用户名: 密码: 验证码:
异型坯连铸过程中结晶器铜板及铸坯热力行为数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H型钢是一种经济断面型材,其力学性能和使用性能十分优越,一经问世就广泛应用于国民经济建设的各个领域之中。异型坯作为生产H型钢的最佳坯料,具有能耗低、工序少、成材率高、成本低等优点。目前,异型坯连铸生产过程中铸坯存在着较多的表面和内部质量缺陷,难以满足现代连铸技术的发展要求。因此,深入开展异型坯连铸过程中结晶器铜板和铸坯热力行为的研究,探讨影响结晶器铜板使用寿命的因素和铸坯质量缺陷产生的原因,具有极其重要的理论意义和实用价值。
     异型坯连铸过程中结晶器铜板的热力行为是影响其使用寿命和铸坯质量的关键因素之一。本论文首先建立模拟异型坯连铸结晶器铜板热弹塑性蠕变行为的有限元模型,利用ABAQUS软件用户子程序定义非线性材料本构关系和传热及力的边界条件,实现模拟结晶器铜板升温、浇注和冷却循环过程的数值方法。利用得到的数值方法,模拟研究大孔结晶器铜板和小孔结晶器铜板在升温、浇注和冷却循环过程中的温度、变形和应力分布,并利用循环非弹性应变结果估算结晶器铜板的疲劳寿命。进而模拟研究不同修磨厚度和冷却水流量对该两种结晶器铜板热力行为的影响。结果表明,不同水缝设计的结晶器铜板温度和变形分布差异明显;小孔结晶器铜板的温度峰值较低、热面温度和变形分布较均匀,因而具有较长的使用寿命和更优的铸坯质量;铜板修磨后厚度减小,温度峰值降低,热面变形减小,热面温度和变形分布更为均匀;增大水缝中冷却水流量对铜板传热和变形的影响规律与减小铜板厚度一致。基于前述研究结果,提出一种改进的水缝设计方案。数值模拟分析表明,该改进方案优于现有的大孔和小孔水缝设计。
     研究铸坯在结晶器内凝固及变形对浇注工艺的改进和产品质量的提高极为重要。为模拟结晶器内铸坯的凝固与变形,提出了一种在铸坯凝固界面施加钢水静压力的方法。利用ABAQUS用户单元子程序UEL定义一种与铸坯单元共结点的静水压力单元,实现铸坯凝固界面上钢水静压力的施加,同时利用ABAQUS软件用户子程序GAPCON模拟铜板热面和铸坯表面间的气隙传热,实现模拟异型坯结晶器内铸坯凝固及变形的数值方法。建立了二维瞬态热弹塑性有限元模型,模型中考虑了钢种溶质元素偏析行为对材料高温物理属性的影响。对大孔结晶器和小孔结晶器内铸坯凝固及变形进行了数值模拟,得到铸坯和结晶器壁间的气隙、铸坯和铜板的温度以及铸坯的变形和应力分布。结果表明,气隙是影响铸坯凝固传热的关键,需严格加以控制。该两种结晶器内铸坯在翼缘端部位置气隙较大,坯壳厚度较薄,需适当增加结晶器翼缘端部处的锥度以减小气隙,使得铸坯均匀散热,减少铸坯裂纹的发生。
     铸坯在结晶器内和二冷区的凝固传热过程对研究铸坯表面和内部裂纹形成原因极为关键。为此,本论文提出了一种通过移动传热边界条件实现结晶器和二冷区内铸坯凝固传热过程的三维数值模拟方法。移动传热边界条件利用ABAQUS用户子程序DFLUX和FILM实现。利用这一数值方法,模拟研究了冷却工艺条件改进前后铸坯的凝固过程。结果表明,改进前冷却工艺条件下铸坯表面横向温度分布不均,不能满足二冷区表面温度控制准则;改进后的冷却工艺方案既能使铸坯表面温度控制在合理的范围内,又提高了铸坯表面横向温度分布的均匀性,应用于实际浇注后,铸坯质量得到明显改善。
As an economic section material, H-beam with its obvious mechanical andfunctional properties has been used in many fields of national economy developmentsince its first appearence. Beam blank is the idealist strand for H-beam production.Rolling H-beam by beam blank has some significant advantages, such as low energyconsumption, less process, high finished product rate and low cost. During beam blankcontinuous casting, there are many surface and inner defects in the strand which can notbe satisfied with the developing requirment of continuous casting technology innowadays. Therefore, studying on the thermo-mechanical behavior of mold and strandand researching on the key factors which shorten the mold service life and cause thedefects during beam blank continuous casting have great significance to the economyand science.
     Thermo-mechanical behavior of beam blank mold during continuous casting is oneof the key factors for the mold service life and product quality. In this paperthermo-elastic-plastic creep finite element models of beam blank molds were firstlyestablished, and the numerical method for the simulation of the cyclic process ofheating, casting and cooling were carried out. The user defined subroutines in ABAQUSwere developed to define the nonlinear material constitutive relationship and boundaryconditions. The distributions of temperature, distortion, and stress across the hot facesas well as the fatigue life of the two molds, the large hole mold and the small hole mold,were numerically simulated, based on which the influences of mold grinding thicknessand cooling water flow were discussed. The results show, there is a notable differencebetween molds with different water slot designs. The distributions of temperature anddistortion of the small hole mold are more uniform than those of the large hole mold,and the peak temperature of the former mold is smaller than that of the later mold.Increasing mold grinding thickness or cooling water flow is benifical for mold toachieve lower peak temperature and uniform temperature and distortion. An improvedwater slot design was proposed and it is superior to those molds by numerical analysis.
     It is also important for studying the solidification and distortion of strand duringmold to improve casting process and product quality. For simulating the solidificationand distortion of strand during mold, a method for the application of ferrostatic pressureon the front of solidification was proposed. By means of ABAQUS user defined subrountine UEL, a kind of ferrostatic pressure element shares the same nodes with thestrand element which was used to simulate the ferrostatic pressure on the front ofsolidification, was obtained. By means of GAPCON, the heat transfer between thestrand and mold was carried out. A transient thermo-elastic-plasitc finite element modelwas developed, and the influence of solutes microsegregation on material propertieswas taken into account. The distributions of gap between the strand and mold, strandand mold temperature, strand distortion and stress of two molds were obtained. Theresults show, gap is a key factor for the strand solidification, which must be controlled.The taper should be increased to reduce the gap in the flange tip, owing to the large gapand thin shell thickness.
     It is known that the surface temperature of the strand must be carefully controlledin the process because it is a key factor in inducing defects, such as internal and surfacecracks. Therefore, a three dimensional simulation method of moving heat tranferconditions was presented to calculate the solidification process of strand. The userdefined subroutines DFLUX and FLIM in ABAQUS were developed to apply thecomplex heat transfer boundary conditions. Based on the method, the temperaturedistribution of the strand was numerically investigated under original and improvedcooling schemes. The results show, the original cooling scheme could not meet themetallurgical principles of beam blank continuous casting. By the numerical simulationthat the uniformity of transverse surface temperature on cross-sections of the beamblank was improved, and better product quality was obtained after the improved coolingscheme was employed in the steel plant.
引文
[1]田燕翔.现代连铸新工艺、新技术与铸坯质量控制[M].北京:当代中国音像出版社,2004.
    [2]史宸兴.使用连铸冶金技术[M].北京:冶金工业出版社,1998.
    [3]蔡开科,程士富.连铸铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [4]蔡开科,连铸铸钢[M].北京:科学出版社,1990.
    [5]蔡开科,连铸结晶器[M].北京:冶金工业出版社,2008.
    [6] E.L. Jung, N.H. Heung, H.O. Kyu. A fully coupled analysis of fluid flow, heat transfer andstress in continuous round billet casting[J]. ISIJ International,1999,39(5):435-444.
    [7] N.H. Heung, E.L. Jung, Y. Tae et al. A finite element model for2-dimensional slice of caststrand[J]. ISIJ International,1999,39(5):445-454.
    [8]张家泉,催立新,陈志平等.板坯连铸结晶器温度场/应力场耦合模型[J].北京科技大学学报,2004,26(4):374-376.
    [9]盛义平.新型高速连铸结晶器的理论研究与实际应用[D].河北:燕山大学工学博士学位论文,2007.
    [10]盛义平,孔祥东,杨永利.连铸结晶器传热边界条件研究[J].中国机械工程,18(13):1615-1618.
    [11] J. Szekely, N.J. Themelis. Rate phenomena in process metallurgy[M]. NewYork:Wiley-Interscience,1971.
    [12]张健.圆坯连铸均匀二冷模式与铸坯表面裂纹扩展规律研究[D].重庆:重庆大学工学博士学位论文,2011.
    [13]萨莫伊洛维奇.连续铸钢的热过程[M].北京:冶金工业出版社,1987.
    [14]蔡开科.浇注与凝固[M].北京:冶金工业出版社,1987.
    [15] T.W. Clyne. Numerical modeling of directional solidification of metallic alloys[J]. MetalScience,1982,16(10):441-450.
    [16] K. Miyazawa, I. Muichi. Theroretical analysis on the solidification profile of slab in straighttype continuous casting machine[J]. Tetsu-to-Hagane,1974,60(7):1000-1006.
    [17] K. Sasaki, Y. Sugutani, M. Kawasaki. Heat transfer in spray cooling on hot surface[J].Tetsu-to-Hagane,1979,65(1):90-96.
    [18] E.A. Mizikar. Spray cooling investigation for continuous casting of billets and blooms[J]. Ironand Steel Engineer,1970,47(6):269-277.
    [19] K. Miyazawa, I. Mudi. Theroretical analysis on the solidification profile of slab in circular-arctype continuous casting machine[J]. Tetsu-to-Hagane,1974,60(7):1007-1012
    [20] T. Nozak. A secondary cooling pattern for preventing surface crack of continuous castingslabs[J]. Transactions of the Iron and Steel Institude of Japan,1978,18(6):330-338.
    [21]蒋冠珞.连铸板坯传热的计算机模拟[J].钢铁,1982,17(4):13-21.
    [22]蔡开科,杨吉春.连铸二冷区喷雾冷却特性研究[J].钢铁,1990,25(2):9-12.
    [23]张学军,张凤鹿.连铸二冷区气-水喷雾冷却传热模型[J].北京科技大学学报,1991,13(4):318-344.
    [24]宁振宇.板坯连铸鼓肚问题与辊列布置三维仿真研究[D].北京:北京科技大学工学硕士论文,2007.
    [25]吴卫平.双辊法薄带连铸空冷区传热过程计算机模拟[J].上海金属,1993,15(3):48-51.
    [26]张小平,梁爱生.近终形连铸技术[M].北京:冶金工业出版社,2001.
    [27]赵骥,陈伟,张玉柱.异型坯连铸技术及其研究现状[J].河北理工大学学报,2009,31(4):29-34.
    [28]刘英瑞,任志国.莱钢H型钢的开发研制[J].钢铁,2003,38(1):30-31.
    [29]关义,王小玲.异型坯连铸的特点与展望[J].包钢科技,2000,26(3):21-22.
    [30] H.P. Fastert, M.M. Wolf. Beam blank casting technology[M]. Pittsburgh:The AISE SteelFoundation,2003.
    [31] http://www.steel-grips.comnewsdeskeuropeslabs_and_beam_blanks_on_the_same_caster.html/.
    [32]汪开忠,茆勇.从异型坯连铸机的投产看近终形异型坯连铸技术的发展[J].连铸,2001,(3):1-3.
    [33]张兴中.近终形异型坯连铸技术[J].钢铁,1996,31(12):72-75.
    [34] P.E. Ponikvar. Achieving both high quality and high production rates on combination castingmachines at Maanshan, P.R.C. and Steel Dynamics Inc., USA[C]. AISTech2004ConferenceProceeding, Nashville,2004, Vol2:1077-1080.
    [35]刘建华,包燕平,杜松林等.近终形异型坯连铸特点分析[C].大方坯圆坯异型坯连铸技术研讨会论文集,包头,2007,17-28.
    [36]王旭东.连铸结晶器热、力在线检测技术及其应用基础研究[D].大连:大连理工大学工学博士论文,2008.
    [37] I.V. Samarasekera, J.K. Brimacombe. The thermal field in continuous-casting moulds[J].Canadian Metallurgical Quarterly,1979,18(3):251-266.
    [38] I.V. Samarasekera, D.L. Anderson, J.K. Brimacombe. The thermal distortion ofcontinuous-casting billet molds[J]. Metallurgical and Materials Transaction B,1982,13B(1):91-104.
    [39] I.V. Samarasekera, J.K. Brimacombe. The influence of mold behavior on the production ofcontinuously cast steel billets[J]. Metallurgical and Materials Transaction B,1982,13B(1):105-116.
    [40] T. Hashimoto, K. Ohnishi, M. Yamaguchi et al. An analysis of the thermal load of mold platesin a continuous casting plant[J]. Hitachi Zosen Technical Review,1982,43(3):1-9.
    [41] R.B. Mahapatra, J.K. Brimacombe, I.V. Samarasekera et al. Mold behavior and its influenceon quality in the continuous casting of steel slabs: Part I. Industrial trials, mold temperaturemeasurements, and mathematical modeling[J]. Metallurgical and Materials Transactions B,1991,22B(6):861-874.
    [42] R.B. Mahapatra, J.K. Brimacombe, I.V. Samarasekera. Mold behavior and its influence onquality in the continuous casting of steel slabs: Part II. Mold heat transfer, mold flux behavior,formation of oscillation marks, longitudinal off-corner depressions, and subsurface cracks[J].Metallurgical and Materials Transactions B,1991,22B(6):875-888.
    [43] T.G. O’Connor. Three-dimensional mathematical modeling of the thin slab continuous castingprocess[D]. Ph.D Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL,USA,1992.
    [44] T.G. O’Connor, J.A. Dantzig. Modeling the thin-slab continuous-casting mold[J].Metallurgical and Materials Transactions B,1994,25B(3):443-457.
    [45] G. Li. Analysis of thermal and mechanical behavior of high heat flux facing copper walls[D].Ph.D Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA,1996.
    [46] G. Li, B.G. Thomas, J.F. Stubbins. Modeling creep and fatigue of copper alloys[J].Metallurgical and Materials Transactions A,2000,31A(10):2491-2502
    [47] J.K. Park, B.G. Thomas I.V. Samarasekera et al. Thermal and mechanical behavior of coppermolds during thin-slab casting(I): Plant trial and mathematical modeling[J]. Metallurgical andMaterials Transactions B,2002,33B(3):425-436.
    [48] J.K. Park, B.G. Thomas I.V. Samarasekera et al. Thermal and mechanical behavior of coppermolds during thin-slab casting(II): mold crack formation[J]. Metallurgical and MaterialsTransactions B,2002,33B (3):437-449.
    [49] J.K. Park. Thermo-mechanical Phenomena in High Speed Continuous Casting Processes[D].Ph.D Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA,2002.
    [50] U. Yoon, J.K. Park, B.G. Thomas, et al. Mold crack formation of the funnel shaped moldduring thin slab casting[C].85th Steelmaking Conference Proceedings, ISS-AIME,Warrendale, PA,2002,245-257.
    [51] M. Langeneckert. Influence of mold geometry on heat transfer, thermocouple and moldtemperatures in the continuous casting of steel slabs[D]. MS Thesis, University of Illinois,2001.
    [52] B.G. Thomas, M. Langeneckert, L. Castellá et al. Optimisation of narrow face water slotdesign for Siderar slab casting mold[J]. Ironmaking and Steelmaking,2003,30(3):235-239.
    [53] X. Peng, J. Zhou and Y. Qin. Improvement of the temperature distribution in continuouscasting molds through the rearrangement of the cooling water slots[J]. Journal of MaterialsProcessing Technology,2005,167(2-3):508-514.
    [54]龙血松,彭向和.结晶器铜板温度及变形场的有限元分析[J].钢铁,2006,41(10):35-38.
    [55]张慧,陶红标,刘爱强,等.薄板坯连铸结晶器铜板温度及热流密度分布[J].钢铁,2005,40(7):25-28.
    [56]刘旭东,朱苗勇,程乃良.板坯连铸结晶器热行为研究[J].金属学报,2006,42(10):1081-1086.
    [57]刘旭东,朱苗勇,程乃良.板坯连铸结晶器的热弹塑性力学分析[J].金属学报,2006,42(11):1137-1142.
    [58] X. Liu, M. Zhu. Finite element analysis of thermal and mechanical behavior in a slabcontinuous casting mold[J]. ISIJ International,2006,46(11):1652-1659.
    [59]杨刚,李宝宽,于洋.薄板坯连铸结晶器铜板的三维传热分析[J].金属学报,2007,43(3):332-336.
    [60] B. Santillana, L.C. Hibbeler, B.G. Thomas et al. Heat transfer in funnel-mould casting: effectof plate thickness[J]. ISIJ International,2008,48(10):1380-1388.
    [61] L.C. Hibbeler. Thermo-mechanical behavior during steel continuous casting in funnelmolds[D]. Ph.D Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL,USA,2009.
    [62] X. Meng, M. Zhu. Thermal behavior of hot copper plates for slab continuous casting moldwith high casting speed[J]. ISIJ International,2009,49(9):1356-1361.
    [63] J.T. Dzierzawski. Continuous casting of beam blanks[J]. Iron and Steel Engineer,1999,36-41.
    [64] J.T. Dzierzawski. The Continuous casting of beam blanks[C]. The Second InternationalConference on Continuous Casting of Steel, Wuhan, China,1997,306-314.
    [65] B.G. Thomas, J. Jiang and D. Lorento. Optimization of water channel design in beam-blankmolds[C]. Proceeding of the5th European Continuous Casting Conference, Nice, France,2005,139-147.
    [66]王硕煜,杨钧.近终形异型坯连铸结晶器制造技术研究[J].安徽冶金科技职业学院学报,2006,16:61-65.
    [67] L.C. Hibbeler, S. Koric, K. Xu et al. Thermo-mechanical modeling of beam blank casting[C].AISTech2008Conference Proceedings, Pittsburgh, PA,2008,135-148.
    [68] H.L. Xu, G.H. Wen, W. Sun et al. Thermal behavior of molds with different water channelsand their influence on quality in continuous casting of beam blank[J]. Ironmaking andSteelmaking,2010,37(5):380-386.
    [69] H.L. Xu, G. H. Wen, W. Sun et al. Analysis of thermal behavior for beam blank continuouscasting mold[J]. Journal of Iron and Steel Research,2010,17(12):17-22.
    [70]熊跃兴,严波,罗伟等.异型坯连铸结晶器铜板温度场及改进方案研究[J].连铸,2010,(1):7-12.
    [71]蔡开科.连铸坯裂纹[J].钢铁,1982,17(9):45-55.
    [72]蔡开科.铸坯质量第四讲-连铸坯裂纹与钢的高温性能[J].连铸,1994,(4):42-45.
    [73]蔡开科.连铸坯质量控制[M].北京:冶金工业出版社,2010.
    [74] J.K. Brimacombe, K. Sorimachi. Crack formation in the continuous casting of steel[J].Metallurgical and Materials Transactions B,1977,8B(2):489-505.
    [75]乔学亮,胡镇华,崔昆.高温脆性的研究进展[J].钢铁,1992,27(11):59-63.
    [76] W.J. Childs, G.A. Wilber. The effects of thermal history and composition on the hot ductilityof low carbon steels[J]. Metallurgical and Materials Transactions A,1975,6A(9):1727-1735.
    [77]陈高兴.异形坯连铸过程温度场和应力场模拟[D].北京:北京科技大学硕士学位论文,2006.
    [78] J. Savage, W.H. Pritchard. The problem of rupture of the billet in the continuous casting ofsteel[J]. Journal of the Iron Steel Institute,1954,178:269-277.
    [79] A.W.D. Hills. Simplified theoretical treatment for the transfer of heat in continuous-castingmachine moulds[J]. Journal of the Iron Steel Institute,1965,203:18-26.
    [80] A.W.D. Hills, M. Moore. Solidification of pure metals under unidirectional heat flowconditions: II. Solidification with zero superheat[J]. Transactions of the Metallurgical Societyof AIME,1969,245(7):1481-1492.
    [81] J.W. Vonaidson. Computer simulation of heat transfer in continuous billets casting[C].Electric Furnace Conference Proceedings, Philadelphia,1966,24:780-790.
    [82] E.A. Mizikar. Mathematical heat-transfer model for solidification of continuous cast steelslabs[J]. Transactions of the Metallurgical Society of AIME,1967,239:1747-1753.
    [83] E.A. Mizikar. Spray cooling investigation for continuous casting machines based of billetsand blooms[J].Iron and Steel Engineer,1970,47(6):269-277.
    [84] J.K. Brimacombe, F. Weinberg. Continuous casting of steel part2: Theoretical and measuredliquid pool profiles in the mould region during the continuous casting of steel[J]. Journal ofIron Steel Institude,1973,211:24-33.
    [85] J.E. Lait, J.K. Brimacombe, F. Weinberg. Mathematical modeling of heat flow in continuouscasting of steel [J]. Ironmaking and Steelmaking,1974,1(2):90-97.
    [86] I.V. Samarasekera, J.K. Brimacombe. Application of mathematical models for theimprovement of billet quality[C]. Steelmaking Conference Proceedings, washington,1991,153-160.
    [87] B. Lally, L. Biegler, H. Henein. Finite difference heat-transfer modeling for continuous[J].Metallurgical and Materials Transactions B,1990,21B(4):761-770.
    [88] S. Louhenkilpi, E. Laitinen, R. Nimeninen. Real-time simulation of heat transfer incontinuous casting[J]. Metallurgical Transactions B,1993,24B(4):685-693.
    [89] A.K. Tieu, I.S. Kim. Simulation of the continuous casting process by a mathematical model[J].International Journal of Mechanical Sciences,1997,39(2):185-192.
    [90] R.A. Hardin, K. Liu, A. Kapoor et al. Development of a model for transient simulation andcontrol of a continuous steel slab caster[J]. Materials Processing in the Computer Age, Vol.3,Iron and Steel Society,1995,119-141.
    [91] C.A. Santos, J.A. Spim, M.C.F. Ierardi et al. The use of artificial intelligence technique for theoptimisation of process parameters used in the continuous casting of steel[J]. AppliedMathematical Modelling,2002,26:1077-1092.
    [92] C.A. Santos, J.A. Spim, A. Garcia. Mathematical Modeling and Optimization Strategies(Genetic algorithm and Knowledge Base) Applied to the Continuous Casting of Steel[J].Engineering Application of Artificial Intelligence,2003,16:511-527.
    [93] S. Louhenkilpi, M. M kinen, S. Vapalahti et al.3D Steady State and Transient SimulationTools for Heat Transfer and Solidification in Continuous Casting[J]. Materials Science andEngineering A,2005,135-138.
    [94] M. Alizadeh, H. Edris, A. Shafyei. Mathematical model of heat transfer for steel continuouscasting process[J]. International Journal of ISSI,2006,3(2):7-16.
    [95] W.H. Liu, Z. Xie, Z.P. Ji et al. Dynamic water modeling and application of billet continuouscasting[J]. Journal of Iron and Steel Research,2008,15(2):14-17.
    [96]蔡开科,吴元增.连续铸锭板坯凝固传热数学模型[J].金属学报,1983,19(1):33-40.
    [97]蔡开科,刘凤云.连铸坯凝固冷却过程的控制[J].北京钢铁学院学报,1983,(3):112-121.
    [98]韩传基,蔡开科,赵家贵等.板坯连铸二冷区凝固传热过程与控制[J].北京科技大学学报,1999,21(6):523-525.
    [99]王恩刚.关于连铸坯凝固传热有限元数值模拟的研究[J].炼钢,1996,(4):30-35.
    [100]郭亮亮,姚曼,尹合壁等.连铸圆坯结晶器的热流计算与讨论[J].金属学报,2006,42(9):983-988.
    [101]姚曼,詹慧英,王旭东等.圆坯连铸结晶器温度场模拟与坯壳厚度预测[J].北京科技大学学报,2007,29(11):1091-1095.
    [102] H.Y. Zhan, X.D. Wang, L.L. Guo et al. Real heat flux analysis of continuously casting roundbillet[J]. Journal of Iron and Steel Research, International,2008,15(1):25-29.
    [103]高江文,赵克文,沈厚发.连铸大方坯凝固传热过程的数值模拟[J].热加工工艺,2006,35(17):66-69.
    [104]王国新,张家泉,王玉昌等.大方坯连铸动态二冷与动态轻压下控制模型的开发与应用[J].系统仿真学报,2009,21(8):2453-2467.
    [105] J.H. Weiner, B.A. Boley. Elasto-plastic thermal stresses in a solidifying body[J]. Journal ofthe Mechanics and Physics of Solids,1963,11(3):145-154。
    [106] J.E. Kelly. Modeling the continuous casting of steel[D]. Ph.D Thesis, University of Illinois atUrbana-Champaign, Urbana-Champaign, IL, USA,1989.
    [107] B. Barber, A. Perkins. Strand deformation in continuous casting[J]. Ironmaking andSteelmaking,1989,16(6):406-411.
    [108] H.N. Han, J. Lee, T. Yeo et al. A finite element model for2-dimensional slice of cast strand[J].ISIJ International,1999,39(5):445-454.
    [109] Y. Meng, B.G. Thomas. Heat-transfer and solidification model of continuous slab casting:CON1D[J]. Metallugrical and Materials Transaction B,2003,34B(10):685-705.
    [110] Y. Meng. Modeling interfacial slag layer phenomena in the shell/mold gap in continuouscasting of steel[D]. Ph.D Thesis, University of Illinois at Urbana-Champaign,Urbana-Champaign, IL, USA,2004.
    [111] J.K. Park, B.G. Thomas, I.V. Samarasekera. Analysis of thermomechanical behaviour in billetcasting with different mould corner radii[J]. Ironmaking and Steelmaking,2002,29(5):359-375.
    [112] C. Li, B.G. Thomas. Thermomechanical finite-element model of shell behavior in continuouscasting of steel[J]. Metallugrical and Materials Transaction B,2004,35B(6):1151-1172.
    [113] C. Li. Thermal-mechanical model of solidifying steel shell behavior and its applications inhigh speed continuous casting of billets[D]. Ph.D Thesis, University of Illinois atUrbana-Champaign, Urbana-Champaign, IL, USA,2005.
    [114] M. Janik, H. Dyja, S. Berski et al. Two-dimensional thermo-mechanical analysis ofcontinuous casting process[J]. Journal of Materials Processing Technology,2004,153-154:578-582;
    [115] M. Janik, H. Dyja. Modelling of three-dimensional temperature field inside the mould duringcontinuous casting of steel[J]. Journal of Materials Processing Technology,2004,157-158:177-182;
    [116] S. Koric, B.G. Thomas. Efficient Thermo-mechanical model for Solidification Processes[J].International Journal for Numerical Methods in Engineering,2006,66(12):1955-1989.
    [117] S. Koric, L.C. Hibbeler, B.G. Thomas. Explicit coupled thermo-mechanical finite elementmodel of steel solidification[J]. International Journal for Numerical Methods in Engineering,2009,78(1):1-31.
    [118] L.C. Hibbeler. Thermo-mechanical behavior during steel continous casting in funnelmolds[D]. Ph.D Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL,USA,2009.
    [119]蔡开科,邵璐,刘新华.水平连铸凝固壳热应力模型研究[J].钢铁研究学报,1993,5(2):1-8.
    [120]宁振宇.板坯连铸鼓肚问题与辊列布置三维仿真研究[D].北京:北京科技大学硕士学位论文,2007.
    [121]杨秉俭,刘伟涛,苏俊义.薄板坯连铸结晶器中铸坯凝固应力发展的有限元分析[J].应用力学学报,1994,11(2):55-61.
    [122]严波,文光华,张培源等.薄板坯连铸结晶器内凝固坯壳的三维有限元分析[J].重庆大学学报,1996,19(3):28-34.
    [123]严波,文光华,张培源等. ISP型薄板坯连铸结晶器内凝固壳应力和应变数值分析[J].重庆交通学院学报,1997,16(1):44-49.
    [124]严波,文光华,张培源.薄板坯连铸结晶器内凝固坯壳的数值分析[J].应用力学学报,1998,15(4):43-48.
    [125]严波,文光华,张晓敏.板坯连铸结晶器内铸坯凝固及变形的热力耦合有限元分析[J].工程力学,2001,18(1):110-118.
    [126]严波,文光华,刘馨燕.小方坯连铸结晶器内凝固坯壳形成和变形的热力耦和有限元分析[J].应用力学学报,2001,18(4):71-76.
    [127]严波,吕欣,张晓敏,连铸结晶器内钢液凝固热传导有限元方法[J].重庆大学学报,2004,27(4):114-117.
    [128]冯科,韩志伟.连铸板坯应力应变场的二维/三维有限元分析[J].铸造技术,2009,30(3):10-13.
    [129] K. Kim, H.N. Han, T. Yeo et al. Analysis of surface and internal cracks in continuously castbeam blank[J]. Ironmaking and Steelmaking,1997,24(3):249-256.
    [130] J. Lee, T. Yeo, K.H. Oh et al. Prediction of cracks in continuously cast steel beam blankthrough fully coupled analysis of fluid flow, heat transfer, and deformation behavior of asolidifying shell[J]. Metallugrical and Materials Transaction A,2000,31A(1):225-237.
    [131]杨建伟,杜艳平,崔小朝.异形坯连铸过程流场与温度场耦合三维数值模拟[J].金属学报,2001,37(7):767-771.
    [132] J. Yang, Y. Du, R. Shi et al. Fluid flow and solidification simulation in beam blank continuouscasting process with3D coupled model[J]. Journal of Iron and Steel Research, International,2006,13(4):17-21.
    [133] F. Leingruber, C. Chimani, F. Wimmer.奥钢联近终形异型坯浇铸技术[J].工艺技术,2004,39:404-407.
    [134]娄娟娟,包燕平,刘建华等.连铸异型坯凝固过程的数值模拟[J].北京科技大学学报,2005,27(2):173-177.
    [135]朱立光,韩毅华. H型钢连铸结晶器内钢水凝固传热的数学模拟[J].钢铁,2008,43(11):49-52.
    [136] W. Chen, Y.Z. Zhang, C.J. Zhang et al. Numerical simulation of the thermo-mechanicalprocess for beam blank continuous casting[J]. Acta Metall Sinica,2007,20(4):241-250.
    [137] W. Chen, Y.Z. Zhang, C.J. Zhang et al. Thermo-mechanical simulation and parametersoptimization for beam blank continuous casting[J]. Materials Science and Engineering,2009,499(1):58-63.
    [138] S. Koric. Efficient thermo-mechanical model for solidification processes and its applicationsin steel continuous casting[D]. Ph.D Thesis, University of Illinois at Urbana-Champaign,Urbana-Champaign, IL, USA,2005.
    [139]徐海伦.连铸异形坯冷却过程模拟仿真机优化[D].重庆:重庆大学博士学位论文,2010.
    [140]曹晓兵,梁爱生,郭希学.带液芯控制的异型坯连铸二冷区动态控制模型[J].太原重型机械学院学报,2000,21(1):6-12.
    [141]周干水.马钢异形坯连铸机的工艺特点与实践[J].安徽冶金,2001,(3):39-41.
    [142]陈健,刘玉兰,王建军.马钢异型坯连铸中间包冶金性能数模研究[J].炼钢,1999,15(4):37-44.
    [143]崔荣峰,周俐,洪天亮等.异型坯中间包中钢液三维流场研究[J].安徽工业大学学报,2006,23(4):373-376.
    [144]叶景好,郭圣云.异形坯连铸机扇形辊子损坏研究与对策[J].连铸,2002,(2):20-22.
    [145] O. Masayuki, U. Tetsuo, S. Yutaka et al. Continuous casting of beam blanks[R]. KawasakiSteel Techical Report No.3,1981,13-25.
    [146] G. Li, B.G. Thomas, J.F. Stubbins. Modeling creep and fatigue of copper alloys[J].Metallurgical and Materials Transactions A,2000,31A:2491-2502.
    [147] ABAQUS User Manuals v6.4, ABAQUS, Inc.,2003.
    [148] Y. Won, B.G. Thomas. Simple model of microsegregation during solidification of steels[J].Metallurgical and Materials Transactions A,2001,32A:1755-1767.
    [149] H.D. Brody, M.C. Flemings. Solute redistribution during dendritc solidification[J].Transactions of TMS-AIME,1966,236:615-624.
    [150] K. Harste. Investigation of the shrinkage and the origin of mechanical tension during thesolidification and successive colling of cylindrical bars of Fe-C alloys[D]. PhD Thesis,Technical University of Clausthal,1989.
    [151] R.D. Pehlke, A. Jeyarajan, H. Wada. Summary of thermal properties for casting alloys andmolde materials[R]. National Science Foundation, Washington, United States,1982.
    [152] I. Jimbo, A.A.W. Cramb. The density of liquid iron-carbon alloys[J]. MetallurgicalTransactions B,1993,24B(1):5-10.
    [153]綦同法.钢的液相线温度的计算[J].辽宁冶金,1993,(5):24-27.
    [154]陈伟. H型钢异型坯表面裂纹和洁净度控制研究[D].秦皇岛:燕山大学博士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700