用户名: 密码: 验证码:
松嫩草地土壤养分空间格局特征及其对放牧干扰的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是一个时空连续的变异体,具有高度的空间异质性。土壤空间格局就是这种空间异质性的具体表现。放牧的实质是一种生态干扰,干扰是引起生态系统空间异质性的重要来源之一。探索草地土壤养分空间格局在放牧干扰条件下的特征及其动态变化机制,对于认识放牧强度与草地土壤养分空间格局之间的关系有重要理论意义,并对揭示放牧与土壤养分之间复杂的生态关系具有重要作用。
     本研究采用野外随机典型样地调查与实验室分析的方法,同时利用传统统计学和地统计学相结合的数据分析与处理方法,对松嫩草地不同放牧压力下的土壤养分空间格局特征及其变化进行了研究,尤其针对草地土壤养分含量水平、空间变异性、空间自相关性及不同养分之间的相关性进行了系统的研究。利用地统计学的变异函数分析和Kriging空间插值估计法,比较不同放牧强度干扰对土壤各养分因子空间格局的影响。研究获得的主要结论如下:
     1、研究区6种土壤养分的变异系数在7.6%~29.1%之间。其中,土壤速效磷的变异系数最高,速效氮的变异系数最小。土壤有机质、全氮、全磷、速效磷的变异属于中等变异,而速效氮、速效钾的空间变异属于弱变异。各土壤特性的相关分析表明,土壤有机质与全氮、全磷和速效磷的相关系数较高,且与全磷呈极显著正相关,与速效磷呈显著正相关。
     2、天然无牧草地上,土壤中各种养分在剖面的分布基本为上高下低。土壤有机质、全氮、全磷含量随土层深度的增加逐渐下降;速效氮在0~50㎝土层,速效磷在0~100㎝土层呈先减少后增加再减少的“S”型分布;土壤养分在垂直方向上具有明显的分层和富聚现象。
     3、重度放牧导致土壤有机质在0~10㎝的含量下降,而轻度和中度放牧则增加了土壤有机质含量;土壤全氮在0~10㎝随放牧强度的增加而下降;土壤全磷在10~50㎝范围内以重度放牧含量最高,而在0~10㎝层则以中牧草地含量最高。土壤有机质、全氮和全磷三者之间具有相似的空间分布规律。
     4、土壤速效氮在各放牧区的含量均高于无牧区,且各放牧梯度下,速效氮含量在剖面的变化幅度不大;土壤速效磷含量(0~10㎝)随放牧强度的增加而增加,但10~20㎝重牧草地土壤中速效磷含量却陡然下降;土壤速效钾含量0~20㎝层,重牧草地高于其它样地,而20~30㎝、30~50㎝层以无牧草地土壤中速效钾含量最高。
     5、土壤有机质、全磷、速效磷的理论模型属于指数模型;全氮、速效氮、速效钾的理论模型属于球状模型;6种土壤养分中,有机质、全氮和全磷具有中等强度的空间相关性;而速效氮、速效磷和速效钾的空间相关性很弱。
Soil is a continuum with high spatio-temporal heterogeneity which might be defined as spatial patterns as well. Ecological disturbance is one of the most important causes forming the spatial heterogeneity. Therefore, it is important to establish the dynamics of soil nutrients spatial patterns under grazing disturbance in grassland ecosystems; and it is also meaningful theoretically for recognizing the relations between grazing pressures and soil spatial heterogeneity; else, it is also helpful to further understand the interactions between grazing and soil nutrients patterns in grasslands ecosystem.
     Our research was conducted focusing on the grassland soil nutrients’spatial patterns under different grazing pressures on the Songnen meadow steppes. By use of site investigation and laboratory analysis, soil nutrients’contents, spatial variability, and correlation of different nutrient components under diverse grazing gradients were studied with the aid of statistic and geo-statistical methods. Data analysis was applied due to the semivariogram method and Kriging algorithm. Soil nutrients’spatial patterns under different grazing pressures were quantified and compared mutually. Herein, the grazing gradients were defined as naturally ungrazed meadows, lightly grazed meadows, moderately grazed meadows, and heavily grazed meadows. The soil nutrient indicators were selected as SOM, soil total nitrogen, total phosphorus, total potassium and soil available nitrogen, available phosphorus, and available potassium.
     Finally, some conclusions were established as follows:
     1.The coefficients of variability (CV) of all the target nutrients indicators appear all in the range of 7.6~29.1%, in which the CV of available phosphorus is the biggest while that of available nitrogen is at the down end. Soil organic matter (SOM), total nitrogen, available phosphorus perform with medium variance, while that of total phosphorus, available nitrogen, available potassium do with weak variance. The correlation analysis of each soil nutrient components shows that, the SOM performs extremely significantly positive with total phosphorus and significantly positive with available phosphorus.
     2.In natural grasslands, soil nutrients concentrate in the upper layer of the profile and decrease along the profile from top to lower. The distributions of SOM, total nitrogen, total phosphorus decrease gradually along the soil depth. Available nitrogen in 0~50㎝ layer, and available phosphorus in 0~100㎝ layer distribute with a“S”shape along the soil profile. Vertically, these soil nutrient variables vary with obvious stratification and surface accumulation features.
     3.Heavily intense grazing might result in the decrease of SOM in 0~10㎝ layer, while light grazing and moderate grazing may have an opposite impact. Soil total nitrogen content increase positively with the increasing grazing pressure. The content of soil total phosphorus showed highest at 10~50cm layer in heavily-grazed grasslands. However, soil total phosphorus showed the highest in 0~10㎝ layer of the moderately-grazed grassland. Overall, SOM, soil total nitrogen and total phosphorus showed similar spatial patterns under different grazing pressures.
     4. The available nitrogen under grazing showed higher than that of non-grazed ones with a limited variation range along the soil profile. With the increasing of grazing pressure, the content of soil available phosphorus increased at 0~10㎝ soil layer, but decreased swiftly at 10~20㎝ in heavily-grazed grasslands. The contents of available potassium in heavily-grazed grasslands revealed higher than that of the other grasslands; and the available potassium of ungrazed grasslands showed the highest at 20~30㎝ layer and 30~50㎝ layer.
     5.The semi-variograms of SOM, soil total phosphorus and available phosphorus were best described by exponential model; the best model for semi-variogram of soil total nitrogen, available nitrogen and available potassium were spherical model. Among the six types of target soil nutrient components, SOM, total nitrogen and total phosphorus have a moderate spatial dependence, while available nitrogen, available phosphorus and available potassium, have very weak spatial dependence.
引文
[1] Scherr S J. soil degradation: A threat to developing-country food security by 2020?Vision 2020:Food, Agriculture, and the Environment Discussoin Paper, 1999, 27: 14~25
    [2] 付华,王玉梅,周志宇,等.苜蓿施用污泥效果的研究Ⅱ对土壤理化性质及元素含量的影响[J].草业学报,2002,11(4):57~26
    [3] 郝明德.黄土高原沟壑区水土流失治理与生态环境建设[J].水土保持学报,2002,16(5)79~81
    [4] Chen Z Z, Wang S P, Wang Y F, etal. Typical grassland ecosystem of China.Beijing: Science Press, 2000
    [5] 赵其国,周健民.为21世纪土壤科学的创新发展作出新的贡献—参加第17届国际土壤学术大会综述[J ].土壤,2002,5:237~256
    [6] 王仁忠,李建东.采有聚类分析法对羊草草地放牧演替阶段的划分.生态学报,1991,11(4):367~370
    [7] 王仁忠,李建东.羊草草地放牧退化演替中种群消长模型的研究.植物生态学报,1995,19(2):170~174
    [8] 曲国辉,郭继勋.松嫩平原不同演替阶段植物群落和土壤特性的关系[J] .草业学报,2003,1(12):18~22
    [9] Chen J , Tan M Z, Chen J Z, etal. Soil degradation: a global problem of endangering sustainable development. Advance in Earth Sciences, 2002, 17(5): 720~728
    [10] Xu Z X, Zhao M L. Influence of grazing on soil erosion of grassland. Grassland of China, 2001, 23(6): 59~63
    [11] Brady, N. C.,1974, The Nature and Properties of soil (Eighth Edition), Macmillan,New York
    [12] Hoglund, J. H. Grazing intensity and soil nitrogen accumulation[J]. Proceedings of the New Zealand Grasslan Association. 1985, 46: 65~69
    [13] Johnston Dormmar J F Smoliak S. Long-term grazing effects on fescue grassland soil [J].Journal of Range Management, 1971(24): 185~188
    [14] Romulo S C M, Edward T E, David W V, Stephen A W.Carbon and nitrogen Dynamic sinelkwinterranges [J]. Journal of Range Management, 2001(54): 400~408
    [15] Frank A B,Tanaka DL and Follett R F.Soil carbon and nitrogen of Northern Great plain grasslands as influenced by long-term grazing [J]. Journal of Range Management, 1995, 48(6): 528~534
    [16] B.J Wienhold ,J1R1Hendrickson ,J1F1Karn1 王淑红编译.美国北部大草原上放牧活动对土壤性质的影响[J] .水土保持科技情报,2001 ,(6):14~171
    [17] Blackburn W. H. Impacts of grazing intensity and specialized grazing system on watershed characteristics and response. Developing Strategies for Rangeland Management.WestviewPress/Boulder and London, 1984, 927~948
    [18] Mitchell C A, Custer T W, Zwank P J.Herbivore on shortgrass by wintering redheads in Texas [J].Journal of Wildlife Management, 1994(58): 131~141
    [19] Bauer A , Co le C V , Black A L. So il p roperty comparisons in virgin grasslands between grazed and nongrazed management system s. Soil Sci. Soc. Amer[J].1987, 51: 176~182
    [20] Smoliak S. Dormaar J F, Johnston A , Seasonal changes in carbon content, dehydrogenase, phosphatase, and urease activities in m ixedp rairie and fescue grassland Ah horizons[J]. R and emage. , 1984, 37: 31~36.
    [21] 王淑强,胡直友等.不同放牧强度对红三叶、黑麦草草地植被和土壤养分的影响[J].自然资源学报,1996,11(3):280~287
    [22] 关世英,文沛钦,康师安,常进宝.不同牧压强度对草地土壤养分含量的影响[A].草原生态系统研究(第五集) [C].北京:科学出版社,1997.17~22
    [23] 李香真,陈佐忠.不同放牧率对草原植物与土壤C、N、P含量的影响[J].草地学报,1998,6(2):90~98
    [24] 于友民,李志丹,泽柏.川西北亚高山草地不同退化梯度草地土壤养分变化[J].草业学报,2005,14(2):38~42
    [25] 裴海昆. 不同放牧强度对土壤养分及质地的影响[A].青海大学学报(自然科学版),2004,22(4)29~31
    [26] 姚爱兴,李平等.不同放牧制度下奶牛对多年生黑麦草/白三叶草地土壤特性的影响,草地学报,1996,4(2):95~102
    [27] 戎郁萍,韩建国等.放牧强度对草地土壤理化性质的影响[J].中国草地2001,23(4)41~47
    [28] 贾树海.牧压梯度上土壤物理性状的变化[C],草原生态系统研究(第5集),科学出版社,12~13
    [29] 关世英.草原暗栗钙土退化过程中的土壤性状及其变化规律的研究[J].中国草原,1997,(3)49~58
    [30] 王玉辉,何兴元,周广胜.放牧强度对羊草草原的影响[J ] .草地学报,2002 ,1(10):45~49.
    [31] 李建东,郑慧莹.松嫩平原针茅草原的特征及其生态地理规律的探讨[J ].植物生态学与地植物学学报,1987,11(3):183~192
    [32] Frank D A , Groffman P M. U ngulate vs. landscape control of soil C and N processes in grasslands of Yellow stone National Park.
    [33] Greene R S B, Kinnell P I A , Wood J T. Ro le of plant cover and stock tramp ling on run off and soil erosion from semiarid wooded rangelands. Aus. J. Soil Res. , 1994, 32: 953~973.
    [34] Huggett R J . Soil chrono sequences, soil development, and soil evolution: a critical review.CATENA.1998, 32: 155~172
    [35] Triantafilis J, Odeh I O A, McBratney A B. Five GeostatisticalModels to Predict Soil Salinity from Electromagnetic Induction Data Across Irrigated Cotton [J]. Soil Sci Soc Am J, 2001, 65: 869~878
    [36] Greenholtz D E, Jim Yeh T C, NashM SB, et al. Geostatistical analysis of soil hydrologic properties in a field plot [J]. ContamHydrol, 1988, 3: 227~250
    [37] Goovaerts P. Geostatistics in soil science: state-of-the-art and perspectives [J]. Geoderma, 1999, 89: 1~45
    [38] Webster R, Burgess T M. Optimal interpolation and isarithmic mapping of soil properties III: Changing drift and universal kriging [J]. J Soil Sci .1980, 31: 505~524
    [39] Yost R S, Uehara G, Fox R L. Geostatistical analysis of soil chemical properties of large land areas, I: Semivariograms [J] . SoilSci Soc Am J, 1982, 46: 1028~1037
    [40] Webster R. Quantitative spatial analysis of soil in the field [J] .Advance in Soil Science, 1985, 3: 170~189
    [41] Webster, Oliver M A. Optimal interpolation and isarithmic mapping of soil properties: V I. Disjunctive kriging and mapping the conditional probability [J]. Soil Sci, 1989, 40: 497~512
    [42] White RE, Haigh RA and Macduff JH,1987. Frequency distribution and spatially dependent variability of ammonium and nitrate concentrations in soil under grazed and ungrazed grassland. Fert. Res. 11: 193~208
    [43] Miller PM, Singer MJ and Nielsen DR, 1998. Spatial variability of wheat yield and soil properties on complex hills. Soil Sci. Soc. Am.J.52: 1133~1141
    [44] Boyer DG, Wright RJ, Feldhake CM and Bligh DP,1991, Soil spatial vatiability in steeply sloping acid soil environment. Soil Sci.161: 278~287
    [45] 王其兵,李凌浩,刘先华,等.内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析[J].植物生态学报,1998,22 (5):409 ~414
    [46] 郭旭东,傅伯杰,马克明,等.基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例[J].应用生态学报,2000,11(4):557 ~563
    [47] 张有山,林启美,秦耀东,等.大比例尺区域土壤养分空间变异定量分析[J].华北农学报,1998,13(1):122~1281
    [48] 王军,傅伯杰,等.黄土高原小流域土壤养分的空间分布格局—Kriging插值分析.地理研究,2003,22(3):1173~1178
    [49] 邱扬,傅伯杰,等.黄土高原小流域土壤养分的时空变异及其影响因子.自然科学进展,2004,14(3):294~299
    [50] 李菊梅,李生秀.几种营养元素在土壤中的空间变异.干旱地区农业研究,1998,16(2):58~64
    [51] 苏永中,赵哈林,文海燕.退化沙质草地开垦和封育对土壤理化性状的影响.水土保持学报,2002,16(4):5~8
    [52] E B Eckel. Landslides and Engineering Practice [M]. Highway Research Board , Special Report 29, 1958
    [53] B B Broms. 11 , landslides [M] . Foundation Engineering Handbook. Van Nostrand Reinhold Company , 1975
    [54] Farina A. 1998. Principles and Methods in Landscape Ecology [M] . New York : Chapman & Hall, 35~50
    [55] 张朝生,陶澍,等.天津市平原土壤微量元素含量的空间自相关研究[J].土壤学报,1995,32(2):22~26
    [56] Mandelbrot B B. How long is the coast of Britain ? Statistical self-similarity and fractional dimension. Science , 1967 , 156 (3775) : 636~638
    [57] Gimenez D ,Karmon J L ,Posadas A , et al . Fractal dimensions of mass estimated from intact and eroded soil aggregates. Soil Till . Res. ,2002 , 64 (1/ 2) : 165~172
    [58] Dathe A ,Eins S ,Niemeyer J , et al . The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma , 2001,103 (1/ 2) :203~229
    [59] Posadas A N D, Gimenez D ,Quiroz R , et al . Multifractal characterization of soil pore systems. Soil Sci . Soc. Am. J. ,2003 ,67 (5) :1361~1369
    [60] Millan H, Gonzalez2Posada M, Benito R M. Fragmentation fractal dimensions of Vertisol samples : Influence of sieving time and soil pretreatment . Geoderma, 2002, 109(1/ 2) : 75~83
    [61] Fuentes C, Antonino A C D ,Sepulveda J, et al. Prediction of the relative soil hydraulic conductivity with fractal models. Hydraulic Engineering in Mexico ,2003 , 18(4) :31~40
    [62] Tucotte D L. Fractal fragmentation. J. Geography Res. 1986, 91(12): 1921~1926
    [63] 张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系.土壤学报,2002 ,39(2):221~22
    [64] 杨秀春,刘连友,严平.土壤短期吹蚀的粒度分维特征.土壤学报,2004 ,41(2): 176~182
    [65] 黄冠华,詹卫华.土壤颗粒的分形特征及其应用.土壤学报,2002 ,39 (4):490~497
    [66] 吴承祯,洪伟.不同经营模式土壤团粒结构的分形特征研究.土壤学报,1999,36(2)162~167
    [67] Bolinder M A, et al. The response of soil quality indictors to conservation management. Can J Soil Sci, 1999, 79: 37
    [68] 彭琳,王继增,余存祖.侵蚀旱作土壤N素吸收利用与淋溶流失.土壤侵蚀与水土保持学报,1996,(2):9~161
    [69] 孙冬梅,陈学量.黑龙江省土壤有机质与全氮、碱解氮的相关分析[J ]. 黑龙江八一农垦大学学报, 1995,8 (2) :57- 60.
    [70] 翟金良,何岩,邓伟.向海洪泛湿地土壤全氮、全磷和有机质含量及相关性分析[J ].环境科学研究, 2001,14 (6) : 40- 43.
    [71] 康师安,关世英.羊草草原暗栗钙土养分含量与动态的研究.草原生态系统研究(第4集).北京:科学出版社,1992,181~190
    [72] 许明祥,刘国彬.黄土丘陵区刺槐人工林土壤养分特征及演变[J].植物营养与肥料学报,2004,10(1):40~46
    [73] 王国梁,刘国彬,许明详.黄土丘陵取纸纺沟流域植被恢复的土壤养分效应.水土保持通报,2001,22(1):1~5
    [74] 赵吉等.草原生态系统的土壤微生物生态[J].中国草地(第3集,1999),59~63
    [75] 贾树海,崔学明,李绍良,等.牧压梯度上土壤理化性质的变化[A].西北高原生物研究所编.草原生态系统研究(第五集)[C].北京科学出版社,1997,251~253
    [76] 孙长忠,黄宝龙,陈海滨,等.黄土高原沟坡次生植被与土壤营养现状的关系.林业科学研究,1998 ,11(3):330~3341
    [77] Pacovsky R S.Micronutrient uptake and distribution in mycorrhizal or phosphorus -fertilized soybea.Plant and Soil, 1986, 95 : 379~3881
    [78] 许峰,蔡强国,吴淑安,等.三峡库区坡地生态工程控制土壤养分流失研究.地理研究,2000 ,19(3):303~3101
    [79] 史瑞禾,鲍士旦,秦怀英.土壤农化分析[M].第二版.北京:农业出版社,1990
    [80] 张淑娟,何勇,方慧.基于 GPS 和 GIS 的田间土壤特性空间变异的研究.农业工程学报,2002,19(2):39~43
    [81] 王政权 地统计学及其在生态学中的应用[M] 北京:科学出版社,1999,102~149
    [82] 王仁铎,胡光道.1987,线性地质统计学,北京:地质出版社
    [83] 路鹏,彭佩钦,宋变兰,等.洞庭湖平原区土壤全磷含量地统计学和GIS分析[J ].中国农业科学,2005,38(6):1204 ~1212
    [84] 刘杏梅,徐建民,章明奎,等.太湖流域土壤养分空间变异特征分析—以浙江省平湖市为例[J].浙江大学学报:农业与生命科学版,2003,29(1):76~82
    [85] Goovaerts P. Geostatistics in soil science: state-of-the-art and perspectives. Geoderm, 1999,89:1~45
    [86] Trangmat B B,Yost R S, Wade M K et al. Spatial variation of soil properties and rice yield on recently cleared land. Soil Sci. Soc. Am,1987,51:668~674
    [87] Chien,YJ, Dar-Yuan LEE,Hong-Yuh Guo et al. Geostatistical annlysis of soil properties of Midwest Taiwan soil. Soil Science, 1997,162(4): 151~162
    [88] 杜荣骞.生物统计[ M] .北京:高等教育出版社1985.374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700