用户名: 密码: 验证码:
混凝土类材料冲击本构特性的SHPB技术及Lagrange反解法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对利用大直径Hopkinson压杆来获取混凝土本构关系时碰到的一系列问题,如横向惯性效应的修正和如何满足应力均匀性假定等,进行了系统的分析和阐述。在发现采用传统的SHPB技术难以对混凝土获得可靠的动态本构关系之后,发展了Hopkinson杆技术与改进的基于路径线法的Lagrange分析相结合的新方法来反解试样的本构关系,成功地获得了C30混凝土试样的在高应变率下的动态应力-应变关系,获得了令人满意的结果。
     本文第二章对SHPB试验中应力波传播的由于横向惯性引起的几何弥散效应进行了分析,并结合ANSYS数值计算对其准确性进行了验证,发现利用Fourier分析方法对Φ37mm杆中的脉冲波形进行谐波的频谱分析对于大直径杆中的弥散效应修正是行之有效的。同时还探讨了用BP神经网络方法来解决波的横向惯性效应修正的问题,发现通过ANSYS数值仿真技术与BP神经网络相结合,可以快速有效地同时解正问题和反问题。
     本文的第三章对SHPB试验中粘弹性材料的应力均匀性问题进行分析。发现与弹性试样的应力均匀性分析不同,粘弹性试样的应力均匀性过程既依赖于入射波的升时τ_s/t_L和波阻抗比R_i,也依赖于材料的松弛时间θ_2。进一步又对混凝土类材料作为脆性材料的脆性断裂前的应力均匀性问题进行了分析,发现以断裂应变ε_f=5‰为代表的脆性材料,非均匀阶段的应变可高达2.0~2.5‰,故传统的三波和两波法均难以获得可靠的应力-应变曲线。但应力均匀化后测得的动态断裂应力值是可靠的。
     鉴于传统的SHPB技术难以获得混凝土类脆性粘弹性材料可靠的动态应力-应变关系,我们另辟新径,在本文第四章发展了基于路径线的Lagrange反分析方法与Hopkinson杆技术结合的新方法。一方面通过Hopkinson杆实测试样边界处的应力和质点速度(相当于组合计),另一方面,在试样上不同拉氏位置处实测质点速度或应变波形,然后进行拉氏分析,分别称为“1sV+nV”法和“1sV+ne”法。数值试验表明可满意地得到各拉氏位置的应力-应变关系。本文还建立了拉氏分析结果与ZWT率型本构模型之间的定量关系。数值模拟结果表明,特别是对于ZWT线性粘弹性材料,由上述方法确定的本构参数相当理想。这为一大类遵循ZWT模型的率型材料(高聚物和混凝土类材料等)建立了一个由Hopkinson
The problems encountered in SHPB tests for concrete and concrete-like materials such as how to correct the transverse inertia effect of waves propagating in large diameter pressure bar and how to satisfy the stress uniformity requirement for SHPB specimens under impact loading, are systematically analyzed and discussed in this paper. The results show that the expected reliable dynamic constitutive relation is in fact difficult to be gotten by traditional SHPB technique when the test material is not only a visco-elastic but also a brittle one like concrete, so a new method combining the Hopkinson technique with the Lagrange analysis based on pathline method is proposed to determine the constitutive relationship of concrete-like materials, and thus the dynamic stress-strain relationship of concrete C30 at high strain-rates is successfully obtained.
    By using the Fourier transform, both the positive and inverse analyses for the wave dispersion due to transverse inertia effect in 037mm Hopkinson bar are presented in Chapter 2. This method is compared with and validated by ANSYS numerical calculations. Furthermore, a BP NN (back-propagation neural network) technique combined with ANSYS simulation is developed to correct the wave dispersion. It is found that such a new technique can also be used to resolve the positive and inverse problems, particularly for a given large diameter bar.
    In Chapter 3, the results of numerical analyses on stress uniformity of visco-elastic specimens reveal that the stress uniformity of visco-elastic specimens, different from that of elastic specimen in SHPB tests, is not only dependent on the rise-time τ_s/t_L of incident wave front and the wave impedance ratio Ri but also on the relaxation time θ_2. The stress uniformity of brittle concrete-like specimens whose fracture strain is e.g. ε_f=5‰, has been analyzed also in the chapter. It is found that the strain in non-uniformity stage is as larger as 2.0~2.5‰, so either the traditional three-wave method or the two-wave method is not able to provide reliable constitutive relationship again for concrete-like specimen, while the dynamic fracture strength could be credible if the fracture occurs after the stress uniformity is realized in
引文
1.陈惠发(美)著.土木工程材料的本构方程(第一卷 弹性与建模).华中科技大学出版社,2001.
    2.陈磊,李媛,陈太林,滕桃居.混凝土动态力学性能分析.建筑技术开发,2004,31(1):39-41.
    3 王永忠.C30混凝土在一维应力与PPR管约束下动态力学性能的研究.宁波大学硕士论文,2004.
    4. Han Zhao. A study on Testing Techniques for Concrete-like Materials under Compressive Impact Loading. Cement and Concrete Composites, 1998, 20:293-299.
    5. Q.M.Li, H. Meng. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solids and Structures, 2003, 40:343-360.
    6. SL203-97.水工建筑物抗震设计规范[S].中华人民共和国水利部发布,1997.
    7. 王礼立.分离式Hopkinson杆技术与反分析.第三届全国爆炸力学实验技术学术会议论文集,2004.
    8. Kolsky, H,, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Phys. Soc., 1949, B62: 676.
    9. Gong J. C., Malvern L. E.. Passively Confined Tests of Axial Dynamical Compressive Strength of Concrete [J].Experimental Mechanics, 1990, 3:55-59.
    10. Tang, T., Malvern, L.E. & Jenkins, D.A., Dispersion investigation in the split Hopkinson pressure bar. J. Engng. Mech., 1992, 118: 108-124.
    11. J. R. Klepaczko, A. Brara. An experimental method for dynamic tensile testing of concrete by spalling. International Journal of Impact Engineering. 2001,25:387-409.
    12. A Brara, F. Camborde, J.R.Klepaczko, C. Mariotti. Experimental and numerical study of concrete at high strain rates in tension. Machanics of Materials.2001, 33: 33-45.
    13. A Brara, J. R. Klepaczko. Experimental characterization of concrete in dynamic tension. Mechanics of Materials. 2006, 38: 253-267.
    14. Harald Schuler, Christoph Mayrhofer, Klaus Thoma. Spall experiments for the measurement of the tensile strength and fracture energy of concrete at high strain rates. International Journal of Impact Engineering. 2006, 32: 1635-1650.
    15. Gerard Gary, Patrice Bailly. Behaviour of quasi-brittle material at high strain rate. Experiment and modelling. Eur.J.Mech.A/Solids, 1998, 17(3): 403-420.
    16. Nicolas Burlion, Fabrice Gatuingt, Gills Pijaudier-Cabot, Laurent Daudeville. Compaction and tensile damage in concrete: constitutive modelling and application to dynamics. Comput.Methods Appl. Mech. Engrg., 2000, 183:291-308.
    17. D.L.Grote, S.W.Park, M. Zhou. Dynamic behavior of concrete at high strain rates and pressures: Ⅰ. experimental characterization. International Journal of Impact Engineering. 2001, 25: 869-886.
    18. Patricia Verleysen, Joris Degrieck. Non-homogeneous and multi-axial stress distribution in concrete specimens during split Hopkinson tensile tests. Computers and Structures. 2000, 77:669-676.
    19. Harmon Thomas G, Ramakrishnam S, Wang E H. Confined Concrete Subjected to Uniaxial Monotonic loading [J]. J ofEng Mech, 1998, 12: 1303-1309.
    20.姜锡权.水泥砂浆静动态力学行为及短纤维增强性能研究.中国科技大学博士学位论文.
    21.陈江瑛.水泥砂浆动态力学性能研究.浙江大学硕士论文.1997.
    22.陈叶青.拉氏分析方法及强动载荷下水泥石的本构关系.铁道科学研究院博士论文.1994.
    23.施绍裘,李大红,王礼立等.水泥砂浆在一维应变强动载荷下计及内部损伤的冲击绝热关系的研究.爆炸与冲击.1999,19增刊:73-76.
    24.唐志平,胡晓军,寥香丽,奉孝中.双磁场IMPS粒子速度测试系统.实验力学,2000,15(1):15-21.
    25.施绍裘.陈江瑛.李大红,王礼立.水泥砂浆石在准一维应变下的动态力学性能研究.爆炸与冲击.2000,20(4):326-332.
    26.施绍裘,王礼立.水泥砂浆石在一维与准一维应变状态下动态力学响应的比较和讨论.岩石力学与工程学报.2001,20(3):327-331.
    27.陈大年,S.T.S.Al-Hassani,尹志华,俞宇颖,沈雄伟.混凝土的冲击特性描述.爆炸与冲击,2001,21(20):89-97.
    28.王道荣,胡时胜.冲击载荷下混凝土材料的动态本构关系.爆炸与冲击.2002,22(3):242-246.
    29.王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究.岩石力学与工程学报.2003,22(2):223-226.
    30.巫绪涛,胡时胜,陈德兴,余泽清.钢纤维高强混凝土冲击压缩的试验研究.爆炸与冲击.2005,25(2):125-131.
    31. Hirotsugu Inoue, John J Harrigan and Stephen R Reid. Review of inverse analysis of indirect measurement of impact force [J]. Appl. Mech. Rev., 2001, 54(6):503-524.
    32.王从约,夏源明.圆杆中弹性应力波的傅立叶弥散分析[J].爆炸与冲击,1998,18(1):1-7.
    33.王从约,夏源明.傅立叶弥散分析在冲击拉伸和冲击压缩试验中的应用[J].爆炸与冲击,1998,18(3):213-219.
    34. Han Zhao & Gerard Gary, On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains. Int. J. Solids Structures. 1996, 33(23): 3363-3375.
    35.卢静涵,沈建虎,赵隆茂.反分析法在结构冲击动力响应实验中的应用[J].爆炸与冲击,2004,24(2):140-144.
    36. Enboa Wu, Cheng-Zom Tsai and Ling-Hsien Tseng. A deconvolution method for force reconstruction in rods under axial impact [J]. J. Acoust. Soc. Am., 1998,104(3): 1418-1426.
    37.卢静涵,赵隆茂,杨桂通.反分析法在金属多孔材料动态性能实验中的应用[J].爆炸与冲击,2003,23(增刊):205-206.
    38.朱珏,胡时胜,王礼立.37mm分离式Hopkinson压杆中波的传播与反分析.第三届全国爆炸力学实验技术交流会论文集,2004,P260-266.
    39. Yang L. M., Shim V. P. W. An analysis of stress uniformity in split Hopkinson bar test specimens. International Journal of Impact Engineering, 2005, 31 (2): 129-150.
    40. Song Bo, Chen Weinong. Split Hopkinson Pressure Bar Techniques for Characterizing Soft Materials. Latin American Journal of Solids and Structures, 2005, 2:113-152.
    41.周风华,王礼立,胡时胜.有机玻璃在高应变率大变形下的非线性粘弹性及损伤破坏性能研究[D].中国科学技术大学研究生毕业论文,合肥,1990.
    42. Zhou Fenghua, Wang Lili, Hu Shisheng. On the Effect of Non-uniformity in Polymer Specimen of SHPB Tests. Journal of Experimental Mechanics, 1992, 7(1):23-29.
    43. R.Fowles and R.F.Williams,Plane Stress Wave Propagation in solids. J.Apl.Phys. 1970, 41: 360.
    44. R.Fowlse. Conservation Relations for Spherical and Cylindrical Stress Wave. J.Appl.Phys. 1970, 41:2740.
    45. M.Cowperthwaite, R.F.Williams. Determination of Constitutive Relationships with Mutiple Gauges in Nondivergent Wave. J.Appl.Phys. 1971, 42:456.
    46.赖华伟,王礼立.基于质点速度测量的拉格朗日分析方法的重新认识与改进.第12届全国高压学术讨论会,安徽黄山,2004,P132.(详见赖华伟.拉格朗日分析方法的研究及其在率型材料中的应用.宁波大学硕士论文,2004.)
    47. Grady D E. Experimental Analysis of Spherical Wave Propagation. J.Geo.Res.. 1973, 78:1299.
    48, Seaman L. Lagrange Analysis for Multiple Stress or Velocity Gages in Attenuating Waves. J Appl. Phys.. 1974, 45:4303.
    49.陈叶青.拉格朗日分析方法研究现状及应用中应注意的问题.爆炸与冲击.1998,18(1):91-96.
    50.寇绍全.波动问题的一个逆问题——从测得的应变波形建立材料的应力—应变—应变率关系.爆炸与冲击,1983,3(1):44-51.
    51.浣石等.准一维拉氏分析方法及其在凝聚炸药冲击波起爆研究中的应用.爆炸与冲击.1990,10(1):1.
    52.李孝兰.对一组有机玻璃粒子速度测量波形的拉格朗日分析.爆炸与冲击.1985,5(4):45.
    53.白春华.研究工程材料冲击动态性能的新方法.第4届全国爆炸力学会议论文集.1990.
    54.柴华友,唐志平.材料动态性能研究中的拉格朗日分析方法.中国科学技术大学学报,1990.20:48-55.
    55.柴华友,唐志平.拉格朗日分析在一维杆波研究中的应用.中国科学技术大学学报,1991,21(3):97-103.
    56.柴华友,唐志平.曲面拟和在拉格朗日反分析方法中应用的探讨.爆炸与冲击.1992, 12(3):259-269.
    57.柴华友,唐志平.拉格朗日反分析方法误筹分析.爆炸与冲击.1994,14(4):332-341.
    58.乔河,柴华友.爆炸怍用下花岗岩动态本构关系试验研究.岩石力学与工程学报.1996,15:446-451.
    59.陈叶青,丁亚伦,冯叔瑜.用拉格朗日分析方法研究水泥石的动态力学性能.北京科技大学学报.1996,18(4):305-310.
    60.张振宇,浣石,卢芳云,刘吉平.高能炸药爆轰波反应区流场的拉格朗日分析方法.爆炸与冲击.1996,16(3):271-277.
    61.尚嘉兰,沈乐天,赵字辉,赵坚.Bukit Timah花岗岩的动态本构关系,岩石力学与工程学报.1998,17(6):634-641.
    62.尚嘉兰,白以龙,徐素珍,蔡小烨.由Lagrange实验得到酚醛玻璃钢的动态本构方程.科学通报.1999,44(18):1942-1947.
    63.于滨,刘殿书,乔河,王树仁.爆炸载荷下花岗岩动态本构关系的试验研究.中国矿业大学学报.1999,28(6):552-555.
    64.吴文,徐松林,杨春和,白世伟,郑发金.岩盐冲击过程本构关系和状态方程研究.岩石工程学报.2004,26(3):367-372.
    65.蒋国平.非均质凝聚炸药二维冲击起爆实验与Lagrange分析研究.湖南大学硕士学位论文,2005.
    66.蒋国平,浣石.小隔板试验冲击起爆和熄灭流场的实验与Lagrange分析.爆炸与冲击.2005,25(5):472-476.
    67.张磊.胡时胜,梁宗宪.利用拉氏分析研究冲击载荷下混凝土应力-应变关系.工程力学.2005,22(4):163-166.
    68.商霖,宁建国.强冲击载荷下混凝土动态本构关系.工程力学.2005,22(2):116-119,78.
    69. Ludovic Jason, Antonio Huerta, Gilles Pijaudier-Cabot, Shahrokh Ghavamian. An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model. Computer Methods in Applied Mechanics and Engineering. 2005. Article in press.
    70.杜成斌,苏擎柱.混凝土材料动力本构模型研究进展.世界地震工程.2002,18(2):94-98.
    71. Rosen Tenchev, Phil Purnell. An application of a damage constitutive model to concrete at high temperature and prediction ofspalling. 2005, 42: 6550-6565.
    1. Kolsky, H. An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading [J]. Proc. Phys. Soc., 1949, B62: 676-700.
    2. Hirotsugu Inoue, John J Harrigan and Stephen R Reid. Review of inverse analysis of indirect measurement of impact force [J]. Appl. Mech. Rev., 2001, 54(6):503-524.
    3.王从约,夏源明.圆杆中弹性应力波的傅立叶弥散分析[J].爆炸与冲击,1998,18(1):1-7.
    4.王从约,夏源明.傅立叶弥散分析在冲击拉伸和冲击压缩试验中的应用[J].爆炸与冲击,1998,18(3):213-219.
    5.卢静涵,沈建虎,赵隆茂.反分析法在结构冲击动力响应实验中的应用[J].爆炸与冲 击,2004,24(2):140-144.
    6. Enboa Wu, Cheng-Zom Tsai and Ling-Hsien Tseng. A deconvolution method for force reconstruction in rods under axial impact [J]. J. Acoust. Soc. Am., 1998, 104 (3):1418-1426.
    7.卢静涵,赵隆茂,杨桂通.反分析法在金属多孔材料动态性能实验中的应用[J].爆炸与冲击,2003,23(增刊):205-206.
    8.朱珏,胡时胜,王礼立.37mm分离式Hopkinson压杆中波的传播与反分析.第三届全国爆炸力学实验技术交流会论文集,2004:260-266.
    9.胡时胜,王礼立.一种用于材料高应变率试验的装置.振动与冲击,1986,1:40-47.
    10.王礼立.应力波基础(第2版).国防工业出版社出版,北京,2005.
    11. Klepaczko, J.R., Brara, A.. An experimental method for dynamic tensile testing of concrete by spalling [J]. Int. J. Impct Eng., 25(2001):387-409.
    12.王礼立.分离式Hopkinson杆技术与反分析.第三届全国爆炸力学实验技术交流会论文集,2004,P1-6.
    13. Marie-Noelle Bussac, Pierre Collet, Gerard Gary, Ramzi Othman. An optimization method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements. Application to elastic or viscoelastic bars. Journal of the Mechanics and Physics of Solids, 2002, 20: 321-349.
    14. Marie-Noelle Bussac, Pierre Collet, Gerard Gary, Ramzi Othman. An optimization method for separating and rebuilding one-dimensional dispersive waves from multi-point measurements. Application to elastic or viscoelastic bars. Journal of the Mechanics and Physics of Solids, 2002, 50:321-349.
    15.黄忠霖,黄京.MATLAB符号运算及其应用.国防工业出版社,北京,2004.
    16. Wang Yong-gang, Wang Li-li. Stress Wave Dispersion in Large-Diameter and Its Manifold Manifestations [J]. Journal of Beijing Institute of Technology, 2004, 13(3):247-253.
    17. Chen W, Zhang B, Forrestal M J. A Spilt Hopkinson Bar Technique for Low-impedance Materials. Experimental Mechanics, 1999, 39(1): 81-85.
    18. Song Bo, Chen Weinong. Split Hopkinson Pressure Bar Techniques for Characterizing Soft Materials. Latin American Journal of Solids and Structures, 2005, 2:113-152.
    19.周风华,王礼立,胡时胜.有机玻璃在高应变率大变形下的非线性粘弹性及损伤破坏性能研究[D].中国科学技术大学研究生毕业论文,合肥,1990.
    20.周风华,,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J].爆炸与冲击,1992,12(4):333-342.
    21.王礼立,施绍裘,陈江瑛,黄得进.ZWT非线性热粘弹性本构关系的研究与应用[J].宁波大学学报(理工版)增刊,2000,13:141-149.
    22. Wang L.L., Shi S.Q., Chen J.Y., Huang D.J. and Shen L. J.. Influences of Strain-Rate and Stress-State on Dynamic Response of Cement Mortar [J]. International Journal of Structural Stability and Dynamics, 2003, 3(3):419-433.
    23.王永忠.C30混凝土在一维应力与PPR管约束下动态力学性能的研究.宁波大学硕士论文(导师:施绍裘、王礼立),2004年.
    24.徐明乔,施绍裘,王礼立,BP神经网络与SHPB技术用于高聚物冲击力学响应的研究,中南工业大学学报(自然科学版),v.32,冲击动力学论文专辑(2001),147-150。
    25. Xu Mingqiao, Shi Shao-qiu, Wang Lili (Li-Lih WANG), Study on Dynamic Behavior and Damage Evolution of Polymers under High Strain Rates, International Symposium on Macro-, Meso-, Micro- and Nano-Mechanics of Materials, 8-10 Dec., 2003, Hong Kong, 201-202.
    26.闻新,周露,李翔,张宝伟.Matlab神经网络仿真与应用.科学出版社,北京,2003.
    1. Kolsky H. An Investigation of the Mechanical Properties of materials at Very High Rates of Loading. Proc. Phys. Soc., London, 1949, B62:676-700.
    2. Kolsky H. Stress Wave in Solids. Oxford: Clarendon Press, 1953.
    3.王礼立.应力波基础(第2版).国防工业出版社出版,北京,2005.
    4. Yang L. M., Shim V. P. W. An analysis of stress uniformity in split Hopkinson bar test specimens. International Journal of Impact Engineering, 2005, 31(2): 129-150.
    5.周风华,王礼立,胡时胜.有机玻璃在高应变率大变形下的非线性粘弹性及损伤破坏性能研究[D].中国科学技术大学研究生毕业论文,合肥,1990.
    6. Zhou Fenghua, Wang Lili, Hu Shisheng. On the Effect of Non-uniformity in Polymer Specimen of SHPB Tests. Journal of Experimental Mechanics, 1992, 7(1): 23-29.
    7. Song Bo, Chen Weinong. Split Hopkinson Pressure Bar Techniques for Characterizing Soft Materials. Latin American Journal of Solids and Structures, 2005, 2:113-152.
    8. Tang Zhiping, Tian Lanqiao, Chu Chao-Hsiang and Wang Lili, Mechanical Behavior of Epoxy Resin under High Strain Rates, Proc. 2nd Nat. Conf. Explosive Mechanics, Yangzhou, China, 1981, pp. 4-1-12.
    9.王礼立,杨黎明.一类固体高聚物材料的非线性粘弹性本构关系.王礼立,余同希,李永池.冲击动力学进展.合肥:中国科学技术大学出版社,1992,p.88.
    10. Wang Lili, Labibes K., Azari Z. et al., Generalization of Split Hopkinson Bar Technique to Use Viscoelastic Bars. International Journal of Engineering, 1994, 15:669-686.
    11.王礼立,施绍裘,陈江瑛,黄德进ZWT非线性热粘弹性本构关系的研究与应用[J].宁波大学学报(理工版)增刊.2000,13:141-149
    12. Ravichandran G, Subhash G... Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. Journal of American Ceramic Society. 1994, 77: 263-267.
    13. Zencker U., Clos R.. Limiting conditions for compression testing of flat specimens in the split Hopkinson pressure bar. Experimental. Mechanics, 1999, 39: 343-348.
    14. L.L. Wang, S.Q. Shi, J.Y. Chen, D.J. Huang and L.J. Shen. Influences of Strain-Rate and Stress-State on Dynamic Response of Cement Mortar. International Journal of Structural Stability and Dynamics. 2003, 3(3): 419-433.
    15.胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系.爆炸与冲击.2002,22(3):242-246.
    16.王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究.岩石力学与工程学报.2003,22(2):223-226
    17.刘剑飞,胡时肚,胡元育,赵坚.花岗岩的动态压缩实验和力学性能研究.岩石力学与工程学报,2000,19(5):618-621.
    18. J. R. Klepaczko, A. Brara. An experimental method for dynamic tensile testing of concrete by spalling. International Journal of Impact Engineering. 2001, 25: 387-409.
    19.唐志平,王礼立.SHPB实验的电脑化数据处理系统.爆炸与冲击.1986,6(4):320-327.
    20.赖华伟,王礼立.拉格朗日分析方法的研究及其在率型材料中的应用.宁波大学研究生毕业论文,2004.
    21.赵红平,叶琳,陆中琪.PVDF压电薄膜在应力波测量中的应用.力学与实践.2004,26:37-41.
    22.席道瑛,郑永来.PVDF压电计在动态应力测量中的应用.爆炸与冲击.1995,15(2):174-179.
    23.席道瑛,郑永来,张涛.大理石和砂岩动态本构的实验研究.爆炸与冲击.1995,15(3):259-266.
    24.刘剑飞,胡时胜.PVDF压电计在低阻抗介质动态力学性能测试中的应用.爆炸与冲击,1999,19(3):229-234.
    25.王永刚,施绍裘,王礼立.低阻抗多孔材料动态弹性模量和剪切模量实验标定.宁波大学学报(理工版),2002,15(4):22-26.
    26.王永刚,胡时胜,王礼立.爆炸载荷下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究.爆炸与冲击,2003,23(6):516:522.
    27.马秀娟.柔性圆环动态响应的研究.宁波大学硕士论文,2006.
    1.王礼立,《应力波基础》,国防工业出版社出版,北京,1985.
    2.王礼立,G.Pluvinage,K.Labibes.冲击载荷下高聚物动态本构关系对粘弹性波传播特性的影响.宁波大学学报,1995,8(3).
    3. R. Fowles and R. F.Williams, Plane Stress Wave Propagation in solids. J.Appl.Phys. 1970, 41: 360.
    4. R. Fowles. Conservation Relations for Spherical and Cylindrical Stress Wave. J.Appl.Phys. 1970, 41: 2740.
    5. M.Cowperthwaite, R.F.Williarns. Determination of Constitutive Relationships with Mutiple Gauges in Nondivergent Wave. J.Appl.Phys. 1971, 42: 456.
    6. Grady D E. Experimental Analysis of Spherical Wave Propagation. J.Geo.Res.. 1973, 78: 1299.
    7. Seaman L. Lagrange Analysis for Multiple Stress or Velocity Gages in Attenuating Waves. J Appl. Phys., 1974, 45: 4303.
    8. Seaman L. Lagrangian Analysis for Stress and Particle Velocity Gauges (Technical Report No. PU-6391). USA: SR I Int, 1984.
    9. Aidun John Bahrain. Study of Shear and Compression Waves in shocked calcium carbonate. PhD Dissertaion of Washington State university, 1989.
    10.柴华友,唐志平.曲面拟和在拉格朗日反分析方法中应用的探讨.爆炸与冲击.1992,12(3):259-269.
    I1. Gupta Y M. High Strain-rate Shear Deformation of Polyurethane Elastomer Subjected to Impact Loading. Polym Engrg Sci, 1984, 24: 851.
    12.陈叶青.拉格朗日分析方法研究现状及应用中应注意的问题.爆炸与冲击.1998,18(1):91-96.
    13.李孝兰.对一组有机玻璃粒子速度测量波形的拉格朗日分析.爆炸与冲击.1985,5(4):45.
    14.柴华友,唐志平.拉格朗日分析在一维杆波研究中的应用.中国科学技术大学学报,1991,21(3):97-103.
    15.柴华友,唐志平.材料动态性能研究中的拉格朗日分析方法.中国科学技术大学学报,1990.20:48-55.
    16. C. A. Forest, J. Wackerle, J. J. Dick. Lagrangian Analysis of MIV Gauge Experiments on PBX 9502 Using the Mass Displacement Moment Function. Proceedings of the 9th International Symposium on Detonation. Porland, 1989: 683-692.
    17.寇绍全.波动问题的一个逆问题——从测得的应变波形建立材料的应力—应变—应变率关系.爆炸与冲击,1983,3(1):44-51.
    18.浣石等.准一维拉氏分析方法及其在凝聚炸约冲击波起爆研究中的应用.爆炸与冲击.1990,10(1):1.
    19.白春华.研究工程材料冲击动态性能的新方法.第4届全国爆炸力学会议论文集.1990.
    20.柴华友,唐志平.拉格朗日反分析方法误差分析.爆炸与冲击.1994,14(4):332-341.
    21.乔河,柴华友.爆炸作用下花岗岩动态本构关系试验研究.岩石力学与工程学报.1996,15:446-451.
    22.陈叶青,于亚伦,冯叔瑜.用拉格朗日分析方法研究水泥石的动态力学性能.北京科技大 学学报.1996,18(4):305-310.
    23.陈叶青,冯叔瑜.拉格朗日分析方法研究现状及应用中应注意的问题.爆炸与冲击.1998,18(1):91-96.
    24.张振宁,浣石,卢芳云,刘吉平.高能炸药爆轰波反应区流场的拉格朗日分析方法.爆炸与冲击.1996,16(3):271-277.
    25.尚嘉兰,沈乐天,赵宁辉,赵坚.Bukit Timah花岗岩的动态本构关系.岩石力学与工程学报.1998,17(6):634-641.
    26.尚嘉兰,白以龙,徐素珍,蔡小烨.由Lagrange实验得到酚醛玻璃钢的动态本构方程.科学通报.1999,44(18):1942-1947.
    27.于滨,刘殿书,乔河,王树仁.爆炸载荷下花岗岩动态本构关系的试验研究.中国矿业大学学报.1999,28(6):552-555.
    28.吴文,徐松林,杨春和,白世伟,郑发金.岩盐冲击过程本构关系和状态方程研究.岩石工程学报.2004,26(3):367-372.
    29.赖华伟,王礼立.基于质点速度测量的拉格朗日分析方法的重新认识与改进.第12届全国高压学术讨论会,安徽黄山,2004:132.(详见赖华伟.拉格朗日分析方法的研究及其在率型材料中的应用.宁波大学硕士论文,2004.)
    30.蒋国平.非均质凝聚炸药二维冲击起爆实验与Lagrange分析研究.湖南大学硕士学位论文,2005.
    31.蒋国平,浣石.小隔板试验冲击起爆和熄灭流场的实验与Lagrange分析.爆炸与冲击.2005,25(5):472-476.
    32.张磊,胡时胜,梁宗宪.利用拉氏分析研究冲击载荷下混凝土应力.应变关系.工程力学.2005 22(4):163-166
    33. R.Fowles. Experimental Technique and Instnmention. "Dynamic Response of Materials to Intense Impulsive Loading". P.C. Chou and A.K. Hopkins (eds.), 1973: 416.
    34.周培基,A.K.霍普肯斯,《材料对强冲击载荷的动态响应》,科学出版社,北京,1986.
    35. Tang Zhiping, Tian Lanqiao, Chu Chao-Hsiang and Wang Lili, Mechanical Behavior of Epoxy Resin under High Strain Rates, Proe. 2nd Nat. Conf. Explosive Mechanics, Yangzhou, China, pp. 4-1-12, 1981.
    36. Wang Lili and Yang Liming, A Class of Nonlinear Viscoelastic Constitutive Relation of Solid Polymeric Materials, in Wang Lili, Yu Tongxi and Li Yongehi, eds. Progress in Impact Dynamics, The Press of China University of Science and Technology, Hefei, China, 1992: 88.
    37. Ripperger E A and Yeakley L M. Experimental Mechanics, 1963, 3.
    38. Malven L E. Experimental Mechanics, 1969: 255-262.
    39.奉孝中,杨继跃.应力波杆中传播质点速度的磁电测量方法.中国科学技术大学报.1990,Vol.20.
    40.唐志平,胡晓军,廖香丽,奉孝中.双磁场IMPS粒子速度测试系统.2000,25(1):15-21.
    41.贾瑞皋,薛庆忠.《电磁学》.高等教育出版社,北京,2003.
    42.张玉民,戚伯云.《电磁学》.中国科学技术大学出版社,合肥,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700