用户名: 密码: 验证码:
T2/QBe_2爆炸复合界面结合层内形变特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用工业纯铜(T2)和铍青铜(QBe2),采用平板爆炸复合方法制备T2/QBe2复合板。利用金相显微镜、电子背散射衍射技术和透射电镜等实验手段对爆炸复合后,波形复合界面结合层内T2和QBe2金属的塑性变形特征进行了研究。
     结果表明:T2和QBe2金属经爆炸复合后,其界面结合层在宏观上表现为连续不断和周而复始的波形,波形复合界面两侧金属的组织不同于各自基体金属的组织;并且在其T2/QBe2波形界面上存在由部分金属的熔化而形成的熔化块/层,同时波形界面形成的过程就是复合界面附近金属塑性变形的过程。在爆炸载荷条件下,QBe2侧产生了大量的平行带状组织,该组织为绝热剪切带(adiabatic shear bands,简写ASBs)和形变孪晶,但在T2侧则没有出现ASBs;在ASBs内分布有十分细小的等轴晶,这些等轴晶晶粒取向差较大,带与带之间基体中的晶粒取向基本相同,而上述两者则存在较大的取向差;ASBs是在爆炸载荷下,QBe2一种特殊的塑性变形方式。爆炸加载后,T2和QBe2中都产生了形变孪晶,形变孪晶是T2/QBe2体系在爆炸载荷作用下非常有利的变形形式。进行再结晶退火后,QBe2内的ASBs消失,并且产生了退火孪晶;T2内晶粒有所长大,而且也出现了退火孪晶。
Pure copper (T2) and beryllium bronze (QBe2) were selected as the material to produce T2/QBe2 composite by flat plate explosive cladding. Modern examination techniques, such as OM, EBSD and TEM were employed to investigate the plastic deformation features of T2 and QBe2 in cladding layer near the composite interface.
    The result indicated that the cladding layer at composite interface apperaed like continuous and cyclic waves on a macro scale. Microstructures on both sides of interface were different from those of respective matrix. There were some melted blocks or layer at the waved interface. And plastic deformation occurred concurrently along the formed interface. After explosive loading lots of parallel bands,which were identified as ASBs and deformation twins, apperaed on the side of QBe2. However, there were no ASBs on the side of T2. A number of very fine equix grains were observed in ASBs, and orientation of grains in the ASBs was different, orientatin of grains between adiabatic shear bands was essentially consistent, while there was a large difference in orientation between grains in ASBs and those in matrix. Adiabatic shearing bands would be one of special ways of plastic deformation for QBe2 under explosive loading. Deformation twins are found in the both T2 and QBe2 after explosive loading, which suggested th
    at twinning was a favorable deformation mechanism under such condition. After recrystallization annealing, the ASBs in the QBe2 disappeared, and annealing twins occurred. Grains in T2 coarsened and annealing twins appeared.
引文
[1] 王礼立,余希同,李永池.冲击动力学进展[M].合肥:中国科学技术大学出版社,1992.
    [2] Murr L E, Staudhammer K P.Metallurgical applications of shock waves and high-strain-rate phenomena[J]. Mechanical Engineering, 1986, 52: 1120-1127.
    [3] Meunier Y, Beatty J H.Shock waves and high strain rate phenomena in metals[M]. New York: Marcel Dekker Inc, 1992: 637-674.
    [4] Meyers M.A, Subhash G, Kad B K. Evolution of microstructure and shear band formation in A-hcp titanium[M]. Mechanics of Materials, 1994, 17(2-3): 175-193.
    [5] 杨扬,张新明,李正华等.α-钛/低碳钢爆炸复合界面结合层内的绝热剪切现象[J].中国有色金属学报,1995,5(2):93-97.
    [6] Sundar R S, Sastry D H.Hot workability of as-cast Fe_3Al-2.5%Cr intermetallic alloy[J]. Materials Science and Engineering A, 2003, 347(A): 86-92.
    [7] 魏志刚,李永池,李剑荣等.冲击载荷作用下钨合金材料绝热剪切带形成机理[J]. 金属学报,2000,36(12):1263-1268.
    [8] Kim D S, Sia N N, Isaacs J B, et al. Adiabatic shear band in WHA in high strain rate compression[J]. Mechanics of Materials. 1998, 28: 227-236.
    [9] Yang Y, Zhang X M, Li Z H, et al. Effects of stacking fault energy on residual substructure of explosive shock loaded metals[J]. Trans Nonferrous Metals Met Soc, 1994, 4(4): 90-93.
    [10] Yang Y, Zhang X M, Li Z H, et al. Adiabatic Shear Band on the Titanium Side in the Ti/Mild Steel Explosive Cladding Interface[J]. Acta Materialia, 1996, 44(2): 561-565.
    [11] Sia N N, Wei G G, Vitali F N, et al. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling[J]. Mechanics of Materials, 2001, 33: 425-439.
    [12] Magness L.S.et al. Proc First Int Conf on Tungsten and Tungsten Alloys[R]. Arlington: Metal Powder Industries Federation, 1992: 15.
    [13] BAI. Y L.Adiabatic shear banding[J]. Res. Mechanics, 1990, 31: 133-203.
    [14] 徐天平,王礼立,卢维娴.高应变速率下钛合金Ti-6Al-4V的热粘塑性特性和绝热剪切变形[J].爆炸与冲击,1987,7(1):1-7.
    [15] 包合胜,王礼立,卢维娴.钛合金在低温下的高速变形特性和绝热剪切[J].爆炸与冲击,1989,9(2):109-119.
    
    
    [16] Pérez-Prado M T, Hines J A, Vecehio K S. Mierostructural evolution in adiabatic shear bands in Ta and Ta-W alloys[J]. Acta Materialia, 2001, 49: 2905-2910.
    [17] Andrade U, Meyer M A, Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper[J]. Acta Metallurgica et Materialia, 1994, 42(8): 3183-3195.
    [18] Chen R W.Microstructural characterization of shear band formation in Al_2Li Alloys[M]. University of California, San Diego, La Jolla, CA. 1993.
    [19] Lee S, Cho K M. Mierostruetural study of adiabatic shear band formed by ballistic impact in an HY2100[J]. Metall Trans A, 1993, 24(A): 2217-2224.
    [20] 杨卓越,赵家萍.金属材料中绝热剪切带微观结构综述[J].华北工学院学报,1995,16(4):327-333.
    [21] 杨扬,程信林,绝热剪切的研究现状及发展趋势[J].中国有色金属学报,2002,12(3):401-408.
    [22] Hines J A.Vecchio K S.Recrystallization kinetics within adiabatic shear bands[J]. Acta Mater, 1997, 45(2): 635-649.
    [23] Nemat N S, Isaacs J B, Liu Mingqi.Microstructure of high-strain, high-strain-rate deformed tantalum[J]. Acta Materialia, 1998, 46(4): 1307-1325.
    [24] Nseterenko V F, Meyers M A. Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum[J]. Materials Science and Engineering A, 1997, 229(A): 23-41.
    [25] Meyers M A, Hen Y J.High-strain high-strain-rate behavior of tantalum[J]. Metallurgy and Materials Science Metall, 1995, 26A(10): 2493-2501.
    [26] Derep J L.Microstructure transformation induced by adiabatic sheafing in armour steel[J]. Acta Materialia. 1987, 35: 1245-1249.
    [27] 唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997.
    [28] Honeycombe R W K.金属塑性变形[M].重庆:重庆大学出版社,1989.
    [29] Sanchez J C, Murr L E, Staudhammer K P.Effect of grain size and pressure on twinning and microbanding in oblique shock loading of copper rods[J]. Acta Materialia, 1997, 45(8): 3223-3235.
    [30] J.F.Nye,孟中岩译.晶体的物理性质[M].西安:西安交通大学社,1994.
    [31] 郑哲敏,杨振声等.爆炸加工[M].北京:国防工业出版社,1981.
    [32] 埃兹拉A A,张铁生译.金属爆炸原理与实践[M].北京:北京机械工业出版社,1981.
    [33] 布拉齐恩斯基 T.Z,李富勤.爆炸焊接、成形与压制[M].北京:北京机械工业出版社,1988.
    
    
    [34] Carl L R.Metal Progress.1944, 46(1): 102-103.
    [35] 邵丙璜,张凯.爆炸焊接原理及其工程应用[M].大连:大连工学院出版社,1987.
    [36] 克劳思兰B.爆炸焊接法[M].北京:中国建筑工业出版社,1979.
    [37] 杨扬,张新明,李正华等.爆炸复合的研究现状和发展趋势[J].材料导报,1995,1:72-76.
    [38] 郑远谋.爆炸焊接和金属复合材料及其工程应用[M].长沙:中南大学出版社,2002.
    [39] 郑远谋,骆智君,张勤学等.爆炸焊接结合区波形形成的金属物理学机理Ⅱ.外因和内因的相互作用[J].广东有色金属学报,1998, 8(2):131-139.
    [40] 张希顺,刘安生,邵贝羚等.电子背散射衍射系统的研制和改进[J].电子显微学报,2001,20(4):263-269.
    [41] 魏全金.材料电子显微分析[M].北京:冶金工业出版社,1990.
    [42] 陈家光,李忠.电子背散射衍射在材料科学研究中的应用[J].理化检验—物理分册,2000,36(2):71-74.
    [43] Zhu Y H, Lee W B, Yeung C F, et al. EBSD of Zn-rich phases in Zn-Al based alloys[J]. Materials Characterization. 2001, 46: 19-23.
    [44] Randle V. The role of the grain boundary plane in cubic ploycrystals[J]. Acta Materialia. 1997, 46: 1459-1480.
    [45] Quested P N, Henderson P J. Observations of deformation and fracture heterogeneities in a nickel-base superalloy using electron backscattering patterns[J]. Acta Materialia, 1988, 36(10): 2743-2752.
    [46] David P.F.Quantification of partially recrystallized polycrystals using electron backscatter diffraction[J].Materials Science and Engineering A.1995, 190: 241-246.
    [47] Ganin E, Komem Y, Weiss B Z.The structure of joint zone in an explosively bonded Cu/Cu-2Be system[J]. Acta Matedalia 1, 1986, 34(1): 147-158.
    [48] 王祝堂,田荣璋.铜合金及其加工手册[M].长沙:中南大学出版社,2002.
    [49] 赵祖德.铜及铜合金材料手册[M].北京:科学出版社,1993.
    [50] 王祝堂,黄荣光,陈世红.爆炸焊接条件下金属的一种特殊的塑性变形方式[J]. 中国有色金属学报,1998,8:239-243.
    [51] 史长根,王耀华,蔡立艮等.爆炸焊接界面的结合机理[J].焊接学报,2002,2(23):55-58.
    [52] 郑远谋,骆智君,张勤学等.爆炸焊接结合区波形形成的金属物理学机理Ⅰ.外因和内因[J].广东有色金属学报,1998,8(1):37-46.
    [53] 李强,马常祥,赖祖涵.30CrNi3MoV钢绝热剪切带中微观组织的演变[J].钢铁研
    
    究学报,1996,1(8):25-28.
    [54] Meyers M.A, Xu Y.B, Pérez-Prado M.T, T.R.McNelley.Microstructural evolution in adiabatic shear localization in stainless steel[J]. Acta Materialia, 2003, 51: 1307-1325.
    [55] 李强,马常祥,赖祖涵.30MnCrNiMoB钢高速冲击绝热剪切带中的周期结构[J]. 东北大学学报(自然科学版),1995,16(4):414-416.
    [56] 周劲松,杨德庄.动态加载条件下形成的位错组织特征及形成机制[J].材料科学与工艺,1997,5(2):13-17.
    [57] Johnson G. R, Cook W H. A constitutive model and data for metals subjected to large strain rates and high temperatures[J]. Proceedings of the Seventh International Symposium on Ballistics, The Hague, The Netherlands, 1983, 541-548.
    [58] Ramachandran V, Armstrong R W, Zerilli F J.Dislocation mechanics based constitutive equations for tungsten deformation and fracturing[J]. Tungsten and Tungsten Alloys, 1991: 111-119.
    [59] Zurek A K, Follansbee P S.A comparison of shear band localization susceptibility in U-0.75 wt Pct and W-Ni-Fe during high strain rate deformation[J]. Metallurgical and Materials Transactions A, 1995, 26: 1483-1490.
    [60] Bodner S R, Partom Y.Constitutive equations for elastic-viscoplastic strain hardening materials[J]. Journal of Applied Mechancs, 1978: 385-389.
    [61] 冯瑞.金属物理学,第一卷:结构与缺陷[M].北京:科学出版社,1998.
    [62] Tang Q H, Wang T C. Deformation twinning and its effect on crack extension[J]. Acta Mater. 1998, 46(5): 5313-5321.
    [63] 宋西平,陈国良,顾海澄.层片状β-TiAl合金室温循环变形中的孪生行为[J].稀有金属材料与工程.2001,30(2):118-122.
    [64] Lapczyk I, Rajagopal K R, Srinivasa A R.Deformation twinning during impact of a titanium cylinder-numerical calculations using a constitutive theory based on multiple natural configurations[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 188(1): 527-541.
    [65] Christian J.W, Mahajan S.Deformation twinning[J]. Progress in Materials Science, 1995, 39: 1-157.
    [66] 张廷杰,张德尧,丁旭.强冲击载荷下Ta-W合金的塑变特征[J].稀有金属材料与工程,1997,26(2):12-17.
    [67] 毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700