用户名: 密码: 验证码:
长白山针阔混交林主要凋落物分解及土壤动物的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林凋落物是森林生态系统有机物和养分的储存库,它的分解对促进森林生态系统正常的物质循环和养分平衡具有重要作用。土壤动物作为影响凋落物分解的重要生物因子,通过破碎、搅动、摄食、刺激(微生物活性)和接种(微生物)等活动,调控着分解过程。本论文采用网袋法对长白山针阔混交林4种主要凋落物(红松、水曲柳、紫椴和色木槭)单种及混合种分解过程进行为期2年的野外监测。综合运用方差分析、多变量分析、稀疏曲线法等,比较不同种凋落物在分解速率和元素释放上的差异;分析参与分解的土壤动物群落变化;研究土壤动物与分解速率和元素释放之间的关系,探讨不同土壤动物类群在该生态系统中的功能,并比较混合凋落物对分解速率、元素释放及土壤动物群落的影响。主要结论如下:
     (1)在2年分解试验期间,不同网袋内各种凋落物分解速率存在一定的季节变化,4种凋落物夏秋季分解速率高于冬春季,其中水曲柳全年分解速率相对较高。凋落物分解也存在一定的年际变化,水曲柳第一年的累计分解量显著高于第二年;色木槭为第二年高于第一年,而红松和紫椴年际差异不显著。单种凋落物分解速率差异较大,其中水曲柳分解最快,至试验结束几乎完全分解,其次是紫椴和色木槭,红松最慢。混合凋落物对分解速率的影响随分解阶段和凋落物种类组成不同而变化。
     (2)各凋落物分解过程中,N和P元素在分解第一年都有明显的富集,进入第二年除红松凋落物外,其他凋落物N和P逐渐释放。Ca元素,除红松凋落物在4mm和2mm网袋有富集外,其他3种凋落物则随分解而减少。C和Mg元素残留量在各种凋落物中均随分解而降低。Mn元素除水曲柳凋落物含量一直较高外,其他凋落物则随分解而降低。各种凋落物纤维素含量在分解期间呈波动变化,木质素含量则逐渐升高。方差分析显示凋落物种类,分解时间及其交互作用对各元素残留率都具有显著影响。混合凋落物对各元素释放影响不同,对C元素释放的影响随分解阶段而变化;对N元素释放具有促进作用,但主要体现在分解第一年;对P元素释的影响依混合凋落物物种组成和分解阶段而不同;对Ca、Mg和Mn元素释放主要具有一定的抑制作用。
     (3)参与凋落物分解的土壤类群共有42大类,分属于3门7纲(寡毛纲、腹足纲、蛛形纲、倍足纲、唇足纲、综合纲和昆虫纲)。其中优势类群为甲螨亚目、等节跳科和球角跳科,常见类群为辐螨亚目、革螨亚目、长角跳科、拟亚跳科、鳞跳科、线蚓科和双翅目幼虫。在分解过程中,各凋落物中土壤动物群落组成存在差异。水曲柳凋落物中土壤动物个体和类群密度高于其他3种凋落物,而红松最低,紫椴和色木槭介于两者之间。通过PCA、稀疏曲线和方差分析显示:凋落物性质是影响参与分解的土壤动物群落主要因素,而混合凋落物的影响则相对不明显。
     (4)参与凋落物分解的主要土壤动物类群(螨类、弹尾类、线蚓类和双翅目幼虫等)个体密度,土壤动物总个体和类群密度与凋落物分解速率之间存在显著的正相关关系。土壤动物对各种凋落物分解的作用存在差异性,其中对水曲柳分解促进最大,为16.87%,紫椴分解最小,为2.77%。土壤动物对C、N、Ca和Mg元素释放都具有明显的促进作用,而对P和Mn元素释放的影响相对微弱。不同土壤动物类群对元素释放率的作用大小依凋落物处理不同而有差异,并且土壤动物对凋落物分解及元素释放的促进作用主要体现在分解试验的第二年。
The litter decomposition plays a critical role in regulating the buildup of the forest soilorganic matter, releasing of nutrients for plant growth, and influencing the carbon cycling.Soil fauna play an important role in litter decomposition processes through breakdown oflitter, digestion and stimulation of microbial activities. A litter decomposition experiment wasconducted in a Pinus koraiensis mixed broad-leaved forest, which is one of the typical forestvegetation types in the Changbai Mountains (42°24′N,128°05′E), located in northeasternChina. The four most abundant tree specie litters in study site (Pinus koraiensis, Fraxinusmandshurica, Tilia amurensis and Acer mono) were used by litterbags, including4mm,2mmand0.01mm in order to control the different body size of soil fauna exiting or entering, tostudy the decomposition and nutrient release of the monoculture and mixed litters. FromOctober2009to October2011, litter samples were carefully retrieved from the field tolaboratory on the26th of each of the four months of April, June, August, and October. Basedon the data of decay rate, dynamics of the C, N, P, Ca, Mg and Mn of litter and soil faunacommunity, the combination of variance analysis, multivariate analysis, rarefaction andmultiple regressions were used to analyze the dynamics of litter decomposition process,nutrient release, and soil fauna community, to establish the relationship between the soil faunaand litter decomposition,and to explore the role of different soil fauna groups in litterdecomposition and nutrient releasing. The main results are summarized as follows:
     (1) During the2years study period, the litter decay rate had seasonal dynamics with theseasonal fluctuation of temperature and moisture. The loss rate of litter in summer andautumn were higher than that in winter and spring. The four different litter speciesdecomposed in monoculture at different rates, ranging from almost60%mass loss for litter ofP. koraiensis to almost complete mass loss for F. mandshurica after two-year of incubation.Three broadleaf leaf litters mixed with pine litter had idiosyncratic effects on the totaldecomposition rates, and the direction of these effects varied with the feld incubation timeand composition species. At the early stage of decomposition, all litter mixing treatmentsshowed that the remaining litter mass was signifcantly higher than that of the predictedvalues, indicating that the litter mixing retarded the decomposition. However, the signifcanceof this difference disappeared in the later phases of the study period, with the exception ofP.koraiensis+T.amurensis, indicating that the litter mixing had not brought positive effects tolitter decomposition.
     (2) Repeated measures ANOVA showed that litter treatments, field incubation time andtheir interaction had a significant impact on the rate of elements releasing. For N and P, alllitter treatments had an obvious enrichment process in the first year. While in the second year,the absolute content of the elements in each litter treatments gradually reduced except forP.koraiensis. For the Ca, the P.koraiensisthe in4mm and2mm litterbags also hadenrichments process; those in the other three kinds of litter gradually reduced with decomposition. For C and Mg, they reduced with decomposition in all kinds of litter. Mnelement content also reduced with decomposition in addition to F.mandshrica litter. Thechanges of cellulose content in all litters were fluctuated, while lignin content increasedduring the experiment. By comparing the observed values of each element releasing rate withthat of predicted values, it showed that the mixture of litter had different effects on differentelements releasing. For C releasing, the direction of effects varied with field incubation time.For N element, the mixed litter promoted the rate of releasing, but it was mainly manifested inthe first year of decomposition. For P element, it had idiosyncratic effects on the release rate,and the direction of these effects varied with the field incubation time and compositionspecies. For Ca, Mg and Mn elements, it had a certain inhibitory effects, with exception of theP.koraiensis+F.mandshurica+T.amurensis+A.mono for Ca release rate.
     (3)42groups of soil fauna were obtained in litterbags during the2years study period.The most abundance taxa were Acarina, Collembola Enchytraeidae and Diptera (larvae).Rarefaction curves showed that the species richness was signifcantly different among the fourmonoculture litters. F. mandshurica showed the highest richness of soil fauna, while P.koraiensis showed the lowest. The PCA results showed that the composition of the soil faunacommunities varied among the four monoculture litter species during the decompositionperiod. By PCA, rarefaction and variance analysis, the litter mixture treatments did notsupport more species richness of soil fauna than the components of monoculture litter. Theindependent t-tests showed that the litter mixing did not promote the total density of richness,abundance and diversity of soil fauna (relative to the predicted values).
     (4) Soil fauna had great contribution to litter decomposition, and also had greatinfluences on the element cycle in ecosystems. There were significant positive relationshipsbetween individual and group’s density of soil fauna and litter decay rate. Throughout theexperimental period, litter species, field incubation time, mesh size and they interaction had asignificant impact on the litter decomposition rate (P<0.05). Contribution rate of soil fauna toF. mandshurica litter decomposition was great,16.87%; less to T. amurensis litterdecomposition,2.77%after two-year study period. The main groups of soil fauna individualdensity (Acarina, Collembola, Enchytraeidae and Diptera (larvae) and total soil fauna densityhad signifcantly positive relative to releasing of C, N, Ca and Mg, while had weak relative toP and Mn elements. The Contribution of different group soil fauna (macrofauna,meso-microfauna) to litter decomposition and nutrient elements releasing were varied amonglitter treatments. In addition, the soil fauna accelerated to litter decomposition and nutrientelements releasing mainly manifested in the second year of the decomposition experiment.
引文
[1]Kevan D K M. Soil Zoology [M]. London: Butterworths Scientific Publications,1955.
    [2]尹文英.土壤动物学的研究近况[J].生命科学,1993,5(3):1-4.
    [3]Huhta V. The role of soil fauna in ecosystem:Ahistorical review [J]. Pedobiologia,2007,50(6):489-495.
    [4]张志罡,孙继英,胡波,等.土壤动物研究综述[J].生命科学研究,2006,10(4):72-75.
    [5]尹文英.土壤动物学研究的回顾与展望[J].生物学通报,2001,36(8):1-3.
    [6]傅声雷.土壤生物多样性的研究概况与发展趋势[J].生物多样性,2007,15(2):109-115.
    [7]Fu S L, Zou X M, Colleman D. Highlights and perspectives of soil biology and ecology research inChina [J]. Soil biology and Biochemistry,2009,41(5):868-876.
    [8]Wolter V, Silver W L, Bignell D E, et al. Effects of global changed on above-and belowgroundbiodiversity in terrestrial ecosystems: implications for ecosystem functioning [J]. BioScience,2000,50(12):1089-1098.
    [9]Coply J. Ecology goes underground [J]. Nature,2000,406:452-454.
    [10]Brussaard L, Behan-Pelletier V M, Bignell D E, et al. Biodiversity and ecosystem functioning in soil[J].AJournal of the Human Environment,1997,26:563-570.
    [11]Wardle D A. Communities and ecosystems: linking the aboveground and belowground components [M].New Jersey: Princeton University Press,2002.
    [12]Johnson D, Krsek M, Wellington E M H. Soil invertebrates disrupt carbon flow through fungalnetworks [J]. Science,2005,309:1047.
    [13]Mulder C, Den Hollander H A, Hendrik AJ. Aboveground herbivory shapes the bimass distribution andflux of soil invertebrates [J]. Public Library of Science ONE,2009,3(10):1-7.
    [14]刘强,彭少麟.植物凋落物生态学[M].北京:科学出版社,2010.
    [15]Coleman D C, Whitman W B. Linking species richness,biodiversity and ecosystem function in soilsystems [J]. Pedobiologia,2005,49:479-497.
    [16]Brussard L. Soil fauna, guilds, functional groups and ecosystem processes [J]. Applied Soil Ecology,1998,9:123-135.
    [17]孙儒泳,李庆芬,牛翠娟,等.基础生态学[M].北京:高等教育出版社,2002.
    [18]张子祯.长白山地理系统论文集(第一辑).长春:东北师范大学出版社,2010.
    [19]杨美华.长白山的气候特征及北坡垂直带气候带.气象学报,1981,39(3):311-320.
    [20]张荣祖,杨明宪,陈鹏,等.长白山北坡森林生态系统土壤动物初步调查[J].森林生态系统,1980,1:133-152.
    [21]陈鹏,张一.长白山北坡冰缘环境与土壤动物[J].地理科学,1983,3(2):133-140.
    [22]李雪峰,韩士杰,胡艳玲,等.长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J].应用生态学报,2008,19(2):245-251.
    [23]郭忠玲,郑金萍,马元丹,等.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报,2006,26(4):1037-1046.
    [24]Kevan D K McE. Soil Zoology [M]. London: Butterworths,1955.
    [25]尹文英,杨逢春,王振中,等.中国亚热带土壤动物[M].北京:科学出版社,1992.
    [26]青木春一.土壤动物学[M].东京:北隆馆,1980.
    [27]武海涛,吕宪国,杨青,等.土壤动物主要生态特征与生态功能研究进展[J].土壤学报,2006,43(2):314-323.
    [28]Yin X Q, Song B, Dong W H, et al. A review on the eco-geography of soil fauna in China [J]. Journalof Geographical Sciences,2010,20(3):333-346.
    [29]Wall D W, Moore J C. Interactions underground: soil biodiversity, mutualism and ecosystem process [J].BioScience,1999,49:109-117.
    [30]忻介六.土壤动物知识[M].北京:科学出版社,1986.
    [31]Petersen H, Luxton M. A comparative analysis of soil fauna population and their role in decompositionprocesses [J]. Oikos,1982,39:288-388.
    [32]Swift M J, Heal O W, Anderson J M. Decomposition in Terrestrial Ecosystems [M]. Oxford: Blackwell,1979.
    [33]《土壤动物研究方法手册》编写组编.土壤动物研究方法手册[M].北京:中国林业出版社,1998.
    [34]André H M, Ducarme X, Lebrum P. Soil biodiversity: myth, reality or conning?[J]. Oikos,2002,96:2-24.
    [35]R mbke J, Sousa J P, Schouten T, et al. Monitoring of soil organisms: a set of standardized fieldmethods proposed by ISO [J]. European Journal of Soil biology,2006,42:61-64.
    [36]毛小芳,李辉信,王同,等.土壤线虫三种分离方法效率比较[J].生态学杂志,2004,23(3):149-151.
    [37]Remmert H. Body size of terrestrial arthropods and biomass of their populations in relation to theabiotic parameters of their Milieu [J]. Oecologia,1981,50:12-13.
    [38]Berlese A. Apparecchio per raccogliere presto ed in gran numero piccoli Artropodi [J]. Redia,1905,2:85-89.
    [39]Tullgren A. Ein sehr einiacher Berlese apparat fur terricole tierforen[J]. Z.angew. Ent.,1917,4:149-150.
    [40]张志丹,董炜华,魏健,等.土壤动物学研究进展[J].中国农学通报,2012,28(29):242-246.
    [41]Kuhnelt W. Soil Biology [M]. London: Faber and Faber,1961.
    [42]Vossvrinck C R, Coleman D C, Woolley T A. Abiotic and biotic factors in litter decomposition insemiarid grassland [J]. Ecology,1979,60:265-271.
    [43]Moldenke A R, Lattin J D. Density and diversity of arthropods as “biological probes” of complex soilphenomena [J]. Northwest Environmental Journal,1990,6(2):409-410.
    [44]Lavalle P, SpainAV. Soil Ecology [M]. New York: KluwerAcademic Publishers,2001.
    [45]Bongers T, Ferris H. Nematode community structure as a bioindicator in environmental monitoring [J].Trends in Ecology and Evolution,1999,14:14-19.
    [46]Ekschmitt K, Bakonyi G, Bongers M, et al. Nematode community structure as indicator of soilfunctioning in European grassland soil [J]. European Journal of Soil Biology,2001,37:263-268.
    [47]Panesar T S, Marshall V G, Barclay H J. Abundance and diversity of soil nematode in chronosequencesof coastal Douglas fir forests on Vancouver Island, British Columbia [J]. Pedobiologia,2001,45:193-212.
    [48]Boopathy R. Bioremediation of explosives contaminated soil [J]. International Biodeterioration andBiogradation,2000,46:29-36.
    [49]Rajendran P, Muthukrishnan J, Gunasekaran P. Microbes in heavy metal remediation [J]. Indian Journalof Experimental Biology,2003,41:935-944.
    [50]Fitter A H, Gilligan C A, Hollingworth K, et al. Biodiversity and ecosystem function in soil [J].Functional Ecology,2005,19:369-377.
    [51]Doblas-Miranda E, Sánchez-Pi ero F, González-Megías A. Different structuring factors but connecteddynamics shape litter and belowground soil macrofaunal food webs [J]. Soil biology and biochemistry,2009,41:2543-2550.
    [52]SugdenA, Stone R,Ash C. Ecology in the underworld [J]. Science,2004,304:1613.
    [53]Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: current knowledge andfuture challenges [J]. Science,2001,294:804-808.
    [54]Wardle D A, Bardgett R D, Klironomos J N, et al. Ecological Linkages Between Aboveground andBelowground Biota [J]. Science,2004,304:1629-1633.
    [55]张荣祖.开展土壤动物学研究[J].动物学杂志,1981,3:61-64.
    [56]李景科,陈鹏.土壤动物区系生态地理研究[M].长春:东北师范大学出版社,1993.
    [57]殷秀琴.东北森林土壤动物研究[M].长春:东北师范大学出版社,2001.
    [58]王宗英.中国土壤动物研究的新进展:评殷秀琴等著《东北森林土壤动物研究》[J].地理研究,2003,22(1):1.
    [59]张雪萍,黄丽蓉,姜丽秋.大兴安岭北部森林生态系统大型土壤动物群落特征[J].地理研究,2008,27(5):509-518.
    [60]张武,张雪萍.大兴安岭不同冻土带沼泽和湿草甸土壤动物群落结构特征[J].湿地科学,2013,11(1):145-150.
    [61]尹文英.中国土壤动物学研究10年进展[J].中国科学基金,1997,48-51.
    [62]廖崇惠,李建雄.华南热带和亚热带地区土壤动物群落生态[M].广州:广东科技出版社,2008.
    [63]Xiaodong Yang, Jin Chen. Plant litter quality influences the contribution of soil fauna to litterdecompotion in humid tropical forest, southwestern Chin [J]. Soil Biology and Biochemistry,2009,41:910-918.
    [64]杨效东,邹晓明.西双版纳热带季节雨林凋落物叶分解与土壤动物群落:两种网孔分解袋的分解试验比较[J].植物生态学报,2006,30(5):791-801.
    [65]Wu P F, Liu S R, Liu X L. Composition and spatio-temporal changes of soil macroinvertebratecommunities in the biodiversity hotspot of the northern Hengduanshan Mountains, China [J]. Plantand Soil,2012,357:321-338.
    [66]吴鹏飞,刘兴良,刘世荣.米亚罗林区冬季大型土壤动物的空间分布特征[J].土壤学报,2011,4(3):659-664.
    [67]吴鹏飞,刘兴良,刘世荣.米亚罗亚高山草甸冬春两季土壤动物群落特征的比较[J].草业学报,2009,18(5):123-129.
    [68]张洪芝,吴鹏飞,杨大星,等.青藏东缘若尔盖高寒草甸中小型土壤动物群落特征及季节变化[J].生态学报,2011,31(15):4385-4397.
    [69]殷秀琴,安静超,陶岩,等.拉萨河流域健康湿地与退化湿地大型土壤动物群落比较研究[J].资源科学,2010,32(9):1643-1649.
    [70]刘新民,关宏斌,刘永江,等.科尔沁沙质放牧草地土壤动物多样性特征研究[J].中国沙漠,2000,20(6):29-32.
    [71]刘新民,杨劫.半干旱区几种典型生境大型土壤动物群落多样性比较研究[J].中国沙漠,2005,25(2):216-222.
    [72]刘任涛,赵哈林,赵学勇.半干旱区草地土壤动物多样性的季节变化及其与温湿度的关系[J].干旱区资源与环境,2013,27(1):97-101.
    [73]辛未冬,殷秀琴,宋博.松嫩草原地形分异对土壤动物分布格局的影响[J].地理研究,2013,32(3):413-420.
    [74]林琳,邬天媛,李景科,等.大庆草甸草原区大型土壤动物功能类群[J].地理研究,2013,32(1):41-54.
    [75]高权荣,刘永江,石珍宝.内蒙古锡林河中游草原生态系统土壤昆虫调查研究初报[J].中国草地,2002,24(4):75-78.
    [76]Wu H T, Lu X G, Jiang M, et al. Impacts of soil fauna on litter decomposition at different successionstages of wetland in Sanjiang Plain, China [J]. Chinese Geography Science,2009,19(3):258-264.
    [77]武海涛,吕宪国,姜明,等.三江平原典型湿地土壤动物群落结构及季节变化[J].湿地科学,2008,6(4):459-465.
    [78]Liu J L, Li F R, Liu C A, et al. Influences of shrub vegetation on distribution and diversity of a groundbeetle community in a Gobi desert ecosystem [J]. Biodiversity and Conservation,2012,21:2601-2619.
    [79]刘继亮,李峰瑞,刘七军,等.黑河流域荒漠生态系统地面土壤动物群落的组成与多样性[J].中国沙漠,2010,30(2):342-349.
    [80]Li F R, Liu J L, Liu C A, et al. Shrubs and species identity effects on the distribution and diversity ofground-dwelling arthropods in a Gobi desert [J]. Journal of Insect Conservation,2013,17(2):319-331.
    [81]刘任涛,赵哈林,赵学勇.流动沙地灌丛内外生境中土壤动物群落结构研究[J].中国沙漠,2013,33(1):167-173.
    [82]林英华,张夫道,杨学云,等.陕西农田土壤动物群落与长期施肥环境的灰色关联度分析[J].2005,11(5):609-614.
    [83]殷秀琴,王海霞,周道玮.松嫩草原区不同农业生态系统土壤动物群落特征[J].生态学报,2003,23(6):1071-1078.
    [84]杨冬青,高峻.城市生态系统中土壤动物研究及应用进展[J].生态学杂志,2002,21(5):54-57.
    [85]王金凤,由文辉.上海城市绿地生境中春季大型土壤动物群落结构研究[J].生态与农村环境学报,2007,23(1):19-23.
    [86]王海霞,殷秀琴,周道玮.松嫩草原区农牧林复合系统中小型土壤动物群落生态研究[J].应用生态学报,2003,14(10):1715-1718.
    [87]刘任涛,朱凡,赵哈林.北方农牧交错区土地利用覆盖变化对大型土壤动物群落结构的影响[J].草业学报,2013,21(4):643-649.
    [88]肖红梅,刘新民.内蒙古中部农牧交错区中小型土壤动物群落特征研究[J].内蒙古师范大学学报(自然科学汉文版),2005,34(1):96-101.
    [89]Li J X, Hong M, Yin X Q, et al. Effects of the accumulation of the rare earth elements on soilmacrofauna community [J]. Journal of rare earths,2010,28(6):957-964.
    [90]周焕新.重金属铅对土壤动物群落的影响[J].山西农业科学,2010,38(6):37-39.
    [91]王振中,张友梅,夏卫生,等.有机磷农药对土壤动物群落结构的影响研究[J].生态学报,1996,16(4):357-366.
    [92]李忠武,王振中,邢协加,等.甲胺磷农药污染对土壤动物影响的研究[J].环境科学,1997(6):46-50.
    [93]吴玉红,蔡青年,林超文,等.四川紫色土丘陵区不同土地利用方式下大型土壤动物群落结构[J].中国生态农业学报,2009,17(1):34-40.
    [94]朱强根,朱安宁,张佳宝,等.黄淮海平原保护性耕作下土壤动物短期动态研究[J].土壤通报,2010,41(4):819-824.
    [95]吴东辉,张柏,陈鹏.长春市不同土地利用条件下大型土壤动物群落结构与组成[J].动物学报,,2006,52(2):279-287.
    [96]冯凤玲,成杰民,王德霞.蚯蚓在植物修复重金属污染土壤中的应用前景[J].土壤通报,2006,37(4):809-814.
    [97]陈建秀,麻智春,严海娟,等.跳虫在土壤生态系统中的作用[J].生物多样性,2007,15(2):154-161.
    [98]任国栋,于有志.中国荒漠半荒漠的拟步甲科昆虫[M].保定:河北大学出版社,1999.
    [99]贺达汉,辛明,长有德,等.宁夏荒漠草原针毛收获蚁对植物种子的觅食作用[J].生态学报,2003,23(6):1063-1070.
    [100]长有德,贺达汉.中国西北地区蚂蚁区系特征[J].动物学报,2002,48(3):322-332.
    [101]梁文举,张万民,李维光,等.施用化肥对黑土地区线虫群落组成及多样性产生的影响[J].生物多样性,2001,9:237-240.
    [102]吴纪华,宋慈玉,陈家宽.食微线虫对植物生长及土壤养分循环的影响[J].生物多样性,2007,15(2):124-133.
    [103]李辉信,毛小芳,胡锋,等.食真菌线虫与真菌的相互作用及其对土壤氮素矿化的影响[J].应用生态学报,2004,15(12):2304-2308.
    [104]张宝贵.蚯蚓与微生物的相互作用[J].生态学报,1997,17(5):556-560.
    [105]罗天相,李辉信,王同,等.线虫和蚯蚓对土壤微量气体排放的影响[J].生态学报,2008,28(3):993-999.
    [106]徐国良,莫江明,Brown Sandra,等.土壤动物对模拟N沉降的响应[J].生态学报,2004,24(10):2245-2251.
    [107]Xu G L, Schleppi P, Li M H. Negative responses of Collembola in a forest soil (Alptal) underincreased atmospheric N deposition [J]. Environmental Pollution,2009,157:2030-2036.
    [108]McNaughton S J, Oesterheld M, Frank D A, Williams K J. Ecosystem level patterns of primaryproductivity and herbivory in terrestrial habitats [J]. Nature,1989,341:142-144.
    [109]Chapin F S Ⅲ, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology [M]. New York:Springer-Verlag,2002.
    [110]Ebermayer E. Die gesamte Lehre der Waldstreu mit Rücksicht auf die Chemische Statik desWaldbaues [M]. Berlin: Springer,1876.
    [111]Tenney F G, Waksman S A. Composition of natural organic materials and their decomposition in thesoil: IV. The nature and rapidity of decomposition of the various organic complexes in different plantmaterials under aerobic conditions [J].1929, Soil Science,28:55-84.
    [112]Melin E. Biological decomposition of some types of litter from North American forests [J]. Ecology,1930,11:72-101.
    [113]Gustafson F G. Decomposition of the leaves of some forest trees under field conditions [J]. PlantPhysiology,1943,18:704-707.
    [114]Jenny H, Gessel S P, Bingham F T. Comparative study of decomposition rates of organic matter intemperate and tropical regions [J]. Soil Science,1949,68:419-432.
    [115]Burges A. The release of cations during the decomposition of forest litter [C]. The6th internationalCongres. Soil Science Paris II,1956,48:741-745.
    [116]Olson J S. Energy storage and the balance of producers and decomposers in ecological systems [J].Ecology,1963,44:322-331.
    [117]Attiwill P M. The loss of elements f rom decomposing litter [J]. Ecology,1968,49(1):142-145.
    [118]Thomas W A. Decomposition of loblolly pine needles with and without addition of dogwood leaves[J]. Ecology,1968,49(3):568-571.
    [119]Merrill W, Cowling E B. Role of nitrogen in wood deterioration: amounts and distribution in treestems [J]. Canadian journal of botany-revue canadienne de botanique,1966,44:1555-1580.
    [120]Williams J E, Wiegert R G. Effects of naphthalene application on a coastal plain broomsedge(Andropogon) community [J]. Pedobiologia,1971,11:58-65.
    [121]Crossley DA, Hoglund MP.. Alitter-bag mehtod for the study of microarthropods inhabiting leaf litter[J]. Ecology,1962,43:571-573.
    [122]Wiegert R G. Litterbag studies on microarthropod populations in three South Carolina old fields [J].Ecology,1974,55:94-102.
    [123]Drobnik J. On the role of toluene in the measurement the activity of soil enzymes [J]. Plant and Soil,1961,14:94-95.
    [124]Berg B. Decomposition of root litter and some factors regulating the process: long-term root litterdecomposition in a Scots pine forest [J]. Soil Biology and Biochemistry,1984,16(6):609-617.
    [125]Berg B, Ekbohm G. Nitrogen immobilization to decomposing needle litter at variable carbon-nitrogenratios [J]. Ecology,1983,64:63-67.
    [126]Berg B, Ekbohm G. Decomposing needle litter in lodgepole pine (Pinus contorta) and Scort pine(Pinus sylvestris) monocultural systems [J]. Scandinavian Journal of Forest Research,1993,8:457-465.
    [127]Berg B, Meentemeyer V. Litter quality in a north European transect versus carbon storage potential [J].Plant and Soil,2002,242:83-92.
    [128]Berg B, McClaugherty C. Plant Litter: Decomposition, humus formation, carbons sequestration [M].New York: Springer-Verlag,2007.
    [129]Vitousek P M. Beyond global warming: ecology and global change [J]. Ecology,1994,75:1861-1876.
    [130]Aerts R, Caluwe H D. Effects of nitrogen supply on canopy structure and leaf nitrogen distribution inCarex species [J]. Ecology,1994,75(5):1482-1490.
    [131]Gerlind B, De Deyn, Wim H. Van der Putten. Linking aboveground and belowground diversity [J].Trends in Ecology and Evolution,2005,20:625-633.
    [132]FindlayS, Carreiro M, Krischik V, et al. Effects of damage to living plants on leaf litter quality [J].EcolgicalApplications,1996,6:269-275.
    [133]Song F Q, Fan X X, Song R Q. Review of mixed forest litter decomposition researches [J]. ActaEcologica Sinica,2010,30:221-225.
    [134]Gartner T B, Cardon Z G.. Decomposition dynamics in mixed-species leaf litter [J]. Oikos,2004,104:230-246.
    [135]Jacob M, Weland N, Platner C, et al. Nutrient release from decomposing leaf litter of temperatedeciduous forest trees along a gradient of increasing tree species diversity [J]. Soil Biology andBiochemistry,2009,41,2122-2130.
    [136]Aubert M, Margerie P, Trap J, et al. Aboveground–belowground relationships in temperate forests:Plant litter composes and microbiota orchestrates [J]. Forest Ecology and Management,2011,259:563-572.
    [137]Szanser M, Ilieva-Makulec K, Kajak A, et al. Impact of litter species diversity on decompositionprocesses and communities of soil organisms [J]. Soil Biology and Biochemistry,2011,43:9-19.
    [138]Bardgett R D, Shine A. Linkages between plant litter diversity, soil microbialbiomass and ecosystemfunction in temperate grasslands [J]. Soil Biology and Biochemistry,1999,31:317-321.
    [139]Blair, J.M., Parmelee, R.W., Beare, M.H.,1990. Decay rates,nitrogen fluxes, and decomposercommunities in single-and mixed-species foliar litter [J]. Ecology,71,1976-1985.
    [140]Hansen R A. Effects of habitat complexity and composition on a diverse litter microarthropodassemblage [J]. Ecology,2000,81,1120-1132.
    [141]Gie elamann U C, Martins K G, Br ndle M, et al. Diversity and ecosystem functioning: litterdecomposition dynamics in theAtlantic Rainforest[J].Applied Soil Ecology,2010,46:283-290.
    [142]Ilieve-Makulec K, Olejniczak I, Szanser M. Response of soil micro-and mesofauna to diversity andquality of plant litter [J]. European Journal of Soil Biology,2006,42: S244-S249.
    [143]Ball B A, Bradford M A, Coleman D C, et al. Linkages between below and aboveground communities:Decomposer responses to simulated tree species loss are largely additive [J]. Soil Biology andBiochemistry,2009,41:1155-1163.
    [144]Li Q, Moorhead D L, DeForest J L, et al. Mixed litter decomposition in a managed Missouri Ozarkforest ecosystem [J]. Forest and Ecololgy Managment,2009,257:688-694.
    [145]Hector A, Beale A, Minns A, et al. Consequences of the reduction of plant diversity for litterdecomposition: effects through litter quality and microenvironment [J]. Oikos,2000,90:357-371.
    [146]Robins on C H, KirkhamJ B, Littlewood R. Decomposition of root mixtures from high artic plants: amicrocosm study[J]. Soil Biology and Biochemistry,1999,31:1101-1108.
    [147]Nilsson M C, Wardle D A, Dahlberg A. Effects of plant litte species composition and diversity on theboreal forest plants oil system [J]. Oikos,1998,86:16-26.
    [148]Hooper D U, Bignell D E, Brown V K, et al. Interactions between aboveground and belowgroundbiodiversity in terrestrial ecosystems: Patterns, Mechanisms, and Feedbacks [J]. Bioscience,2000,50:1049-1061.
    [149]Nielsen U N, Osler G H R, Campbell C D, et al. The Enigma of Soil Animal Species DiversityRevisited: The Role of Small-Scale Heterogeneity [J]. PLoS ONE,2010,5(7): e11567.
    [150]Wardle D A, Yeates G W, Barker G M, et al. The influence of plant litter diversity on decomposerabundance and diversity [J]. Soil Biology and Biochemistry,2006,38:1052-1062.
    [151]Sch dler M, Brandl R. Do invertebrate decomposers affect the disappearance rate of litter mixtures?[J]Soil Biology and Biochemistry,2005,37:329-337.
    [152]程伯容,许广山,丁桂芬,等.长白山主要森林生态系统的凋落量及养分含量[J].森林生态系统研究,1984,19-24.
    [153]李雪峰,韩士杰,郭忠玲,等.红松阔叶林内凋落物表层与底层红松枝叶的分解动态[J].北京林业大学学报,2006,28(3):8-13.
    [154]宋新章,江洪,余树全,等.中亚热带森林群落不同演替阶段优势种凋落物分解试验[J].应用生态学报,2009,20(3):537-542.
    [155]屠梦照.鼎湖山南亚热带常绿阔叶林凋落物量[J].热带亚热带森林生态系统研究,1984,2:18-21.
    [156]翁轰,李志安,屠梦照,等.鼎湖山森林凋落物量及营养元素含量研究[J].植物生态学报,1993,17(4):299-304.
    [157]刘强,彭少麟,毕华.热带亚热带森林凋落物交互分解的养分动态[J].北京林业大学学报,2005,27(1):24-32.
    [158]张家武.马尾松火力楠混交林凋落物动态及其对土壤养分的影响[J].应用生态学报,1993,4(4):359-363.
    [159]温远光,韦炳二,黎洁娟.亚热带森林凋落物产量及动态的研究[J].林业科学,1989,25(6):542-547.
    [160]何敦煌,林鹏.苏门答腊金合欢群落生物量和凋落物量的研究[J].植物生态学与地植物学报,1991,15(1):1-8.
    [161]林鹏,卢昌义,王恭礼,等.海南岛河港海莲红树林凋落物动态的研究[J].植物生态学与地植物学报,1990,14(1):6.
    [162]吴仲民,卢俊培,村志鹄.海南岛尖峰岭热带山地雨林及其更新群落的凋落物量与贮量[J].植物生态学报,1994,18(4):306-313.
    [163]刘文耀,荆桂芬,和爱军.滇中常绿阔叶林及云南松林凋落物和死地被物中的养分动态[J].植物学报,1990,32(8):637-646.
    [164]赵谷风,蔡延,罗媛.青冈常绿阔叶林凋落物分解过程中营养元素动态[J].生态学报,2006,26(10):3286-3295.
    [165]莫江明,布朗,孔国辉,等.鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究[J].植物生态学报,1996,20(6):534-542.
    [166]李淑兰,陈永亮.不同落叶林林下凋落物的分解与养分归还[J].南京林业大学学报(自然科学版),2004,28(5):59-62.
    [167]李雪峰,张岩,牛丽君,等.长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解[J].生态学报,2007,27(5):1782-1790.
    [168]莫江明,薛花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J].生态学报,2004,24(7):1413-1420.
    [169]徐国良,莫江明,周国逸,等.氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J].生态环境,2005,14(6):901-907.
    [170]王晖,莫江明,薛璟花,等.氮沉降增加对森林凋落物分解酶活性的影响[J].热带亚热带植物学报,2006,14(6):539-546.
    [171]樊后保,刘文飞,裘秀群,等.杉木人工林凋落物量对氮沉降增加的初期响应[J].生态学杂志,2007,26(9):1335-1338.
    [172]邓小文,刘岩,韩士杰,等.外源氮输入对长白山红松凋落物早期分解的影响[J].北京林业大学学报,2007,29(6):16-22.
    [173]杨玉盛,陈光水,郭剑芬,等.杉木-观光木混交群落N、P养分循环的研究[J].植物生态学报,2002,26(4):275-282.
    [174]陈永亮,李淑兰.胡桃楸、落叶松纯林及其混交林下凋落物分解与养分归还的比较研究[J].林业科技,2004,29(5):9-12.
    [175]肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究[J].土壤学报,2002,39(5):763-767.
    [176]张彦东,王庆成,李清林.水曲柳、落叶松纯林与混交林的枯叶分解动态[J].东北林业大学学报,1999,27(4):5-8.
    [177]廖利平,马越强,汪思龙,等.杉木与主要阔叶造林树种凋落物的混合分解[J].植物生态学报,2000,24(1):27-33.
    [178]Jiang Y F, Yin X Q, Wang F B. The infuence of litter mixing on decomposition and soil faunaassemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains, China [J].European Journal of Soil Biology,2013,55:28-39.
    [179]Ayres E, Dromphk M, Bardgett R D. Do plant species encourage soil biota that specialise in the rapiddecomposition of their litter [J]. Soil Biology and Biochemistry,2006,38:183-186.
    [180]Bradford M A, Tordoff G M, Eggers T, et al. Microbiota, fauna, and mesh size interactions in litterdecomposition [J], Oikos,2002,99:317-323.
    [181]Kampichler C, Bruckner A. The role of microarthropods in terrestrial decomposition: a meta-analysisof40years of litterbag studies [J]. Biological Reviews,2009,84:375-389.
    [182]Barajas G, Alvarez J. The relationships between litter fauna and rates of litter decomposition in atropical rain forest [J]. Applied Soil Ecology,2003,24,91-100.
    [183]Petersen H, Luxton M. A comparative, analysis of soil fauna populations and their role indecomposition processes [J]. Oikos,1982,39:288-388.
    [184]Vossbrinck C R, Colleman D C, Woolley T A. Abiotic and biotic factors in litter decomposition insemiarid grassland [J]. Ecology,1979,60:265-271.
    [185]Alhamd L, Arakaki S, Hagihara A. Decomposition of leaf litter of four tree species in a subtropicalevergreen broad-leaved forest, Okinawa Island, Japan [J]. Forest Ecology and Management,2004,202:1-11.
    [186]Meyer W M III, Ostertag R, Cowie R H. Macro-invertebrates accelerate litter decomposition andnutrient release in a Hawaiian rainforest [J]. Soil Biology&Biochemistry,2011,43:206-211.
    [187]Witkamp M.1966. Decomposition of leaf litter in relation to environment, microflora, and microbialrespiration [J]. Ecology,47:194-201.
    [188]Irmler U. Changes in the fauna and its contribution to mass loss and N release during leaf litterdecomposition in two deciduous forests [J]. Pedobiologia,2000,44:105-118.
    [189]Huish S, Leonard M A, Anderson J M. Wetting and drying effects on animal/microbial mediatednitrogen mineralization and mineral element losses from deciduous forest litter and raw humus [J].Pedobiologia,1985,28:177-183.
    [190]陈鹏,富德义.长白山土壤动物在物质循环中作用的初步探讨[J].生态学报,1984,4(2):172-179.
    [191]仲伟彦,殷秀琴.帽儿山森林落叶分解消耗与土壤动物关系的研究[J].应用生态学报,1999,10(4):511-512.
    [192]殷秀琴,仲伟彦,王海霞,等.小兴安岭森林落叶分解与土壤动物的作用[J].地理研究,2001,21(6):689-699.
    [193]徐国良,黄忠良,欧阳学军,等.鼎湖山地表无脊椎动物多样性及其与凋落物的关系[J].动物学研究,2002,23(6):477-482.
    [194]柯欣,赵立军,尹文英.青冈林土壤动物群落结构在落叶分解过程中的演替变化[J].动物学研究,1999,20(3):207-213.
    [195]柯欣,赵立军,尹文英.青冈林土壤跳虫群落结构在落叶分解过程中的变化[J].生态学报,2001,21(6):982-987.
    [196]杨效东.热带季节雨林凋落物分解过程中的中型土壤节肢动物的群落结构及动态[J].生物多样性,2004,12(2):252-261.
    [197]李艳红,罗承德,杨万勤,等.桉-桤混合凋落物分解及其土壤动物群落动态[J].应用生态学报,2011,22(4):851-856.
    [198]殷秀琴,宋博,邱丽丽.红松阔叶混交林凋落物-土壤动物-土壤系统中N、P、K的动态特征[J].生态学报,2007,27(1):128-134.
    [199]殷秀琴,邱丽丽,杨令宾,等.森林凋落物-土壤动物-土壤系统中营养元素含量关系及分异[J].地理研究,2006,25(2):320-326.
    [200]Aerts, R. The freezer defrosting: global warming and litter decomposition rates in cold biomes [J].Journal of Ecology,2006,94:713-724.
    [201]Xin W D, Yin X Q, Song B. Contribution of soil fauna to litter decomposition in Songnen sandy landsin northeastern China [J].2012,77:90-95.
    [202]殷秀琴,蒋云峰,陶岩,等.长白山红松阔叶混交林土壤动物生态分布[J].地理科学,2011,31(8):935-940.
    [203]Joo S J, Yim M H, Nakane K. Contribution of microarthropods to the decomposition of needle litterin a Japanese cedar (Cryptomeria japonica D.Don) plantation [J]. Forest Ecololgy and. Management,2006,234,192-198.
    [204]南开大学,中山大学,北京大学,等.昆虫学(上册)[M].北京:人民教育出版社,1980.
    [205]忻介六,杨庆爽,胡成业.昆虫形态分类学[M].上海:复旦大学出版社,1985.
    [206]钟觉民.昆虫分类图谱[M].江苏科学技术出版社,南京,1985.
    [207]唐祖庭.昆虫分类学[M].北京:中国林业出版社,1989.
    [208]郑乐怡,归鸿.昆虫分类(上、下)[M].南京:南京师范大学出版社,1999.
    [209]钟觉民.幼虫分类学[M].北京:农业出版社,1990.
    [210]尹文英,胡圣豪,沈温芬,等.中国土壤动物检索图鉴[M].北京:科学出版社,1998
    [211]鲍士旦,土壤农化分析[M].中国农业出版社,北京,2000.
    [212]中国科学院南京土壤研究所,土壤理化分析[M].上海科学技术出版社,上海,1978.
    [213]MagurranAE. Measuring biological diversity [M].UK: Blackwell Publishing,2004.
    [214]Seastedt T R, The role of microarthropods in decomposition and mineralization processes [J]. AnnualReview of Entomology,1984,29:25-46.
    [215]Ter Braak C J F, mlauer P. CANOCO reference manual and CanoDraw for Windows User’s guide:software for canonical community ordination Version4.5,2002.
    [216]Colwell R K, EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples,Version7.50(2005). http://purl.oclc.org/estimates.
    [217]许广山,程伯容,丁桂芳,等.红松阔叶林凋落物的积累与分解特征[J].森林生态系统研究,1994,7:552261.
    [218]许晓静,张凯,刘波,等.森林凋落物分解研究进展[J].中国水土保持科学,2007,5(4):108-114.
    [219]Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictor of litter decay rates:a microcosm test [J]. Ecology,1989,70:97-104.
    [220]Pérez-Harguindeguy N, Díaz S, Cornelissen J H C, et al. Chemistry and toughness predict leaf litterdecomposition rates over a wide spectrum of functional types and taxa in central Argentina [J]. Plantand Soil,2000,218:21-30.
    [221]Hoorens B, Aerts R, Stroetenga M. Does initial litter chemistry explain litter mixture effects ondecomposition?[J]. Oecologia,2003,137:578-586.
    [222]Brady N C, Weil R R. The nature and properties of soils [M]. Englewood Cliffs (US): Prentice-Hall,1996.
    [223]Killham K, Foster R. Soil ecology [M]. Cambridge: Cambridge University Press,1994.
    [224]Parnas H. Model for decomposition of organic material by microorganisms [J]. Soil and Biochemistry,1975,7:1612-1691.
    [225]Lousier J D, Parkinson D. Chemical element dynamics in decomposing leaf litter [J]. CanadianJournal Botany,1978,56:1785-2812.
    [226]Maisto G, Marco A D, Meola A, et al. Nutrient dynamics in litter mixtures of four Mediterraneanmaquis species decomposing in situ [J]. Soil Biology and Biochemistry,2011,43:520-530.
    [227]Hofrichter M, Lundell T, Hatakka A. Conversion of milled pine wood by manganese peroxidase fromPhlebia radiates [J].Applied Environmental Microbiology,2001,67(10):4588-4593.
    [228]Kubartová A, Ranger J, Berthelin J, et al. Diversity and decomposing ability of saprophytic fungifrom tempterate forest litter [J]. Microbial Ecology,2009,58(1):98-107.
    [229]Witkamp M, Olson JS. Breakdown of confned and nonconfned oak litter [J]. Oikos,1963,14:138-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700