度阵法研究[D].大连:大连理工大学,2007.
    [164]贾启芬,刘习军.机械与结构振动[M].天津:天津大学出版社,2007.
    [165]Cheng F Y.Vibrations of Timoshenko beams and frameworks[J].Journal of the Structural Division,1970,96(3):551-571.
    [166]Lunden R,Akesson B A.DamPed second-order Rayleigh-Timoshenko beam vibration in space an exact complex dynamic member stiffness matrix[J].International Journal for Numerical Methods in Engineering,1983,19(3):431-449.
    [167]Li Jun,Shen Rongying,Hua Hongxing,Jin Xianding.Bending-Torsional Coupled Dynamic Response of Axially Loaded Composite Timoshenko Thin-walled Beam with Closed Cross-seetion[J].Composite Struetures,2004,64(1):23-35.
    [168]Banerjee J R,Williams F W.Coupled Bending-torsional Dynamic Stiffness Matrix for Timoshenko Beam Elements[J].ComPuters and Struetures,1992,42(3):301-310.
    [169]Banerjee J R,Williams F W.Coupled Bending-torsional Dynamie Stiffness Matrix of an Axially Loaded Timoshenko Beam Element[J].International Journal of Solids and Structures,1994,31(6):749-762.
    [170]Banerjee J R,Guo S,Howson W P.Exaet Dynamie Stiffness Matrix of a Bending-torsion Coupled Beam Including Warping[J].Computers and Struetures,1996,59(4):613-621.
    [171]Banerjee J R.Development of an Exact Dynamie Stiffness Matrix for Free Vibration Analysis of a Twisted Timoshenko Beam[J].Journal of Sound and Vibration,2004(1-2),270:379-401.
    [172]Leung A Y T.Dynamic stiffness method and substructures[M].New York:Springer,1993.
    [173]Luis G,David G,J Dario.Timoshenko beam-column with generalized end conditions on elastic foundation:Dynamic-stiffness matrix and load vector[J].Journal of Sound and Vibration,2008,310(4-5):1057-1079.
    [174]张亚辉,林家浩.结构动力学基础[M].大连:大连理工大学出版社,2007.
    [175]Wittrick W H,Williams F W.A general algorithm for computing natural frequencies of elastic structures[J].Quarterly Journal of Mechanics and Applied Mathematics,1971,24(3):263-284
    [176]Williams F W.Nuatral frequeneies of repetitive structures[J].Quaertrly Jounral of Mechnaics and Applied Mathematics,1971,24(3):285-310.
    [177]聂武,刘玉秋.海洋工程结构动力分析[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [178]Randall,Robert E.Elements of Ocean Engineering[J].Jersey City:Society of Naval Architects and Marine Engineers,1997.
    [179]金伟良.工程载荷组合理论与应用[M]。北京:机械工业出版社,2006.
    [180]舒新玲,周岱.风速时程AR模型及其快速实现[J].空间结构,2003,9(4):27-32.
    [181]金咸定,赵德有.船体振动学[M].上海:上海科技出版社,2000.
    [182]谢官模.振动力学[M].北京:国防工业出版社,2007.
    [183]Vapnik V.Estimation of Dependencies Based on Empirical Data[M].New York:Springer-Verlag,1982.
    [184]Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
    [185]Cortes C,Vapnik V.Support-vector networks.Machine Learning[J],1995,20:273-297.
    [186]Burges C J C.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery[J],1998,2(2):121-167.
    [187]张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.
    [188]Suykens J,Vandewalle J.Least Square Support Vector Machine Classifiers.Neural Processing Letters[J],1999,9(3):293-300.
    [189]Pawalk Z.Rough sets.International Journal of Computer and Information Science [J],1982,11(5):341-356.
    [190]Ahn B S,Cho S S,Kim C Y.The integrated methodology of rough set theory and artificial neural network for business failure prediction.Expert Systems with Applications[J],2000,18(2):65-74.
    [191]Yue Jiao,Shuting Lei,Pei Z J,et al.Fuzzy adaptive networks in machining process modeling:surface roughness prediction for turning operations.International Journal of Machine Tools and Manufacture[J],2004,44(15):1643-1651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700