用户名: 密码: 验证码:
智能水下机器人水下管道检测与跟踪技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着资源不断消耗,人口激增,海洋研究和开发逐渐成为人类赖以生存新的发展空间,因此作为海洋探测重要组成部分的水下机器人得到广泛的应用。智能水下机器人技术是水下机器人系统研究的热点领域,开展智能水下机器人基于视觉的目标探测与跟踪技术研究,也是实现水下机器人在恶劣且复杂多变的环境中进行水下侦查、作业的关键技术之一。
     本文主要目标是研究水下机器人实时水下管道检测与跟踪系统。论文以单目CCD摄像机为主要视觉传感器,利用视觉系统测量方法得到水下管道的导航信息,并在此基础上建立了一个用于水下机器人的水下管道检测与跟踪系统。具体研究内容如下:
     1.简要回顾了基于视觉的水下机器人水下管道检测与跟踪系统在国内外的研究发展现状,指出了当前利用水下机器人进行水下管道检测与跟踪技术的研究难点和研究新方向。
     2.按照数据结构的抽象程度,将系统中传递的数据信息分为由低至高6个层次,详细描述了各层次内容。提出了视觉系统设计的总体内容,设计水下机器人管道检测与跟踪系统的体系结构,并对单目视觉系统进行构建和分析。
     3.在图像处理层,对水下成像进行了简要的分析,并且针对水下图像的特点,以及水下机器人实时性和管道检测的准确性要求,介绍了几种比较简单和高效的改进图象处理算法,来降低水下成像造成影响。
     4.在图像解释层的,针对水下图像的特点,构造离散情况下具有不变性的矩特征方法。并结合神经网络理论,提出了两种具有全局搜索能力的水下目标识别方法:用于目标识别的免疫遗传神经网络的结构、建模和基于超香肠神经网络的识别学习分类决策机制。为了提高系统的准确性和实时性,采用了基于动态窗口技术和基于Kalman滤波数据关联和状态更新的水下管道检测算法。
     5.在环境理解层,对摄像机的标定方法、原理进行简单介绍与分析。应用摄像机透视投影成像原理,通过坐标变换推导出结构光视觉传感器的模型,建立水下管道的图像平面坐标系与水底平面坐标间的射影变换关系。
     6.在决策规划与运动控制层,主要解决了水下机器人运动控制与决策规划的协调合作问题。根据从环境理解层获得的水下管道导航信息、自身运动信息通过一定的算法来产生机器人动作序列,并通过智能运动控制算法计算得到机器人各个自由度执行机构所应该提供的推力,并完成管道检测与跟踪的工作任务。
     最后,通过仿真和水池试验,对论文提出的算法进行验证,试验结果表明,基于以上算法的程序能够满足跟踪系统的实时性要求,而且针对水下管道检测与跟踪任务,本论文所提方法的有效性和可行性。
In recent years, with the substantial consume of energy sources and increase of population, ocean research and exploitation gradually become the new development space of people surviving. So AUV (autonomous underwater vehicle) has been widely applied as an important component of ocean high-tech. The intelligent AUV technique is also a pop research area of AUV system, and vision based recognition and track is one of key technologies of AUV patroling and working in the complexities and uncertainties of underwater environments.
     The main prupose of this paper is to carry out with a real-time underwater pipeline detecion and track system for AUV. Taking monocular CCD (charge coupled device) camera as a vision sensor, the navigation information of underwater pipelines can be acquired by vision-measuring method. On this basis, an underwater pipeline detection and track system for AUV is constructed. The detailed content as follows:
     1. Give a brief overview to the development, applications and research status of the vision based underwater pipeline detection and track system for AUV in and out side of the country. Point out the difficites and new research directions in current underwater pipeline detection and track system for AUV research area.
     2. According to the abstract degree of data structure, the data information transferred in this system can be divided into six hierarchies from low to high. Information in each hierarchy is described. The general content of vision system is proposed and the system architecture of underwater pipeline detection and track system for AUV is designed, also a monocular vision hardware and software system is developed.
     3. In the layer of image processing, the underwater image-forming are briefly analyzed. According to the analysis of underwater imaging and improve the accuracy and real-time performace of this system, then some simpe and high efficient improved image processing methods are put forward.
     4. In the layer of explation, according to the underwater imaging, the affine invariants based on region moments are constructed. Based on neural network theory, then two new methods of underwater objects recognition with global searching ability are proposed. Structure and modeling of the immune genetic neural network (IGNN) applied to target recognition. In order to improve the accuracy and real-time performace of this system, the detection method based on dynamic window technology and kalman filter for pipeline datas association are applied.
     5. In the layer of environmental insight, the methods and foundation of camera calibration are introduced and analyzed. The model of a vision sensor based on structured light is constructed with perspective imaging and coordinatie transform principle.The projective relation between pipelines'image plane coordinate system and submarine plane coordinatie system are constructed.
     6. In the layer of AUV decision plan and motion control, coordinates the behavior of motion controller and the decision plan are solved. According to the nacigational information of underwater pipeline from layer of environmental insight and motion information of AUV, some motion sequences of AUV are generated. The thrust force of ever degree executing unit also could be computed by intelligent motion controller algorithms to fulfil the task of underwater pipeline detection and track.
     Finally, the proposed algorithm is validated by the AUV trail simulation and pool experiment. The experimental results showe that the procedure based on the above algorithm can perform the real-time track system, and these methods proposed are feasible and effective for the task of pipeline detection and track.
引文
[1]贾云得.机器视觉.北京:科学出版社,2002
    [2]郑南宁.计算机视觉与模式识别.北京:国防工业出版社,1998
    [3]马颂德,张正友.计算机视觉.北京:科学出版社,1998
    [4]李介谷.计算机视觉的理论与实践.上海:上海交通大学出版社,1991
    [5]朱炜.基于粒子群的水下图像分割与识别技术研究.哈尔滨工程大学博士学位论文.2008
    [6]刘阳.基于粒子滤波的机器人视觉跟踪研究与实现.大连理工大学硕士学位论文.2007
    [7]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报,2006,1(1):9-16页
    [8]施生达.潜艇操纵性.北京:国防工业出版社,1995
    [9]Adam J A. Probing beneath the sea. IEEE Spectrum,1985,22(4):55-64P
    [10]唐旭东.长航程潜水器的运动控制.哈尔滨工程大学硕士学位论文.2008
    [11]朱继懋.潜水器设计.上海:上海交通大学出版社,1992
    [12]刘学敏.水下机器人运动控制系统的信息融合技术研究.哈尔滨工程大学博士学位论文.2001
    [13]Chen C, ed. A study on underwater cable automatic recognition using hough transformation//MVA'94:IAPR Workshop on Machine Vision Applications. Tokyo, Japan:University of Tokyo,1994:532-535P
    [14]Ortiz A ed. A vision system for an underwater cable tracker. Machine Vision and Applications,2002,13(3):129-140P
    [15]燕奎臣,刘爱民,牛德林.AUV自动跟踪水下管道的试验研究.机器人,2000,22(1):33-38页
    [16]吕春旺.海底管道的自主探测与识别技术研究.哈尔滨工程大学硕士学位论文.2007
    [17]Yu S C. Development of real-time acoustic image recognition system using by autonomous marine vehicle. Ocean Engineering,2008,35(1):90-105P
    [18]Park J Y ed. Experiments on vision guided docking of an autonomous underwater vehicle using one camera. Ocean Engineering,2009,36(1):48-61P
    [19]唐旭东,朱炜,庞永杰,等.水下机器人光视觉目标识别系统.机器人,2009,31(2):171-178页
    [20]唐旭东,庞永杰,张赫,等.基于单目视觉的水下机器人管道检测.机器人,2010,32(5):592-600页
    [21]Bickham K L. Tests Evaluate Equipment to Locate Subsea Lines Oil Gas J,1988, 86(23)
    [22]Courtney J W ed. Robot guidance using computer vison. Pattern Recognition, 1984,17(8):585-592P
    [23]田华,蒋慰孙.机器人规划系统.上海:上海化工学院自动化研究所.1996:10-12页
    [24]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策,2002,17(4):385-464页
    [25]孙增圻,严隽薇,钱宗华.机器人智能控制.山西:山西教育出版社,1995:50-55页
    [26]唐旭东,庞永杰,李晔.一种水下机器人运动的过程神经元控制.控制理论与应用,2009,26(4):420-424页
    [27]唐旭东,庞永杰,李哗,等.基于混沌过程神经元的水下机器人运动控制方法.控制与决策,2010,25(2):213-217页
    [28]Gan Y ed. Parallel Neural Network Based Motion Controller for Autonomous Underwater Vehicle. China Ocean Engineering,2005,19(3):485-496P
    [29]Roberto C ed. Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane. IEEE Journal of Oceanic Engineering,1990,15(3):152-160P
    [30]王彬.水下图像增强算法的研究.中国海洋大学硕士学位论文,2008
    [31]McGlamery B L. A computer model for underwater camera system. Proceedings of SPIE,1979,208:221-231P
    [32]Webster M. The art and technique of underwater photography. Surray. Fountain Press,1998:19-22P,33-39P,146-149P
    [33]孙传东,陈良益,高立民,等.水的光学特性及其对水下成像的影戏那个.应用光学,2000,21(4):39-46页
    [34]佘宇挺.水下微光成像技术与系统研究.南京理工大学硕士学位论文,2007
    [35]蓝国宁,李建,籍芳.基于小波的水下图像后向散射噪声去除.海洋技 术,2010,29(2):43-47页
    [36]何炜.基于Daubechies小波的水下图像去噪方法研究.哈尔滨工程大学硕士学位论文,2006
    [37]何斌,马天予,王云坚,等.Visual C++数字图像处理.北京:人民邮电出版社,2001
    [38]阮秋琦.数字图像处理学.北京:电子工业出版社,2001
    [39]高文,陈熙霖.计算机视觉——算法与系统原理.北京:清华大学出版社,广西科学技术出版社,2000:219-251页
    [40]冈萨雷斯.数字图像处理(第二版).北京:电子工业出版社,2003
    [41]艾海舟,武勃.图像处理、分析与机器视觉.北京:人民邮电出版社,2003
    [42]Sahasrabudhe S C ed. A Valley-seeking Threshold Selection Technique. Computer Vision and Image Processing, Academic Press,1992:55-65P
    [43]李刚.数字图像的模糊增强方法.武汉理工大学硕士学位论文,2005
    [44]Zadeh L A. Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications,1968,23(10):421-427P
    [45]Pal S K ed. On Edge Detection of X-Ray Images Using Fuzzy Sets. IEEE Trans. Patt. Anal and MachineIntell,1983, PAMI-5(1):69-77P
    [46]Russo F. An image enhancement technique combining sharpening and noise reduction. IEEE Transactions on Instrumentation and Measurement, 2002,51(4):824-828P
    [47]王保平.基于模糊熵的自适应图像多层次模糊增强算法.电子学报,2005,33(4):730-734页
    [48]王晖,张基宏.图像边缘检测的区域对比度模糊增强算法.电子学报,2000,28(1):45-47页
    [49]Pal S K, King R A. Image Enhancement Using Fuzzy Sets. Electron. Lett, 1980,16(9):376-378P
    [50]Han J, Ma K K. Fuzzy color histogram and its use in color image retrieval. IEEE Transactions on Image Processing,2002,11 (8):944-952P
    [51]Monteil J, Beghdadi A. New interpretation and improvement of the nonlinear anisotropic diffusion for image enhancement. IEEE Traps Pattern Analysis and machine Intelligence,1999,21 (9):940-946P
    [52]Kohl T R, Vision Tutor Lab Guide, Amerinex Artificial Intelligence. Inc. Massachusetts,1992
    [53]曾明,张建勋,等.基于视觉特征和复杂度加权处理的图像增强新算法.光电子激光,2005,16(3):363-367页
    [54]Cheng H D, Xue M, Shi X J. Contrast enhancement based on a novel homogeneity measurement. Pattern Recognition,2003,36:2687-2697P
    [55]孙淑绒.基于熵的深海资源图像处理算法研究与应用.中南大学硕士学位论文,2008
    [56]Otsu N. A threshold selection method from grey-level histograms. IEEE Trans. System. Man Cybernet,1979, SMC-9:62-66P
    [57]Kittiler J, Illingworth J. Minimum error thresholding. Pattern Recognition, 1986,19(1):41-47P
    [58]Pun T. Entropic thresholding a new approach. Compute Vision, Graphics and Image Process,1981,16:210-239P
    [59]Pal S K, King R A, Hashim A A. Automatic grey level thresholding through index of fuzziness and entropy. Pattern Recognition Letters,1983,1(3):141-146P
    [60]唐旭东,庞永杰,张铁栋,李哗.基于2维Tsallis熵的水下图像目标检测.机器人,2010,32(3):1-9页
    [61]Pun T. A new method for grey-level picture thresholding using the entropy of the histogram. Signal Process,1980,2(3):223-237P
    [62]Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision Graphics and Image Process,1985,3(29):273-285P
    [63]Abutaleb A S. Automatic thresholding of gray-level picture using two-dimensional entropy. Computer Vision, Graphics and Image Process,1989,47:22-32P
    [64]Sahoo P K, Arora G. Image thresholding using two-dimensional Tsallis-Havrda-Charvat entropy. Pattern Recognition Letter,2006,27(6):520-528P
    [65]Furuichi S. Fundamental properties on Tsallis entropy. Journal of Physics Condensed,2005,4:1-12P
    [66]Yoav Y.Schechner and Nir Karpel. Clear underwater vision. Proceedings of Computer Vision& Pattern Recognition,2004,1:536-543P
    [67]Kennedy J, Eberhart R C. Particle swarm optimization. Proc IEEE international conference on Neural Networks. USA:IEEE Press,1995,4:1942-1948P
    [68]Eberhart R C, Shi Y. Particle swarm optimization:Developments, applications and resources. Proc of the IEEE conf on Evolutionary Computation, Soul:IEEE, 2001:81-86P
    [69]Clerc M, Kennedy J. The particle swarm:Explosion, stability and convergence in a multidimensional complex space. IEEE Trans on Evolutionary Computation, 2002,6(1):58-73P
    [70]张旭光,孙巍,韩广良,等.一种弹孔自动识别算法的研究.光学精密工程,2005,13(6):747-753页
    [71]崔屹.图像处理与分析.数学形态学方法及应用.北京:科学出版社,2000
    [72]王向阳.面向不确定性推理和数据分析的模式识别方法研究.上海交通大学博士学位论文,2006
    [73]王丽亚.图像的特征提取和分类.西安电子科技大学硕士学位论文,2006
    [74]Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(5):489-497P
    [75]刘进,张天序.图像不变矩的推广.计算机学报,2004,27(5):668-674页
    [76]Yap P T, Paramesran R, Ong S H. Image analysis by krawtchouk moments. IEEE Transactions on Image Processing,2003,12(11):1367-1377P
    [77]Hu M K. Visual-pattern recognition by moment invariants. IRE Transactions on Information Theory,1962,8(2):179-187P
    [78]Teague M R. Image analysis via the general theory of moments. Optical Society of America,1980,70:920-930P
    [79]The C H, Chin T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analytical Machine Intelligence,1988,10(4):496-512P
    [80]Shen J, Shen W, Shen D. On Geometric and Orthogonal Moments, Multispectral Image Processing and Pattern Recognition. Series in Machine Perception Artificial Intelligence, World Scientific, Singapore,2001,44:17-36P
    [81]Kan C, Srinath M D. Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments. Pattern Recognition,2002,35(1):143-154P
    [82]Liao S X, Pawlak M. On the accuracy of Zernike moments for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(12):1358-1364P
    [83]杨淑莹.图像模式识别-VC++技术实现.北京:北京交通大学出版社,2005
    [84]Mao K Z, Tan K C, Ser W. Probabilistic neural network structure determination for pattern classification. IEEE Trans on Neural Network,2000,11 (4):1009-1016P
    [85]Cerqueira J J F, Palhares A G B, Madrid M K. A simple adaptive back-propagation algorithm for multilayered feedforward perceptrons. Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, 2004,4(25-29):3263-3268P
    [86]Castro L N, Timmis J I. Artificial immune system as a novel soft computing paradigm. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2003,7(8):526-544P
    [87]Castro L N D, Timmis J I. Artificial immune systems as a novel soft computing paradigm. Soft Computing,2003, (7):526-544P
    [88]罗小平,韦巍.一种基于生物免疫遗传学的新优化方法.电子学报,2003,31(1):59-62页
    [89]Vladimir N. Vapnik, Statistical Learning Theory. John Wiley& Sons, Inc,1998
    [90]Corinna C, Vladimir V. Support-vector networks. Machine Learning, 1995,20(3):273-297P
    [91]Wang S J, Zhao X T. Biomimitic Pattern Recognition Theory and Its Applications. Chinese of Electronics,2004,13(3):56-60P
    [92]Wang Z H, M H Y, Lu H X, Wang S J. A method of biomimetic pattern recognition for face recognition. Proceedings of the International Joint Conference, 2003,3:2216-2221P
    [93]Wang S J, W B N. Analysis and Theory of High-Dimension Space Geometry for Artificial Neural Networks. ACTA ELECTRONICA SINICA,2002,30(1):1-4P
    [94]S Gutta H Wechsler. Face recognition using hybrid classifiers. Pattern Recognition,1997,30:539-553P
    [95]陆飞.仿生模式识别的几何学习算法理论的研究.浙江工业大学硕士学位论文,2006
    [96]王新成.高级图像处理技术.北京:中国科学技术出版社,2000:6-9页
    [97]张宏林编著.数字图像模式识别技术及工程实践.北京:人民邮电出版社,2003.2
    [98]Canny J F. A computational approach to edge detection. IEEE Trans on PAMI,1986:679-698P
    [99]Sauvola M. Pietaksinen. Adaptive document image binarization. Pattern Recognition,2000,33:225-236P
    [100]Niblack W. An Introduction to Image Processing. Prentice-Hall, Englewood Cliffs, NJ,1986
    [101]张俊.基于视觉的户外自主导航车辆的道路识别研究.西安理工大学硕士学位论文,2007
    [102]Hough P V C. Methods and means for recognizing complex pattern. U.S.Patent, 1962
    [103]Illingworth J. Kittler J. A survey of the Hoght Transform. CVGIP, 1988,44:87-116P
    [104]林学,王宏.计算机视觉-一种现代方法.北京:电子工业出版社,2004
    [105]杨杨.自然景物环境下运动目标的自动跟踪方法.哈尔滨工业大学博士学位论文,1998
    [106]邓自立.卡尔曼滤波与维纳滤波.哈尔滨:哈尔滨工业大学传版社,2001
    [107]周宏仁,敬忠良,王培德.机动目标跟踪.北京:国防工业出版社,1991
    [108]王安帅.智能车辆结构化道路单目视觉导航技术.北京理工大学硕士学位论文,2008
    [109]Chou H L, Tsai W H. A new approach to robot location by house corners. Pattern Recognition,1986,19(6):439-451P
    [110]周富强,张广军.双目立体视觉检测的关键技术研究.博士后工作报告,北京航空航天大学,20020401
    [111]David A, Forsyth J P. Computer Vision:A modern approach.2003.林学訚,王宏等译,电子工业出版社
    [112]朱方园.机器人视觉实验平台及其算法设计.扬州大学硕士学位论文,2006
    [113]邱茂林,马颂德,李毅.计算机视觉中摄像机标定综述.自动化学报,2000,26(1):43-55页
    [114]Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation,1987,3(4):323-344P
    [115]Zhang Z. A flexible new technique for camera calibration. Microsoft Corporation: Technical Report MSR-TR-98-71,2002
    [116]Ping K, Qing X ZH, Guo C L. Real-time Road Lane Reconition Using Fuzzy Reasoning for AGV Vision System.2004 International Conference on Communications, Circuits and Systems, Chendu City, China, Volume 2:989-993P
    [117]蔡自兴.机器人学.北京:清华大学出版社,2000
    [118]江泽民,杨毅,付梦印,等.基于平行线的室内视觉导航.机器人,2007,29(2):128-132页
    [119]Jain R, Kasturi R, Schunck B G.. Machine vision. Beijing:China Machine Press, 2003
    [120]Magee M J, Aggarwal J K. Determining the position of a robot using a single calibration object. Proc IEEE Int, Conf Robotics, Atlanta GA, USA,1984:140-149P
    [121]Mort N, Derradji D A. Control reconfiguration in submersible vehicle using artificial neural networks. International Journal of Systems Science, 1999,30(9):989-101 OP
    [122]Howie C. Coverage for Robotics-A Survey of Recent Results. Annals of Mathematics and Artificial Intelligence,2001:113-126P
    [123]甘永,王丽荣,刘建成,徐玉如.水下机器人嵌入式基础运动控制系统.机器人,2004,26(3):246-249页
    [124]陈宗海,詹昌辉.基于“感知-行为”的智能模拟技术的现状及展望.机器人,2001,23(2):187-191页
    [125]郭磊.自主式水下机器人基于行为的控制方法研究.中国海洋大学硕士学位论文,2008
    [126]Tyrrell T. Computational Mechnaisms for Action Selection. Ph.D. Edin burgh: University of Edinburgh,1993
    [127]Saffiotti A. The Uses of Fuzzy Logic for Autonomous Robot Navigation. Soft Computing,1997,1(4):180-197P
    [128]Roberto C, Fotis A. Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane. IEEE Journal of Oceanic Engineering, 1990,15(3):152-160P
    [129]唐旭东,庞永杰.基于仿人智能的机器人运动控制.哈尔滨工程大学学报,2007,28:37-41页
    [130]Saridis G N. Toward the Realization of Intelligent Controls. Proc Of the IEEE, 1979,67(8)
    [131]易继揩,侯媛彬.智能控制技术.北京:北京工业大学出版社,1999
    [132]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997
    [133]李殿璞,赵爱民,迟岩.水下机器人运动控制和仿真的数学模型.哈尔滨工程大学学报,1997,18(3):22-30页
    [134]唐旭东,庞永杰,万磊.改进PSO算法在水下机器人S面运动控制参数整定中的应用.应用基础与工程科学学报,2009,17(1):153-160页
    [135]戴遗山.舰船在波浪中运动的频域与时域势流理论.北京:国防工业出版社,1998
    [136]常文君,刘建成,于华男,徐玉如.水下机器人运动控制与仿真的数学模型.船舶工程,2002,3:58-60页
    [137]王俊普.智能控制.合肥:中国科学技术大学传版社,1996:177-178页
    [138]Zhou Q J, Bai J G.. An intelligent controller of novel design. Proceedings of a Multinational Instrument Conference, Shang hai,1983:137-149P
    [139]章兢.仿人智能控制与模糊控制神经网络融合技术.控制与决策,1999,14(5):428-432页
    [140]汤士华,李一平,李硕.一种新的仿人控制方法研究.信息与控制,2005,3(34):360-364页
    [141]唐旭东,庞永杰.基于仿人智能的机器人运动控制.2007年全国博士生学术论坛,2007
    [142]Qing C C. The Human Simulating Intelligent Control Study of Inverted Pendulum system. Chongqing:Chongqing University,1997
    [143]李祖枢,涂亚庆.仿人智能控制.北京:国防工业出版社,2003
    [144]金以慧.过程控制.北京:清华大学出版社,1996
    [145]唐旭东,庞永杰,李晔.基于S模型的水下机器人改进免疫控制.大连海事大学学报,2008,34(1):49-53页
    [146]唐旭东,庞永杰,李晔.水下机器人运动的免疫控制方法.电机与控制学报,2007,11(6):676-680页
    [147]唐旭东,庞永杰,李晔,等.水下机器人改进免疫控制方法.第十四届海洋(岸) 工程学术讨论会议论文集,2009:261-267页
    [148]KAWAFUKU M, SASAKI M, TAKAHASHIK. Adaptive learning method of neural network controller using an immune feedback law.1999 IEEE/ASME International Conference on Advanced Intelligent Mechanizations, Piscataway:IEEE, 1999,641
    [149]ISHIDA Y, ADACHI N. Active noise control by an immune algorithm:adaptation immune system as an evolution. Proc 1996 IEEE Int Conf on Evolutionary Computation, Nagoya,1996,150
    [150]张正道,胡寿松.基于RBF神经网络的免疫控制器结构.应用科学学报,2004(3):388-391页
    [151]Kim D H. Tuning of a PID controller using immune network model and fuzzy set. Industrial Electronics,2001. Proceeding. ISIE2001. IEEE International Symposium on, 2001,3:1656-1661P
    [152]Kim D H. Tuning of 2-DOF PID controller by immune algorithm. Evolutionary Computation.2002, CEC'02, Proceedings of the 2002 Congress on, 2002, 1:675-680P
    [153]Fu D M, Zheng D L, Chen Y. Design and Simulation of a Biological Immune Controller Based on Improve Varela Immune Network Model. Artificial Immune System. 4th International Conference, ICARIS 2005, Proceedings (Lecture Notes in Computer Science Vol.3627),2005:432-441P
    [154]Ding Y S. A nonlinear PID controller based on fuzzy-tuned immne feedback law. Intelligent control and automation. Proceedings of the 3rd World Congress on, Volume: 3,2000:1576-1580P
    [155]Kim D W. Intelligent 2-DOF PID Control for Thermal Power Plant Using Immune Based on Multi objective. Neural Network and Computational Intelligence, 2003:215-220P
    [156]Kim D W, Cho J H. Intelligent Tuning of PID Controller With Disturbance Function Using Immune Algorithm.8th International Conference on Knowledge Based Intelligent Information& Engineering System KEMS,2004:57-63P
    [157]贾万均.抗原抗体反应动力学.北京:军事医学科学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700