用户名: 密码: 验证码:
基于真实路谱重现的虚拟台架及汽车疲劳寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车结构的疲劳寿命决定汽车的使用年限,通常采用实车试验或计算机辅助技术来评估其疲劳寿命。实车试验结果真实准确,但试验周期较长且费用巨大;而计算机辅助技术受制于虚拟仿真与实车试验的差异及疲劳理论的缺陷,其预测精度较低,工程应用价值有限。目前,汽车结构的疲劳寿命评估依赖于实车试验,导致汽车产品的研发周期较长、研发费用巨大。
     本文对计算机辅助技术应用于汽车结构的疲劳寿命预测领域开展系统的研究,提出基于真实路谱重现的虚拟台架方法来提高虚拟仿真的准确性,并应用于汽车结构的疲劳寿命预测中。该方法在汽车产品研发中,能够快速而准确实现汽车结构的疲劳寿命预测,指导结构的疲劳性能提升,从而减少实车试验次数,缩短汽车产品研发周期和降低研发费用,具有重要的理论和工程应用价值。本文的主要内容和创新点包括:
     (1)提出基于真实路谱重现的虚拟台架方法,提高虚拟仿真模拟汽车实车试验的精度。采用计算机辅助技术进行汽车实车试验的虚拟仿真时,由于路面-轮胎-整车耦合关系复杂,特别是轮胎的模拟,为当前虚拟仿真技术难题,限制了疲劳寿命预测精度提高。本文提出基于真实路谱重现的虚拟台架方法,避免使用不准确的轮胎模型,反求获得实车试验中的真实激励,提高虚拟仿真模拟精度。并针对汽车零部件和白车身在实车试验中振动冲击特点,分别建立零部件虚拟台架和整车虚拟台架。
     (2)提出分段加权的频率响应函数的识别方法,提高系统的频率响应函数识别的准确度。系统频率响应函数识别是进行基于真实路谱重现的虚拟试验台架仿真的基础,而汽车在实车试验过程中,存在较多的非线性因素影响,传统识别方法只能获得系统在线性阶段的频率响应函数,导致虚拟台架系统的初始误差较大,导致真实路谱重现难度较大。本文提出分段加权的频率响应函数的识别方法,综合考虑系统的线性和非线性部分影响,来获得系统的新频率响应函数。数值计算案例表明:该方法能够减小系统的初始误差,降低虚拟台架中真实路谱的迭代重现难度。
     (3)提出自适应迭代的道路模拟控制算法,解决虚拟台架仿真中真实路谱信号重现迭代收敛难题。目前,道路模拟控制算法均采用远程参数控制方法,该方法采用简单修正来获得系统的目标信号迭代重现,导致迭代过程中容易出现发散或收敛效率过低问题。本文提出自适应迭代的道路模拟控制算法,通过自动实时动态调整误差反馈值,解决迭代收敛难题,快速而准确的获得真实路谱的虚拟仿真重现,提高计算效率。
     (4)针对汽车零部件疲劳寿命预测问题,采用基于真实路谱重现的零部件虚拟台架方法,获得零部件准确疲劳寿命预测结果。零部件承受实车试验中复杂空间运动导致的冲击载荷,直接测试或虚拟仿真的方法均难获得其准确冲击载荷。针对该问题,本文采用基于真实路谱重现的零部件虚拟台架方法,获得在试验中真实冲击载荷,用于疲劳寿命预测,指导其结构设计和疲劳性能提升。零件的疲劳寿命预测与改进案例表明:该方法能够精确虚拟重现零部件在实车试验中振动冲击,从而获得零部件精确的疲劳寿命预测结果,能有效缩短汽车零部件的研发周期,实现汽车零部件的疲劳性能快速提升。
     (5)针对白车身疲劳寿命预测问题,采用基于真实路谱重现的整车虚拟台架,获得车身结构路准确疲劳寿命预测结果,并针对白车身仿真模型较大而导致的计算效率低问题,采用应力恢复子模型方法运用于白车身结构计算中,减少改进方案计算时间和大幅提高仿真效率。在实车试验中,白车身在实车试验中的复杂冲击载荷,由于轮胎模型、悬架与白车身连接的复杂性,采用传统方法无法获得其精确冲击载荷,导致白车身结构的疲劳寿命预测精度较低。本文采用整车虚拟台架,解决实车试验中白车身冲击载荷求解难题,提高整车疲劳试验虚拟仿真的准确性,获得白车身结构的准确疲劳寿命预测值,指导其结构改进及疲劳性能提升。基于真实路谱重现的整车虚拟台架方法与实车道路试验结果对比表明:采用该方法,能够精确重现整车的路试振动冲击,获得白车身结构的准确疲劳寿命预测,能够有效指导车身结构设计和改进,实现白车身疲劳性能快速提升。
As the fatigue of automotive structures determine the life of the car, and thefatigue of vehicle are usually predicted by real tests or computer-aided techniques.The test can provide very accurate results, while the test cycle is very long and thecosts are also enormous; the virtual simulation is subject to major differences betweencomputer-assisted technology and the actual test or fatigue theory, and the predictionaccuracy is low with a limited application in engineering. Currently, the automotivestructural fatigue assessment mainly depends on the actual test, which greatly limit sits research, development efficiency and cost.
     In this paper, computer aided technology for automotive structural fatigueprediction system is investigated. We propose a virtual test method to improve theaccuracy of virtual simulation, and also apply it to the automotive structural fatiguelife prediction, which also improve the accuracy. As this method can predict theautomotive structural fatigue very quickly and accurately, and guide structural fatigueperformance optimization, and then can reduce the number of the virtual test, researchand development period and cost. This new method has very important theoretical andengineering application value. The main contents and innovations include:
     (1) Proposed virtual test method based on real road spectrum to improve theaccuracy of virtual simulation of automotive. In the virtual simulation of vehicleusing computer-aided techniques, the relationship of road-tires-vehicle coupling isvery complex, especially for tire model simulation, which limiting t he improving ofaccuracy for fatigue prediction. In this paper, virtual test method based on real roadspectrum is proposed, the iterative feedback is used to correct the virtual simulation.This method avoids the use of inaccurate tire model, which improv es the accuracy ofsimulation. The body-in-white and parts virtual test bench are then establishedaccording to the real characteristics of vibration and shock tests.
     (2) Proposed sub-weighted frequency response function of identifying method toimprove the system's frequency response function recognition accuracy. Systemfrequency response function recognition is the basis of virtual test method based onreal road spectrum. In the real test of vehicle, non-linear factors should be considered,while the system frequency response function only considered the linear stage, whichinducing large error of virtual simulation. In this paper, sub-weighted frequency response function of identifying method is proposed. In this method, the newfrequency response function is then obtained by sub-weighted of linear and nonlinearpart. Numerical case shows that the method can decreases the system's initial error,reduce the difficult of reproducing real road spectrum in virtual bench.
     (3)Proposed an adaptive iterative algorithm of road simulation to solve thedifficulty of convergence for reproduction virtual simulation using the real roadspectrum. At present, The Remote Parameter Control method is adopted in the virtualroad simulation with a simple iterative correction to obtain the nonlinear system,which inducing the iteration process easy divergence and low efficiency. In this paper,adaptive iterative error feedback control is adopted in the virtual test method based onreal road spectrum, the error feedback will be obtained in each subsequent iteration,which can solve the convergence problems quickly and accurately and reproduce thespectrum of virtual simulation with high computational efficiency.
     (4) Proposed virtual test method for vehicle parts based on real road spectrum toget the accuracy prediction of fatigue. In the actual driving test, parts are installed inthe car, and exposed to complex spatial impact load, and we cannot get its accuratevalue by direct tests or simulations. To solve this problem, this pa per proposed virtualtest method for vehicle parts based on real road spectrum, and get accurate loadboundary conditions for fatigue prediction, which will guide its structural design anddurability improvement. Numerical method and experiment verified th at it caneffectively shorten the development cycle for automotive parts development andimprove engineering efficiency, realize rapid promotion of durability for automotiveparts.
     (5) Proposed virtual test method for vehicle body-in-white based on real roadspectrum to get the accuracy prediction of fatigue, and Recovery Based StressSub-model Method using stress recovery is also proposed to reduce the computationsimulation and optimization time, which leads to a substantial increase in efficiency.In the actual vehicle test, the vehicle body structure exposed to the impact load fromthe tire, and suspension, and due to the complexity of the suspension and tire model,the conventional methods cannot get exact impact load for the body structure, thus thefatigue life prediction accuracy is very low. This paper proposed virtual test methodfor vehicle body-in-white based on real road spectrum, which improve vehicle virtualfatigue simulation accuracy and computational efficiency. The accurate bodystructure fatigue prediction can also guide its structural durability optimization.Numerical simulation and experiment verified that it can reproduce the shock and vibration on the road test, realize rapid promotion of durability for vehicle body,which effectively guide the design and optimization of the body structure.
引文
[1] http://www.auto-stats.org.cn/ReadArticle.asp?NewsID=7275汽车工业协会统计信息网站.
    [2] http://auto.sohu.com/20120913/n353069710.shtml搜狐汽车.
    [3] http://china.jdpower.com/ratings/J.D.Power中国网站.
    [4] http://www.autohome.com.cn/news/201203/307992.html汽车之家.
    [5] Lee Yung-Li, Pan Jwo, Hathaway R B, et al. Fatigue Testing and AnalysisTheory and Practice. Burlingtion: Elsevier,2011,76-88.
    [6]孟少农译.零件疲劳设计手册.人民交通出版社,1984.
    [7] Japan Society of Mechanical Engineers. Standard method of statistical fatiguetesting. JSME S002-1981,1981.
    [8] American Society for Testing and Materials (ASTM). Standard practice forstatistical analysis of linear or linearized stress-life (S-N) and strain-life (e-N)fatigue data. ASTM Standard, E739-91,1990.
    [9] Goodman J. Journal of Mechanics Appliced to Engineering. New York:Longmans,1899.
    [10] Miner M A. Cumulative damage in fatigue. Journal of Applied Mechanics,1954,64:159-164.
    [11] Manson S S, Freche J C, Ensign C R. Application of a double linear damage ruleto cumulative fatigue. Fatigue Crack Propagation, ASTM STP415,1967:384-412.
    [12] Labes K, Miehe B O, Stolze F J, et al. DieGesamtfahrzegu-Betriebsfestigkeits-Pruefug im Entwicklungsprozess vonAutomobilen. ATZ97,1995:270-278.
    [13] Ensor D F,林晓斌.关联用户用途的试车技术.中国机械工程,1998,9(11):24-26.
    [14]郭虎,邓文华,樊晓燕等.汽车试验场可靠性试验强化系数的研究.机械工程学报,2004,40(10):73-76.
    [15]门玉琢,李显生,于海波.与用户关联的汽车可靠性试验新方法.机械工程学报,2008,44(2):223-229.
    [16] Raath A D, Waveren C C. A Time Domain Approach to Load Reconstruction forDurability Testing. Engineering Failure Analysis,1998,5(2):113-119.
    [17] Kelly Jim, Kowalczyk Henri, Oral Hamid A. Track Simulation and VehicleCharacterization with7Post Testing. SAE PAPER,2002,2002-01-3307.
    [18] Panse Suyog M, Gosavi Santosh S. Integrated Structural Durability Test CycleDevelopment for a Car and its Components. SAE PAPER,2004,2004-01-1654.
    [19] Lin Ken Yuan, Hwang Jiun ren, Chang Jung-ming, et al. Durability Assessmentand Riding Comfort Evaluation of a New Type Scooter by Road SimulationTechnique. SAE PAPER,2006,2006-01-0730.
    [20] Suyog M P, Chandrakant M. Awate. Development of Accelerated StructuralDurability Test Program for a Mini-truck and its Components. SAE PAPER,2006,2006-01-0085.
    [21] Cambiaghi Danilo, Marco Gadola, David Vetturi. Suspension System Testingand Tuning with the Use of a Four-Post Rig. SAE PAPER,1998,983023.
    [22] Wan Deming, Simms Christy. Dynamic Analysis of a Full System DurabilityTest in Vehicle Exhaust Systems. SAE PAPER,2001,2001-01-1438.
    [23] Wan Deming, Kim Hanjun. Dynamic Analysis of a Full System Durability Testin Vehicle Exhaust Systems. SAE PAPER,2002,2002-01-0802.
    [24] Ian M Austen,林晓斌.加速疲劳试验的疲劳编辑技术.中国机械工程,1998,9(11):27-30.
    [25] Gagandeep S R, Sivakumar B, Patil M G. Methodology for AcceleratedVibration Durability Test on Electrondynamic Shaker. SAE PAPER,2006-32-0081.
    [26] Haq Salman, Temkin Mikhail, Black Lawrence, et al. Vehicle Road SimulationTesting, Correlation and Variability.SAE PAPER,2005,2005-01-0856.
    [27] Xu Peijun,Wang Dan,LeBlanc Pierre,et al. Road Test Simulation Technologyin Light Vehicle Development and Durability Evalution. SAE PAPER,2005,2005-01-0854.
    [28] Suyog M P, Santosh S G. Integrated Structural Durability Test CycleDevelopment for a Car and its Components. SAE PAPER,2004,2004-01-1654.
    [29] Heyes P J, Dakin J, John C. The Assessment and Use of Linear Static FE StressAnalyses for Durability Calculations. SAE PAPER,1995,951101.
    [30] Huang L P, Agrawal H, Kurudiyara P. Dynamic Durability Analysis ofAutomotive Structures. SAE PAPER,1998,980695.
    [31]孙凌玉,吕振华.利用计算机仿真技术预测车身零件疲劳寿命.汽车工程,2001,6(23):389-410.
    [32]朱才朝,张伟敏,乔莉等.摩托车车架系统疲劳强度分析与寿命预估.汽车工程,2007,29(10):900-904.
    [33]唐应石,张武,段心林等.基于整车动力学仿真的后桥壳疲劳寿命分析与改进.汽车工程,2009,31(2):114-117.
    [34]贺李平,王国丽,刘建勇等.汽车减震器弹簧下座的疲劳仿真分析及结构改进.北京理工大学学报.2011,32(1):33-37.
    [35] nCode International Limited. The nCode Book of Fatigue Theory.1997
    [36] LMS International. LMS TecWare Documentation2002.
    [37] LMS International. LMS FALANCES User Manual2002.
    [38] LMS International. LMS FALANCES Theory Manual2002.
    [39] Cooley J W, Tukey J W. An Algorithm for The Machine Computation ofComplex Fourier Series. Mathematics of Computation,1965,19(8).
    [40] Jacoby G. State of The Art and Future of Road Simulation Development. ATAIngegneria Automotoristica,1988,41(12).
    [41]何泽民.道路模拟试验技术的研究及其在汽车零部件疲劳试验中的应用.清华大学博士论文,1990.
    [42]王学军.汽车零部件疲劳道路模拟试验远程参数控制系统(RPC)的研制.清华大学博士论文,1993.
    [43]刘成,王仲范.频域内汽车随机振动再现试验的方法.武汉汽车工业大学学报.1998,20(3):1-4.
    [44] Meldrum Jay, Hay Neil. Convergence of Laboratory Simulation Test Systems.SAE PAPER,1998,981018.
    [45] Haq Salman, Mikhail Temkin,Lawrance Black,et al. Vehicle Road SimulationTesting, Correlation and Variability. SAE PAPER,2005-01-0856.
    [46] Roberts D E, Hay N C. Dynamic Response Simulation For A Nonlinear System.Journal Of Sound And Vibration.2005,281(2005):783-798.
    [47] Hay N C, Roberts D E. et al. Road Simulators: The Iterative Algorithm forDrive File Creation. SAE PAPER.2006.
    [48] Brudnak Mark J. A Composite Linear and Nonlinear Approach to Full-VehicleSimulator Control Reprinted From: Military Vehicle Technology. SAE PAPER,2005.
    [49] Schoukkens J, Rolain Y, Swevers J, et al. Simple Methods and Insights to DealWith Non-linear Distortions in FRF-Measurements. Mechanical Systems andSignal Processing,2000,14(4):657-666.
    [50]刘成,王仲范,严运军等.汽车实验的随机波形再探讨.中国机械工程,1996,7(4):94-95.
    [51]刘成.电液伺服道路模拟试验随机波形再现的时域控制.武汉理工大学博士论文,2002.
    [52]杜永昌,管迪华,宋健.汽车道路模拟算法研究.公路交通科技.2001,18(6):115-118.
    [53]杜永昌,管迪华.新型汽车道路迷你算法研究.机械工程学报,2002,38(8):41-44.
    [54]陈栋华,靳晓雄,周鋐.汽车室内道路模拟试验系统控制算法的研究.噪声与振动控制,2006,02(01):31-35.
    [55]汪斌,过学迅等.基于迭代学习控制的道路模拟算法.汽车工程,2010,32(8):686-689.
    [56] Wang Bin, Guo Xue-xun, Yang Bo, et al. Iterative Algorithm for Road SimulatorUsing Smooth Filter. International Conference on Measuring Technology andMechantrons Automation.2009.
    [57] ETA. ETA/VPG application manual.1998.
    [58] MSC Software. MD Adams Online Help.2010.
    [59] LMS International. LMS Virtual.Lab Online Help.2010.
    [60] Chang-Ro Lee, Jeong-Won Kim, John O H, et al. Validation of a FEA TireModel for Vehicle Dynamic Analysis and Full Vehicle Real Time ProvingGround Simulations. SAE PAPER.1997,971100.
    [61] Zhang Yuan, Xiao Paul, Palmer Tim, et al. Vehicle Chassis/SuspensionDynamics Analysis Finite Element Model vs. Rigid Body Modal. SAE PAPER.1998,980900.
    [62] Choi G S, Min H K, Paik S H. Dynamic Stress Analysis of Vehicle Usi ng VirtualProving Ground Approach. SAE PAPER,2000,2000-01-0121.
    [63] Ambrosio Jorge A C, Goncalves Joao P C. Complex Flexible Multibody Systemswith Application to Vehicle Dynamics. MultiBody Systems Dynamics,2001,6:163-182.
    [64] David Chen, Behrooz Shahidi, et al. Correlation of Explicit Finite ElementRoad Load Calculations for Vehicle Durability Simulations. SAE PAPER.2006-01-1980.
    [65] Bijan Shahidi, Ulrich Stuhec, et al. System Level Durability Engineering inCAE. SAE PAPER.2006-01-1981.
    [66] Pranava Sistla, Hong Tae Kang, et al. The Effect of Tire Models on DurabilityPerformance of Vehicle Body Structure: Statistical Analysis. SAE PAPER.2006-01-1654.
    [67]杜中哲,朱平,何俊等.基于有限元法的轿车车身结构及焊点疲劳寿命分析.汽车工程,2006,28(10):944-947.
    [68]孙宏祝,从楠,尚建忠等.基于整车虚拟道路行驶试验的车辆零部件疲劳分析.汽车工程,2007,29(4):274-278.
    [69]孙宏祝,陈循,梁科山等.基于整车虚拟道路行驶的车辆零件疲劳分析.国防科技大学学报,2007,29(4):121-125.
    [70]米承继,谷正气,伍文广等.随机载荷下矿用自卸车后桥壳疲劳寿命分析.机械工程学报,2012,48(12):103-108.
    [71] Wan Deming, Wyatt Rob, Kothamasu Vasudeva, et al. Dynamic Modeling of aMulti-Axial Simulation Table. SAE PAPER,2000,2000-01-1187.
    [72] Ferry W B, Frise P R, Andrews G T, et al. Combining Virtual Simulation andPhysical Vehicle Test Data to Optimize Durability Testing. Fatigue Fract EngngMaster Struct,2002,25:1127-1134.
    [73] Shawn You, Christoph Leserools, et al. Tool For Integration of Analysis andTesting. SAE PAPER.2003,2003-01-1606.
    [74] Takeshi Y,Yasuyuki K,Masaki S,et al. Development of a Virtual RoughSimulator for Motorcycle Frame Strength. SETC,2005.
    [75]彭为,靳晓雄,左曙光.基于有限元分析的轿车后桥疲劳寿命预测.汽车工程.2004,26(4):507-509.
    [76]陈栋华,靳晓雄,周鋐等.轿车底盘零部件耐久性虚拟试验方法研究.汽车工程.2007,29(11):998-1001.
    [77]吴碧磊,秦民,李幼德等.载货汽车驾驶室疲劳寿命的敏感度分析.汽车工程.2007,29(12):1051-1054.
    [78]徐刚,周鋐,陈栋华等.基于虚拟试验台的疲劳寿命预测研究.同济大学学报(自然科学版).2009,37(1):97-100.
    [79] Wang X, Xu W, Huang Y, et al. Simulation of The Vertical Bengding FatigueTest of a Five-Link Rear Axle Housing. International Journal of AutomotiveTechnology.2012,13(6):923-932.
    [80] Guan D H, Jin Shang, Yam L H. Establishment of Model for Tire Steady StateCornering Properties Using Experimental Modal Parameters. In Prceedings of10th International Conference on Systems Engineering.1994,9:111-118.
    [81] Sayers Michael W. A Generic Multibody Vechicle Model for SimulatingHandling and Braking. Vehicle System Dynamics,1996,25.
    [82] Hegazy S. Multi-body Dynamics in Full-vehicle Handling Analysis underTransient Manoeuvre. Vehicle System Dynamics,2000,34(1).
    [83]管欣,张威,叶显峰.应用于车辆实时动力学仿真的悬架模型.汽车工程.2003,25(5):477-479.
    [84]张云清,项俊,陈立平等.整车多体动力学模型的建立、验证及仿真分析.汽车工程.2006,28(3):287-290.
    [85] Scavuzzo R W, Richards T R. Tire Vibration Modes and Effects on Vehicle RideQuality. TSTCA,1993,21(1).
    [86] Guo K H, Ren L. A Unified Semi-empirical Tire Model with Higher Accuracyand less Parameters. SAE PAPER,1999,1999-01-0785.
    [87] Guan D H, Jin Shang, Yam LH. Establishment of Model for Tire Steady StateComering Properties using Experimental Modal Parameters. Vehicle SystemDynamics,2000,34(01)
    [88]郭孔辉,卢荡.动态载荷下轮胎侧偏特性的理论及试验研究.汽车工程.2005,27(1):89-92.
    [89]郭孔辉,庄华.汽车轮胎橡胶摩擦试验研究.机械工程学报.2004,40(10):175-180.
    [90] Nicolas Gandoin, Shawn You. A Method for Overcoming Limitations of TireModels for Vehicle Level Virtual Testing. SAE PAPER.2006,2006-01-0499.
    [91]钱学森,宋健.工程控制论.北京:科学出版社,1981.
    [92]段广仁.线性系统理论.哈尔滨:哈尔滨工业大学出版社,1996.
    [93] http://www.mtschina.com/ground2.asp?classid=76&parentid1=33&parentid=1&classid1=33. MTS系统公司中国网站
    [94]胡文伟.轿车车头六通道多轴道路模拟试验加载谱研究.同济大学博士论文,2002.
    [95]易明.台架模拟轿车车头子系统道路载荷谱的方法研究.同济大学博士论文,2003.
    [96]冯国胜.客车车身结构的有限元分析.机械工程学报.1999,1:108-110.
    [97]桂良进,范子杰,周长路等."长安之星"微型客车白车身刚度研究.机械工程学报.2004,40(9):195-197.
    [98]李光攀.基于电液伺服道路模拟实验台的路面谱再现控制.武汉理工大学博士论文,2009.
    [99]沃德.海伦,斯蒂芬.拉门兹,波尔.萨斯.模态分析理论与实验.白化同,郭继忠译.北京:北京理工大学出版社,2001.
    [100]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、试验与应用.天津:天津大学出版社,2001.
    [101] Matsuishi M, Endo T. Fatigue of Metals Subjected to Varying Stress. Presentedto The Japan Society of Mechanical Engineers, Fukuoka, Japan,1968.
    [102]诸德超,李军杰.实用振动工程(1):振动理论与分析.北京:航空工业出版社,1996.
    [103]赵少,王忠保.抗疲劳设计方法与数据.北京:机械工业出版社,1997.
    [104] Khosrovaneh Abolhanssan, Pattu Ravi. Vehicle Component Fatigue AnalysisConsidering Largest Overall Loop for Multiple Surfaces. SAE PAPER,2006,2006-01-29
    [105]周传月,郑红霞,罗慧强.MSC.Fatigue疲劳分析应用与实例.北京:科学出版社,2005.
    [106] S.W.KWON, et al. Characteristics of three-dimensional stress fields in plateswith a through-the-thickness crack. International Journal of Fracture.2000,104:291–315.
    [107] Yongming Liu, et al. Fatigue crack initiation life prediction of rail road wheels.International Journal of Fatigue.2006,28:747–756.
    [108] Michael Lavagnino, et al. A finite element model predicts themechanotransduction response of tendon cells to cyclic tensile loading.Biomech Model Mechanobiol.2008,7:405–416.
    [109] WANG Hao, et al. Accurate stress analysis on rigid central buckle of long-spansuspension bridges based on submodel method. Science in China Series E:Technological Science.2009.
    [110] Johar Ciptokusumo, et al.Investigation of stress distribution in via bottom ofCu-via structures with different. Microelectronics Reliability.2009,49:1090–1095.
    [111] HENG-LIANG LIU, et al.3D Micro-Crack Propagation Simulation atEnamel/Adhesive Interface Using FE Submodeling and Element DeathTechniques via form by means of submodeling. Annals of Biomedical Engineering.2010,38:2004-2012.
    [112]徐伟等.子模型法在大跨径斜拉桥桥面结构分析中的应用.土木工程学报.2004,37(6):30-34
    [113]李爱群等.子模型法在超大跨悬索桥钢箱梁应力分析中的应用.工程力学.2007,24(2):80-84.
    [114]张鹏飞等.千米级斜拉桥扁平钢箱梁的局部力学行为.天津大学学报.2010,43(7):593-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700