用户名: 密码: 验证码:
钛合金激光焊接及其熔池流动场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金由于密度小,比强度高,耐蚀性好等特点,广泛用于航空航天领域。激光焊接由于具有能量集中,焊缝成形好,操作简单等优势,正在成为钛合金焊接的重要手段。常规熔焊方法形成的焊接接头晶粒粗大,机械性能较差,焊接组织还需进行焊后热处理,降低了焊接效率。研究钛合金激光焊接技术,有利于提高导弹壳体材料焊接接头综合性能,在急需提高国防实力的今天,意义特别重大。
    钛合金在高温下强烈吸收氮、氢、氧等气体,吸收这些气体严重影响焊接接头质量;其次钛合金焊接过程中会产生强烈的光致等离子体,如果等离子体不能很好地控制,就会对激光造成屏蔽,影响激光焊接的稳定性,对比钛合金与低碳钢焊接时的等离子体光信号强度,可以发现钛合金激光焊接等离子体光信号强度明显高于低碳钢激光焊接等离子体光信号强度。为了解决这些问题,设计专用同轴喷嘴用于钛合金激光焊接。
    同轴喷嘴设计的关键问题在于如何获得稳定均匀的同轴气流,使气流在控制等离子体的同时,又能为钛合金高温熔池提供保护。系统地分析了侧吹气流控制等离子体的缺点,提出了在钛合金激光焊接过程中采用同轴气流控制等离子体的方案。为了获得稳定的流场,首次对激光焊接同轴喷嘴内部流场进行了有限元分析,分别比较了不同内腔直径、圆柱状与“漏斗”状内腔、有无收敛喷管、不同出口直径以及不同进气流量对气体出口流速影响。结果表明,当进气流量和出口直径相同时,带收敛喷管的“漏斗”状结构可获得最大的轴向流速和最小的湍流脉动,从而可以有效地减小保护气的无谓消耗。喷嘴气流试验表明:设计的同轴喷嘴能成功地抑制等离子体;拖罩流量为1.0m3/h,同轴气流量范围为0.25~1.25m3/h时,可以获得银白色的焊缝;最佳同轴进气流量为0.5m3/h;当同轴气流量超过1.5 m3/h时,焊缝金属轻微氧化,超过1.75 m3/h时,焊缝金属明显氧化,对应的湍流脉动动能明显增加,表明喷嘴气流紊乱是导致焊缝金属氧化的重要原因。
    采用设计的同轴喷嘴进行激光焊接试验,研究了焦点位置变化对焊接过程的影响。BT20及TC1合金激光焊接接头焊缝组织均为马氏体组织,晶内为片状α'相;接头拉伸强度和显微硬度超过母材,塑性稍低于母材。同氩弧焊相比,激光焊接有
    
    
    明显的优势,深宽比为氩弧焊的6~7倍,焊接速度可以达到氩弧焊的5~10倍。试验过程中还确定了激光焊接头拼缝间隙的宽容度,完成了卷制钛合金圆筒的焊接。
    气孔是钛合金焊接的常见问题,尤其是宏观气孔的存在,不仅削弱焊缝的有效工件断面,同时也会带来应力集中,有必要搞清楚气孔形成的机理。锁底对接接头焊接以及自熔焊接试验表明,钛合金未穿透激光焊接过程中会形成宏观气孔,酸洗与否对宏观气孔的形成没有明显的影响。根据气孔的分布位置和尺寸大小,提出将钛合金激光焊接气孔分类为Ⅰ型气孔和Ⅱ型气孔。基于试验研究和熔池流动模拟计算结果,建立了两类气孔各自的形成模型。与局部高温造成金属蒸气定向喷射的模型不同,认为未穿透焊接过程中Ⅰ型气孔形成的机理是由于保护气体进入小孔,破坏了小孔后壁的压力平衡,形成小孔后壁液体金属波动凹坑,随着工件的运动,凹坑朝向小孔的开口失稳闭合形成“空腔”;小孔底部随着熔深的波动突变也很容易闭合形成“空腔”;由于受熔池金属中双对流环的影响,当“空腔”在熔池上部形成时,“空腔”会沿熔池中心迅速流动到焊缝的上表面逸出,而在熔池下部形成的“空腔”,只能够在熔池下部流动,且熔池未穿透,“空腔”不可能向下逸出,随着熔池金属的凝固而形成气孔。Ⅱ型气孔的形成机理是氢在凝固过程中由于溶解度突然下降,氢析出后来不及逸出而残留在焊缝内部形成气孔。
    首次建立了复合热源作用下的激光穿透焊接熔池流动三维准稳态计算模型,热源由作用在激光表面的高斯热源以及沿激光入射方向的柱状热源组成,分别考虑了等离子体和小孔吸收机制。计算过程中,将带松弛因子的动量插值算法引入SIMPLE算法,从而成功地采用非交错网格对模型离散求解,解决了计算过程中压力和速度波动问题,保证计算结果与松弛因子无关;通过添加源项的办法解决了过渡区相变问题,从而将固态区和液态区组合一起求解,简化了固液边界条件的处理难度。通过TC1钛合金激光焊接试验验证了模型的正确性,计算所得的熔池截面与试验结果吻合良好,结果表明,Marangoni对流是形成激光穿透焊“沙漏”状熔池形貌的主要原因。
With the advantages of low density, high strength-to-weight ratio and superior corrosion resistance, titanium alloys have been applied more and more widely in the fields of aviation and aerospace industries. As the laser welding has some characteristics such as high speed, good appearance and narrow HAZ, it becomes a main method for titanium alloys welding. The weld microstructures produced by traditional welding methods are abnormally coarse and the comprehensive properties of the weld are poor due to the large heat input. And the weld needs post-weld heat treatment, which will decrease the welding efficiency. The investigation of the technology of titanium alloys laser welding benefits improvement of the weld quality used for missile shells. It is very important to increase the national defense power.
    Titanium alloys absorb a large amount of N2, H2 and O2 gas at high temperature, which will badly destroy the weld performances; on the other hand, the intensive plasma appears during the titanium alloy laser welding, which influences the welding stability if the plasma is not controlled efficiently. The differences of the intensity of plasma light signal between titanium alloy and steel are studied, and the results indicate the light signal intensity produced during the laser welding for titanium alloy was greater than that for low-carbon steel. A special coaxial nozzle was designed to resolve the difficulties of the titanium alloys laser welding.
    The key point of designing coaxial nozzle is how to acquire the steady airstream, which can be used to control the plasma and protect the molten pool at high temperature at the same time. Based on the analysis of the disadvantage of control plasma by side flow gas, a scheme was proposed that a coaxial nozzle was chose to control plasma for titanium alloy laser welding. In order to acquire the steady airflow, an analysis of flow with in the nozzles was executed for the first time. The flow in different diameters of nozzle, cylinder cavum and “filter” cavum structure, with and without convergence pipe, different outlet diameters and different input gas flux was compared. The calculated results indicate that the maximum axial flow speed and the minimum turbulent kinetic energy can be attained in the “filter” cavum structure with convergence pipe when the inlet flux and outlet diameters are equal, by which the consumption of the shielding gas can be efficiently reduced. A welding experiment was executed to study the flow of gas in nozzle. The
    
    
    results indicate that the designed nozzle can be successfully used for suppressing the plasma; the silvery weld can be attained when the flux of gas from the coaxial nozzle is in the range of 0.25~1.25m3/h and that from the rear-cover is 1.0m3/h; the optimum flux of gas from the coaxial is 0.5m3/h. When the gas from coaxial nozzle over 1.5 m3/h, the weld was slightly polluted by oxygen; when over 1.75 m3/h,the weld was evidently polluted by oxygen. At that time, the kinetic energy of turbulent gas increases notably, which indicates the turbulence of gas is the reason why the weld was polluted by oxygen.
    The titanium alloy weld was produced with the coaxial nozzle to investigate the influence of the focus positions to the weld quality. The tensile strength and micro-hardness of the weld of BT20and TC1 are higher than of the base metal, but the elongation relatively low. The microstructure of weld is martensite with acicular α' phase. The tolerance of weld gap was determined and annular weld was produced during experiments. In comparison with TIG welding, laser welding for Titanium alloy has some advantages, such as the depth to width ratio is 6~7 times and the welding speed is 5~10 times as those of the TIG welding.
    The porosity is a common defect in laser welding for titanium alloy. Especially, the macro porosity weakens the strength of the cross-area, but also cause the stress concentrated. It is necessary to make clear the mechanism of the porosity formation. The results of the weld with a pad and the autogenous weld
引文
Zhang Li, S.L.Gobbi, I.Norris, et al. Laser welding techniques for titanium alloy sheet. Journal of Materials Processing Technology, 1997, Vol.65(3):203~208
    Qi Yunlian, Deng Ju, Hong Quan, et al. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Materials Science and Engineering, 2000, Vol.280(3):177~181
    C. M.古列维奇. 高强度钛合金的焊接. 第一版. 尹克里译. 北京: 国防科技出版社,1980. 66~75
    王家淳. 消除钛合金焊接的隐患. 焊接技术, 2001, Vol.30(1):16~17
    周振丰, 张文钺. 焊接冶金与金属的焊接性.第二版. 北京: 机械工业出版社, 1988. 435~448
    K. Lankalapalli, J. F. Tu, M. Gartner. Model for estimating penetration depth of laser welding processes. J. Phys. D: Appl. Phys., 1996, Vol.29(7):1831~1841
    W. W. Duley. Laser welding. New York: John Willy & Sons Inc., 1999. 231~245
    韩忠. 钛合金焊接冶金研究进展. 材料科学与工程, 2000, Vol.18(9): 107~120
    H. Margolin. Hydrogen and sliding at α/β interfaces of titanium alloys. Scripta Metallurgica Materialia, 1990, Vol.24(12): 2397~2400
     T.Shinoda, K.Matsunaga, T.Akaishi. Laser welding of titanium alloy. Journal of Light Metal Welding and Construction, 1990, Vol. 28(2):1~8
    
    T.Shinoda, K.Matsunaga, T.Akaishi. Solidification cracking of beta titanium alloy in laser welding. Journal of Light Metal Welding and Construction, 1990,Vol. 28(7): 291~297
    L.W.Tsay, C.Y.Tsay. Effect of microstructures on the fatigue crack growth in Ti6Al4V laser welds. International Journal of Fatigue, 1997, Vol.19(8): 713~720
    H.Mourton, S.K.Marya. Optimization of laser beam welding of TA6V thick plates using a three level factorial design. International Journal for the Joining of Materials, 1994, Vol.6(3):100~104
    Jinhe Liu, Jing Chen, Decai Yang. Research on CO2 laser beam welding of Ti-6Al-4V. In: Proceedings of SPIE - The International Society for Optical Engineering. Beijing, China. 1996. New York: The International Society for Optical Engineering, 1997. 368~370
    P.S.Liu, W.A.Baeslack, J.Hurley. Dissimilar alloy laser beam welding of titanium: Ti-6Al-4V to beta-C. Welding Journal, 1994, Vol.73(8): 7s~16s
    Z.Li, S.L.Gobbi. Laser welding for lightweight structures. Journal of Materials Processing Technology, 1997, Vol.70(5): 137~144
    H.Hiraga, K.Fukatsu, K.Ogawa, et al. Nd: YAG laser welding of pure titanium to stainless steel. Quarterly Journal of the Japan Welding Society, 2001, Vol.19(11): 717~726
    B.Majumdar, R.Galun, B.L.Mordike. Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser. Journal of Materials Science, 1997, Vol.32(12): 6191~6200
    
    J.R.Cho, S.M.Roberts, C.Roger. Process modeling for laser beam welding of Ti-6Al-4V. In: Proceedings of SPIE - The International Society for Optical Engineering. Osaka, Japan. 2002, New York: The International Society for Optical Engineering, 2003. 192~196
    王家淳, 王希哲, 沈剑韵. 钛合金激光焊接稳定性计算模型. 焊接学报, 2000, Vol.21(4): 13~16
    M.M.Dandrean. Sources and causes of porosity in titanium arc weld. Welding Journal, 1986, Vol.18(2): 18s~22s
    赵敬东. 钛合金焊接的常见缺陷及其预防. 航空制造技术, 2000, Vol.16(5): 56~57
    郭鄂, 杨家林. TC4钛合金精密焊接工艺研究. 机械, 2001, Vol.38(4): 35~36
    M. Kutsuna, J. Suzuki, S. Suqiyama, et al. CO2 laser welding of A2219, A5083 and A6063 aluminium alloys. Welding in the World, 1993,Vol.31(2): 126~135
    S.Katayama, N.Seto, M.Mizutani, et al. Formation mechanism of porosity in high power YAG laser welding. In: C-ICALEO2000. 2000. 16~24
    S.Katayama, Y.Kobayashi, N.Seto, et al. Effect of vacuum on penetration and defects in laser welding. In: C-ICALEO2000. 2000. 182~191
    S.Tsukamoto, I.Kawaguchi, G.Arakane. Suppression of welding defects in deep penetration CO2 laser welding. In: C-ICALEO2000. 2000. 7~15
    A.Matsunawa, S.Katayama. Understanding physical mechanisms in laser welding for construction of mathematical model. Welding in the World, 2002, Vol.46(7): 27~38
    J. Moon, S.Katayama, A.Matsunawa. Behaviour of laser induced plasma, keyhole and reflected light during laser welding with superimposed beams of different wavelengths. Welding Research Abroad, 2003, Vol.49(11): 10~19
    雷华东, 黄文荣, 郭鹏等. 抗氢不锈钢的激光焊接性及气孔成因初探. 焊接技术, 2002,Vol.30(8): 8~10
    张旭东, 陈武柱, 芦田荣次等. CO2气体保护的激光焊接12mm厚低碳钢板, 焊接学报, 2002, Vol.23(6): 51~54
    D.T.Swift-Hook, A.E.F.Gick. Penetration welding with laser. Welding Journal, 1973, Vol.52(11): 492s~498s
    J.G.Andrews, D.R.Atthey. Hydrodynamic limit to penetration of a material by a high power beam. J. Phys.D: Appl. Phys., 1976, Vol.9(12): 2181~2194
    
    A.K.Kelmax. Heat model for laser welding. Journal of Applied Physics, 1978, Vol.51(2): 941~947
    H.E.Cline, T.R.Anthony. Heat treating and melting and melting material with a scanning laser or electron beam. Journal of Applied Physics, 1977, Vol.48(9): 3895~3900
    J.Mazumder, W.Steen. Heat transfer model for CW laser materials processing. Journal of Laser Welding, 1980, Vol.52(2): 941~947
    J.Mazumder, P.S.Mohanty, T.P.Duffy. Challenges in modeling and monitoring if laser welding process. In: Processing of the 6th Int. Symp. of JWS. Nagoya, Japan. 1996. 167~172
    J.Dowden, P.Kapadia, N.Postacioglu. Analysis of the laser-plasma interaction in laser keyhole welding. J. Phys. D: App. Phy., 1989, Vol.22(6): 741~749
    M.Davis, P.Kapadia, J.Dowden. Modeling the fluid in laser beam welding. Welding Journal, 1986, Vol.65(7): 167s-174s
    N.Postacioglu, P.Kapadia, J.Dowden. Capillary waves on the weld pool in penetration welding with a laser. J. Phys. D: Appl. Phys., 1989, Vol.22(8): 1050~1061
    J.Dowden, M.Davis, P.Kapadia. Moleten region temprature distribution in laser welding. J. Phys. D: Appl. Phys., 1985,Vol.18(10): 1987~1994
    J.Dowden, N.Postacioglu, M.Davis, et al. Keyhole model in penetration welding with a laser. J. Phys. D: Appl. Phys., 1987, Vol.20(1): 36~44
    J.Dowden, M.Davis, P.Kapadia. Some aspects of the fluid dynamics of laser welding. Journal of Fluid Mechanics, 1983, Vol.126(1): 123~146
    
    M.Davis, J.Dowden, P.Kapadia, et al. Method for calculating the fused zone profile of laser keyhole welds. J. Phys. D: Appl. Phys., 1989, Vol.22(1): 23~28
    B.R.Finke, P.D.Kapadia, J.M.Dowden. Fundamental plasma based model for energy transfer in laser material processing. J. Phys. D: Appl. Phys., 1990, Vol.23(6): 643~654
    F.Bonollo, A.Tiziani, A.Zambon. Model for CO2 laser welding of stainless steel, titanium and nickel: parametric study. Materials Science and Technology, 1993, Vol.9(3): 1137~1145
    刘建华, 李志远, 胡伦骥. 激光深熔焊传热模型的研究. 激光技术, 1995,Vol.19(1): 10~13
    N.Postacioglu, P.Kapadia, J.Dowden. Theoretical model of thermocapillary flows in laser welding. J. Phys. D: Appl. Phys., 1991, Vol.24(1): 15~20
    N.Postacioglu, P.Kapadia, J.Dowden. Distortion generated by a moving weld pool of elliptical cross section in the welding of thin metal sheets. J. Phys. D: Appl. Phys., 2000, Vol.33(14): 1739~1746
    N.Postacioglu, P.Kapadia, J.Dowden. Theory of the oscillations of an ellipsoidal weld pool in laser welding. J. Phys. D: Appl. Phys., 1991,Vol.24(8): 1288~1292
    N.Postacioglu, P.Kapadia, J.Dowden. Mathematical model of heat conduction in a prolate spheroidal coordinate system with applications to the theory of welding. J. Phys. D: Appl. Phys., 1993, Vol.26(4): 563~573
    N.Postacioglu, P.Kapadia, J.Dowden. Thermal stress generated by a moving elliptical weldpool in the welding of thin metal sheets, J. Phys. D: Appl. Phys., 1997, Vol.30(16): 2304~2312
    J.Trappe, J.Kroos, C.Tix, et al. On the shape and location of the keyhole in penetration laser welding. J. Phys. D: Appl. Phys., 1994, Vol.27(10): 2152~2154
    J.Kroos, U.Gratzke, M.Vicanek, et al. Dynamic behavior of the keyhole in laser welding. J. Phys. D: Appl. Phys., 1993, Vol.26(3): 481~486
    T.Klein, M.Vicanek, J.Kroos, et al. Oscillations of the keyhole in penetration laser beam welding. J. Phys. D: Appl. Phys., 1994, Vol.27(10): 2023~2030
    
    J.Kroos, U.Gratzke, G.Simon. Towards a self-consistent model of the keyhole in penetration laser beam welding. J. Phys. D: Appl. Phys., 1993,Vol.6(3): 474~480
    G.Simon, U.Gratzke, J.Kroos. Analysis of heat conduction in deep penetration welding with a time-modulated laser beam. J. Phys. D: Appl. Phys., 1993,Vol.26(5): 862~869
    U.Gratzke, P.Kapadia, J. Dowden, et al. Theoretical approach to the humping phenomenon in welding processes. J. Phys. D: Appl. Phys., 1992, Vol.25(11):1640~1647
    R.Ducharme, K.Williams, P.Kapadia, et al. Laser welding of thin metal sheets: an
    
    
    integrated keyhole and weld pool model with supporting experiments. J. Phys. D: Appl. Phys. 1994, Vol.27(8): 1619~1627
    R.Ducharme, P.Kapadia, J.Dowden, et al. Integrated mathematical model of the keyhole and weldpool in the laser welding of thin metal sheets. In: Proceedings of SPIE - The International Society for Optical Engineering. Beijing, China. 1993. New York: The International Society for Optical Engineering, 1993. 176~186
    J.Dowden, P.Kapadia, R.Ducharme. Analytical model of deep penetration welding of metals with a continuous CO2 laser. International Journal for the Joining of Materials, 1995, Vol.7(2): 54~61
    R.Ducharme, P.Kapadia, J.Dowden. Mathematical model of the defocusing of laser light above a workpiece in laser material processing. In: Proceedings of SPIE - The International Society for Optical Engineering. Beijing, China. 1993. New York: The International Society for Optical Engineering, 1993. 187~197
    R.Ducharme, P.Kapadia, J.Dowden. Mathematical model of the defocusing of laser light above a workpiece in laser material processing. Laser Institute of America, 1993, Vol.75(2): 187~197
    
    A.Kaplan. Model of deep penetration laser welding based on calculation of the keyhole profile. J. Phys. D: Appl. Phys., 1994, Vol.27(9): 1805~1814
    M.Baeva, P.Baev, A.Kaplan. Analysis of the heat transfer from a moving elliptical cylinder. J. Phys. D: Appl. Phys., 1997,Vol.30(8): 1190~1196
    A.Kaplan, M.Mizutani, S.Katayama, et al. Analysis of different methods for the prevention of pore formation in keyhole laser spot welding. Welding in the World, 2002, Vol.46(7): 39~50
    A.Kaplan, M.Mizutani, S.Katayama, et al. Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc. J. Phys. D: Appl. Phys., 2002, Vol.35(11): 1218~1228
    
    C.Lampa, A.Kaplan, J.Powell, et al. Analytical thermodynamic model of laser welding. J. Phys. D: Appl. Phys., 1997, Vol.30(9): 1293~1299
    P.Solana, J.Ocana. Mathematical model for penetration laser welding as a free-boundary problem, J. Phys. D: Appl. Phy., 1997, Vol.30(9): 1300~1313
    P.Solana, G.Neqro. Study of the effect of multiple reflections on the shape of the keyhole in the laser processing of materials. J. Phys. D: Appl. Phys., 1997, Vol.30(23): 3216~3222
    P.Kapadia, P.Solana, J.Dowden. Stochastic model of the deep penetration laser welding of metals. Laser Institute of America, 1997, Vol.83(2): 54~62
    熊建钢. 深熔激光焊接小孔和熔池形状数学模型及工艺参数ANN优化设计: [博士学位论文]. 武汉: 华中科技大学图书馆, 2001.
    W.Sudnik, D.Radaj, W.Erofeew. Computerized simulation of laser beam welding, modelling and verification. J. Phys. D: Appl. Phys., 1996, Vol.29(11): 2811~2817
    W.Sundik, W.Erofeew, D.Radaj. Numerical modeling and simulation of laser beam welding for production engineering and design development. In: Proceedings of the 1998 6th International Conference on Industrial Lasers and Laser Applications. Shatura, RUS. 1998. New York: Society of Photo-Optical Instrumentation Engineers, 1999. 126~135
    W.Sundik, D.Radaj, S.Breitschwerdt, et al. Numerical simulation of weld pool geometry in laser beam welding. J. Phys. D: Appl. Phys., 2000, Vol.33(6): 662~671
    
    W.Sundik, D.Radaj, W.Erofeew. Computerized simulation of laser beam weld formation comprising joint gaps. J. Phys. D: Appl. Phys., 1998, Vol.31(24): 3475~3480
    W.Sudnik. Computer modelling laser-beam welding: concept and realization. Welding International, 1997, Vol.11(3): 243~252
    曾大文. 激光熔池流场、温度场与浓度场的数值分析: [博士学位论文]. 武汉:华中理工大学图书馆, 1998.
    D.H.Athey. A mathematical model for fluid flow in a weld pool at high currents. Journal of Fluid Mechanical,1980, Vol.98(4): 787~799
    G.M.Oreper. Heat and fluid flow phenomena in weld pool. Journal of Fluid Mechanical, 1984, Vol.147(9): 53~62
    C.Chan, J.Mazumdar, M.M.Chen. A two dimension transient model for convection in laser melted pool. Metal. Trans. A, 1984, Vol.15A(12): 2175~2186
    武传松. 焊接热过程数值分析. 第一版. 哈尔滨: 哈尔滨工业大学出版社, 1990. 145~158
    B.Basu and A.Date. Numerical study of steady state laser melting problem. Institute Journal of Heat Mass Transfer, 1988, Vol.31(11): 2331~2338
    T.Zacharia. Modeling of non-autogenous welding-model predicts three-dimensional convection and temperature conditions of the weld pool generated by a moving arc. Welding Journal, 1988, Vol.67(1): 18s-26s
    T.Zacharia. A mathematical model is developed to simulate the convection and heat transfer conditions of a GTA weld pool. Welding Journal, 1988, Vol.67(3): 53s-65s
    B.Basu, A.W.Date. Numerical study state and transient laser melting problems-I characteristics of flow field and heat fluid. International Journal of Heat Mass Transfer, 1990, Vol. 33(6): 1149~1159
    N.Ramanan, S.A.Korpela. Fluid dynamics of a stationary weld pool. Metall. Trans. A, 1990, Vol.21 A(6): 45~54
    M.E.Thompson, J.Szekely. The transient behavior of weld pools with a deformed free surface. International Journal of Heat Transfer, 1989, Vol.32(6): 1007~1019
    M.C.Tsai, S.Kou. Weld pool convection and expansion due to density variations treatment. Numerical Heat Transfer, 1990, Vol.17(4): 73~85
    
    R.T.C.Choo, J.Szekely, R.C.Westhoff. Modeling high-current arcs with emphasis on free surface phenomena in the weld pool. Welding Journal, 1990, Vol.69(9): 346s~356s
    曹振宁. TIG/MIG焊接熔池流场与热场的研究: [博士学位论文]. 哈尔滨: 哈尔滨工业大学图书馆, 1993.
    R.T.C.Choo, J.Szekely. The possible roles of turbulence in GTA weld pool behavior. Welding Journal, 1994, Vol.73(2): 25s~32s
    M.Picasso, A.Hoadley. Finite element simulation of laser surface treatments including convection in the melt pool. Int. J. Meth. Heat Fluid Flow, 1994, Vol.4(2): 61~72
    G.M.Oreper. The role of transient convection in the melting and solidification in arc weld pools. Metall. Tans., 1986, Vol.17(2): 735~741
    E.Frienman. Analysis of weld puddle distortion and its effect on penetration. Welding Journal, 1978, Vol.57(6): 161s~174s
    T.Zacharia. Computational modeling of stationary gas-tungsten arc welds pool and comparison to stainless 304 experimental results. Metal. Trans., 1991, Vol.22B(4): 243~254
    M.L.Lin. Influence of arc pressure on weld pool geometry. Welding Journal, 1986, Vol.65(6): 163s~175s
    T.Zacharia. Effect of evaporation and temperature-dependent material properties on weld pool development. Metall. Trans., 1991, Vol. 22B(4): 233~242
    T.Zacharia. Three dimension transient model for arc process. Metall. Trans., 1989, Vol.20B(10): 645~652
    T.Zacharia. Weld pool development during GTA and laser beam welding of type 304 stainless steel, Part I-theoretical analysis. Welding Journal, 1989, Vol.68(12): 499s~512s
    T. Zacharia. Weld pool development during GTA and laser beam welding of type 304 stainless steel, Part Ⅱ-experimental analysis. Welding Journal, Vol.68(12): 499s~512s
    H.G.Kraue. Surface temperature measurements of GTA weld pools on thin plate stainless 304. Welding Journal, 1989, Vol.68(3): 84s~96s
    H.G.Kraus, Experimental measurement of stationary SS304 SS316L and 8630 GTA weld pool surface temperature. Welding Journal, Vol.68(7): 269s~283s
    
    M.C.Tsai, S.Kou. Electromagnetic force induced convection in weld pools with free surface. Welding Journal, 1990, Vol.69(6): 241s~253s
    R.T.C.Choo.The effects of gas stress on marangoni flows in arc welding. Welding Journal, 1991, Vol.70(9): 223s~235s
    R.T.C.Choo, J.Szekely. Vaporization kinetics and surface temperature in a mutually coupled spot gas tungsten arc weld and weld pool. Welding Journal, 1992, Vol.71(3): 77s~89s
    E.Pardo. Fluid flow and heat transfer in GMA weld pools. Metall. Trans., 1989, Vol.20B(10): 937~950
    P.Tekriwal. Finite element analysis of three dimensional transient heat transfer in GMA welding. Welding Journal, 1988, Vol.67(7): 150s~162s
    K.Tsao, C.S.Wu. Fluid flow and heat transfer in GMA weld pools. Welding Journal, 1988, Vol.67(3): 70s~75s
    武传松, 吴林, 陈定华. MIG定点焊射流的熔池传热模型, 焊接学报, 1991, Vol.12(3):189~193
    付横志. 合金材料激光表面快速凝固过程的数值模拟, 计算物理,1995,Vol.23(4): 535~540
    S.Kumar, S.C.Bhaduri. Three dimension finite element modeling of gas metal arc modeling. Metall. & Mater. Trans B, 1994, Vol.25B(6): 435~447
    A.Paul, T.Debroy. Free surface flow and heat transfer in conduction model laser welding. Metal. Trans. B, 1988,Vol.19B(12): 851~863
    C.M.Rhie, W.L.Chow. Numerical study of the turbulent flow past an airfoil tailing edge separation. AIAA Journal, 1983, Vol.21(11): 1525~1531
    
    C.M.Rhie, R.M. Zacharias, D.E.Hobbs. Advanced transonic fan design procedure based on a Navier-Stokes method. Journal of Turbomachinery, 1994, Vol.116(2): 291~297
    M.Peric, R.K.Essler, G.Scheuerer. Comparison of finite-volume numerical methods with staggered and collocated grids. Computers & Fluids, 1988, Vol.16(4): 389~396
    H.Stroell, F.Durst, M.Peric, et al. Study of laminar, unsteady piston-cylinder flows. Journal of Fluids Engineering, 1993, Vol.115(4): 687~693
    T.F.Miller, F.W.Schmidt. Use of a pressure-weighted interpolation method for the solution the incompressible N-S equations on non-staggered grids system. Numerical Heat Transfer, Part B, 1988,Vol.14(3): 213~226
    M.H.Kayabayshi, J.Perira. Calculation of incompressible flows on a non-staggered non-orthogonal grid. Journal of Numerical Heat Transfer, Part B, 1991, Vol.19(3): 243~252
    张辉. 漩涡流化床悬浮空间三维气固两相数学模型:[博士学位论文]. 南京: 东南大学图书馆, 1995.
    常铁强. 激光等离子体相互作用与激光聚变. 第一版. 长沙: 湖南科学技术出版社, 1991. 145~175
    骆红. 薄板激光焊接过程中焊接缺陷地诊断原理和技术: [博士学位论文]. 武汉:华中科技大学图书馆, 1999.
    肖荣诗, 陈涛, 陈铠等. 低碳钢CO2激光焊接光致等离子屏蔽的实验研究. 应用激光, 1999, Vol.19(2): 49~51
    
    唐霞辉, 朱海红, 朱国富等. 高功率激光焊接光致等离子体的形成机理研究. 华中理工大学学报, 1996, Vol. 24(6): 54~56
    刘金合, 杨德才, 陆开静. 激光焊接的等离子体负透镜效应. 激光与光电子学进展(增刊),1999, Vol.36(9):138~140
    李俊. 浅谈金属性与金属活动性. 沈阳教育学院学报, 2000, Vol.2(12): 223~225
    谢海芬, 贺黎明. 耦合表象下的原子第一电离能的计算. 原子与分子物理学报, 2000,Vol.17(4): 709~714
    D.R.Sutliff, T.D.Mccay, M.H.Mccay. Fundamental study of laser plasma reduction method in high power CO2 laser welding. Journal of laser applications, 1992,Vol.24(6): 219~224
    周璐, 王正华, 李晓梅. 计算流动显示的并行处理研究. 空气动力学学报(增刊), 2002, Vo.20(3): 106~111
    J.Duan, H.C.Man, T.M.Yue. Three-dimensional modeling of the gas field distribution of a high-pressure gas jet used in laser fusion cutting. Journal of laser applications, 2001,Vol.13(6): 239~246
    L.Habenicht, J.F.Santos, P.Szelagowski. Development of a nozzle for underwater laser beam welds. Materials Eengineering, 1996,Vol.3(7): 141~149
    L.Ferravante, P.L.Fraschini, G.P.Mor, et al. Wide gap laser welding with filler powder. In:Proceedings of the 1994 Conference on Lasers and Electro-Optics Europe. Amsterdam, NETH. 1994. New York: IEEE, 1994. 284-290
    唐霞辉, 朱海红, 朱国富等. 激光焊接专用气动喷嘴的研究. 激光技术, 2000, Vol.24(2): 95~98
    唐霞辉, 周金鑫, 周毅等. 同轴双层喷嘴辅助气体对激光深熔焊接光致等离子体的控制, 中国机械工程, 2003, Vol.14 (7): 1179~1181
    景思睿, 张鸣远. 流体力学. 第三版. 西安: 西安交通大学出版社, 2001. 156~185
    陶文铨. 计算流体力学与传热学. 第二版. 北京: 中国建筑工业出版社.1991. 334~365
    R.Fabbro, M.Hamadou, L. Sabatier, et al. Study and optimization of shielding gas nozzle used for laser welding. In: Section C-ICALEO 2000, 2000. 166~172
    E.A.鲍利索娃. 钛合金金相学. 第一版. 陈石卿译. 北京: 国防工业出版社出版, 1986. 234~252
    
    张旭东,陈武柱, 任家列. 热透镜效应对激光焊接模式及其过程稳定性的影响. 清华大学学报, 1997, vol26(8): 99~102
    王春明, 胡伦骥, 胡席远等. 钛合金激光焊接过程中等离子体光信号的检测与分析. 焊接学报, 2004, Vol.25(1): 45~48
    王光信. 物理化学. 第一版. 北京: 化学工业出版社, 1994. 135~145
    斯重遥. 焊接金相图谱.第一版. 北京: 机械工业出版社,1987. 335~356
    M.H.Cho, D.F.Farson, J.I.Kim. Control of chaos in laser-induced vapor capillaries. Journal of laser applications, 2003, Vol36(8): 161~167
    帕豪德涅. 焊缝中的气体. 第一版. 赵鄂官译. 北京: 机械工业出版社,1977. 158~190
    孙承纬. 激光辐照效应. 第一版. 北京: 国防工业出版社, 2002. 155~178
    A.Sluzalec. Flow of metal undergoing laser irradiation. Numerical Heat Transfer, 1988, Vol.13(5): 253~263
    K.Lankalapalli. Model-based laser weld penetration depth estimation. Welding in the World, 1997, Vol.39(6): 304~313
    I.Takakuni, S.Kimihiro, S.Hiroki. Real time X-ray observation of dual focus beam welding of aluminum alloys. In: Section C-ICALEO 2000, 2000. 27~34
    T.R.Anthony, H.E.Cline. Surface rippling induced by surface tension gradients during laser surface melting and alloying. Journal of applied physics,1977, Vol.48(9): 3888~3894
    V. R. Volle and C. Prakash. A fixed grid numerical modeling methodology for convection diffusion mushy region phase-change problem, International Journal Heat Mass Transfer, 1987, vol30(9):1709~1719
    M.M.Chen. Scooping analyses and limitation of transport phenomena modeling for laser surface modification. Laser Processing Surface Treatment and Film Deposition, 1996, Vol.28(3): 243~255
    帕坦卡. 传热与流体流动的数值计算. 第一版. 张政译. 北京: 科学出版社, 1984. 65~78
    S.Majumdar. Role of under-relaxation in momentum interpolation for calculation of flow with non-staggered grids. Numerical Heat Transfer, 1988, Vol.13(3): 125-132
    刘金合, 吕寿丹, 胡万谦. CO2激光焊接A3钢时熔池受力及焊缝形貌分析. 激光与光电子学进展(增刊),1999, Vol.36(9): 141~144
    
    D.J.Kruglinski. Visual C++技术内幕.第四版. 潘爱民, 王国印译. 北京:清华大学出版社,1999. 64~88
    费广正, 芦丽丹, 陈立新. 可视化OpenGL程序设计. 第一版. 北京: 清华大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700