用户名: 密码: 验证码:
水平轴风力机叶片多目标优化设计及结构动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对国家科技支撑计划子课题“风电机组叶片气动优化设计和结构动力分析”,探讨了能满足风力机叶片气动、结构和稳定性要求的多目标优化方法。通过对不同展向上翼型的相对厚度、弦长等外形参数的优化计算,得到了能使功率利用系数Cp值达到预定目标的气动优化设计结果;考虑结构和制造工艺性要求,修正了气动外形。并对优化后的叶片进行了载荷计算,使叶根载荷得到了降低,并对其进行强度分析。论文的主要内容如下:
     综合考虑叶片气动性能和载荷情况,即除要保证风力机叶片有良好的气动外形之外,还要兼顾稳定性和结构强度等性能指标,对叶片的整体性能进行多目标优化。叶片的优化设计,是以叶片各展向截面的相对厚度、弦长和扭角为设计变量,建立了多目标优化的数学模型。基于遗传算法思想并利用MATLAB软件,实现了叶片的多目标优化设计。同时,采用该方法对1.5MW风力机叶片进行了优化设计,并与已运行的某商用机型做出对比,以验证该方法的有效性。
     在FLUENT软件的GAMBIT前处理模块中建立了叶片的三维实体模型,并将建好的风力机叶片模型导入ANSYS软件中进行了模态分析,针对玻璃钢/复合材料的特点进行单元网格划分、施加一定的约束,得到前十阶振型的频率和振型。同时,研究了科里奥利力对叶片模态分析的影响。
     基于GL坐标系,计算了风力机稳态下的气动力、重力、离心力;以1.5MW水平轴风力机的叶片为例,借助于Bladed for Windows软件,计算了叶片上关键截面处的载荷。并找出根部的最大载荷,在ANSYS软件中进行有限元分析,得出此载荷作用下的变形图及应力云图。安全系数确定后,对其进行静强度校核。
     根据IEC61400-1标准,拟定了1.5MW水平轴风力机运行的各种工况,分别计算出各工况下的载荷,在Bladed for Windows软件的后处理模块中提取出最大载荷及其所对应的工况,可据此对风力机叶片的强度进行校核。
This paper belongs to National Key Technologies R&D Program -------- Aerodynamic optimization design and structure dynamic analysis of wind turbines blade. To meet the requirements of the aerodynamics, structure and stability, multi-objective optimization methods of HAWT blades have been developed. Through optimizating the shape parameters in the different distance from blade root, such as, relative thicknesses, chord lengths and torsion angles of the airfoils, the aerodynamic design optimization results that a power utilization factor Cp reached the intended target could be got. Finally, considering some requirements of structure and manufacturing process, aerodynamic shape was revised. After optimizing HAWT blades, load calculations were carried through to decrease the loads of the root. And on the basis of loads calculation, there was strength analysis on HAWT blades. The main contents were as follows:
     The design objective was to find blade shape such that maximizing power utilization factor as well as decreasing the loads. Considering aerodynamic performance and loads, multi-objective optimization of the blade was carried to take care of the stability and structure strength indicators, in addition to ensure a good performance of wind-turbine rotor blade,. Blade optimization design was that relative thicknesses, chord lengths and torsion angles in different sections, were regarded as design variables, and a multi-objective optimization mathematical model was established. Based on the genetic algorithms with the use of MATLAB software, a multi-objective optimization blade design was achieved. At the same time, this method was used to optimize and design a 1.5 MW wind turbine blade. Compared with some commercial blade model, the effectiveness of the method had been verified.
     GAMBIT, the pre-processing module of FLUENT software, was used to establish a 3D model of the blade, and the wind-turbine rotor blade model was completed into ANSYS software to modal analysis. In view of the characteristics of fiber reinforces plastic, a mesh was built to carry out the model analysis, and the first 10 orders of the vibration frequencies and mode shapes were obtained, by imposing certain bound on the root of blade. Meanwhile, the impact of Coriolis on Modal Analysis of the blade was researched.
     Based on GL coordinates, aerodynamics, gravity and centrifugal force on the wind turbine were calculated. With the help of Bladed for Windows software, a 1.5 MW horizontal axis wind turbine blade was taken for example to calculate the loads of the root, and the maximum load of the root were identified. The finite element analysis was done in ANSYS software, and the deformation and stress cloud figures under limit load were got. After determining the safety coefficient, the static strength check was completed.
     According to IEC61400-1 standard, the various working conditions of 1.5 MW horizontal axis wind turbine were studied and the loads under various conditions were calculated, the maximum load and the corresponding condition were extracted from the post-processing modules in Bladed for Windows software, with which the strength of wind turbine blade cloud be checked.
引文
[1] .何祚庥.王亦楠.我国能源和电力可持续发展战略的最现实.风力发电, 2004.8.
    [2] .许洪华.世界风电技术发展趋势和我国未来风电发展探讨.电力设备,2005年第6卷第10期.
    [3] .沈德昌.全球风能飞速发展.电器工业,2005年06期.
    [4] .GLOBAL WIND ENERGY COUNClIL. GLOBAL WIND 2006 REPORT. 2007.2.15.
    [5] .http://www.cwea.org.cn/hynews/display_info.asp?cid=183.
    [6] .施鹏飞.2007年中国风电场装机容量统计.中国风能,2008年第13期:23-25.
    [7] .世界风能年会(WWEA).2007年,风电占全球发电量的比例超过了1%---风力发电.中国风能, 2008年,第13期:51-55.
    [8] .http://www.cwea.org.cn/hynews/display_info.asp?cid=178.
    [9] .http://www.cwea.org.cn/hynews/display_info.asp?cid=183.
    [10] .http://www.mysteel.com/gc/cjzh/jdhy/2007/06/07/095821,0,0,1607118.html.
    [11] .武钢.对中国风电发展的思考.中国风能,2005年,第三期:6-9.
    [12] .李德源.大型水平轴风力机结构动力学分析.汕头大学博士后工作报告. 2004.65-42.
    [13] .唐进.提高风力机叶型气动性能的研究.清华大学硕士学位论文.2004.1-20.
    [14] .宋聚众.1.5MW变速恒频风力发电机组气动与结构设计技术.汕头大学硕士学位论文.2007.15-80.
    [15] .肖金平,王福新,陈立.大型风力机的空气动力学问题及基本研究思路.第四风能应用年会论文集.汕头大学2007.8.1-6.
    [16] .鄂春良,许洪华.我国风电发展与面临的挑战.中国科技成果,2005,第13期.
    [17] .胡其颖.从全球风电产业发展大趋势看破解我国缺电难题的新途径.太阳能.2005.06:14.
    [18] .吴冶坚,叶枝全,沈辉.新能源和可再生能源的利用.第一版.北京:机械工业出版社,2006.157-158.
    [19] . A C Hansen, C P Butterfield. Aerodynamics of Horizontal-Axis Wind Turbines. Annual Review of Fluid Mechanics.January 1993, Vol. 25, Pages 115-149.
    [20] .Miller R H, et al. Aerodynamics of Horizontal Axis Wind Turbines. MIT Aeroelastic and Structure Research Lab., TR-184-8, 1978.
    [21] .Stoddard F S. Structural Dynamics, Stability and Control of High Aspect Raito Wind Turbines. RFP-3027/670251 3353/79-9, 1978:216-237.
    [22] .陈云程,陈孝耀,朱成名.风力机设计与应用.上海:上海科学技术出版社, 1990.5.20-35.
    [23] Tony Burton,David Sharpe,Nick Jenkins,Ervin Bossanyi.Wind Energy Handbook. John Wiley & Sons Ltd, 2001.78-378.
    [24] .王凡.风力发电机的叶片设计方法研究.南京理工大学硕士论文.2007.4-40.
    [25] .刘雄,水平轴风力机气动与结构CAD系统集成研究.汕头大学硕士学位论文.1999.9-31.
    [26]刘雄.水平轴风力机气动性能计算模型.太阳能学报,2005年12月,第26卷,第6期:792-798.
    [27] D.J. Malcolm A.C. Hansen. WindPACT Turbine Rotor Design Study. National Renewable Energy Laboratory.June 2000-June 2002:6-44.
    [28] .P. Fuglsang*, H.A. Madsen. Optimization method for wind turbine rotors . Journal of Wind Engineering and Industrial Aerodynamics .May 1998:191-205.
    [29] .朱自强,付鸿雁,吁日新,刘杰.翼型和机翼的多目标优化设计研究.中国科学E辑,2003.11.
    [30] .林焰,郝聚民,纪卓尚.基于模糊优选的多目标优化遗传算法.系统工程与实践,第12期,1999.12.
    [31] .林唑云,董加礼.多目标优化的方法与理论.吉林:吉林教育出版社:55-169
    [32] .Deb K. Genetic Algorithms in Multimodel Function Optimization.University of Alabama. 1989.
    [33] .李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论及应用,北京:科技出版社,2002: 4-75.
    [34] .玄光男,程润维著.遗传算法与工程优化[专著].北京:清华大学出版社.2004.1.
    [35] .The economic optimization of horizontal axis wind turbine design G.R.Collecutt, R.G.J.Flay* wind engineering.
    [36] .David A. Spera, Wind Turbine Technology. New York: ASME PRESS, 1994.30-150.
    [37] .贺德馨.风工程与工业空气动力学,北京:国防工业出版社. 2006.1.101-133.
    [38] .G.R.Collecutt, R.G.J.Flay* The economic optimization of horizontal axis wind turbinedesign wind engineering.
    [39] .谢建华,崔新维.风力发电机设计成本研究现状及进展新疆农机化.新疆农机化,2006.
    [40] . M.Jureczko, M.Pawlak, A. Mezyk* .optimisation of wind turbine blades Materials Processing Technology.
    [41] .D.J. Malcolm Global Energy Concepts, LLC Kirkland, Washington A.C. Hansen Windward Engineering WindPACT Turbine Rotor Design Study NREL June 2000—June 2002.
    [42] .李德源,叶枝全,陈严,包能胜.风力机叶片载荷谱及疲劳寿命分析.工程力学.2004.11:112-116.
    [43] .杨自栋,杜白石.风力机叶片三维线框图的设计和显示.西北农林科技大学学报,1997,25(6):69-74.
    [44] .http://combust.hit.edu.cn/cgi-bin/forums.cgi?forum=130.
    [45] .孙家广等.计算机图形学.北京:清华大学出版社.2002.6:50-98.
    [46] .孙永泰.风力机叶片外形参数化建模.上海:玻璃钢2007年第2期.
    [47] .Mark Lillico , Richard Butler . Finite Element and Dynamic Stiffness Methods Compared for Modal Analysis of Composite Wings . AIAA Journal , 1998.11 , Vol.36 , No.11:2148-2151.
    [48] .Singiresu S. Rao , Li Chen , Eric Mulkay . Unified Finite Element Method for Engineering Systems with Hybrid Uncertainties . AIAA Journal , 1998.7 , Vol.36 , No.7:1291-1299.
    [49] .Jinyoung Suk , Youdan Kim. Time Domain Finite Element Analysis of Dynamic Systems.AIAA Journal , 1998.7 , Vol.36 , No.7:1312-1319.
    [50] .Philippidis T P, Vionis P S. Composite rotor blade model berification by menas of full-scale and model testing. Proc. of 1996 EUWEC, Goteborg, Sweden, May 1996: 20-24.
    [51] .包能胜,曹人靖,叶枝全.风力机桨叶结构振动特性有限元分析.太阳能学报,2000,21(1):77-81.
    [52] .许燕.风力发电机组关键部件的有限元分析.新疆大学硕士论文,2005,65-68.
    [53] .李德源,叶枝全,包能胜等.风力机旋转风轮振动模态分析.太阳能学报, 2004, 25(1): 72-77.
    [54] .Li Deyuan, Ye Zhiquan, Chen Yan and Bao Nengsheng. Load spectrum and fatigue life analysis of the blade of horizontal axis wind turbine, wind energy volume27,No.6, 2003:495-506.
    [55] .M. Jureczko, M. Pawlak, A. Mezyk*. Optimisation of wind turbine blades Journal of Materials Processing Technology, 167 (2005): 463-471.
    [56]陈严,胡士山,叶枝全.定桨距风力机气动优化设计优化方向分析.太阳能学报, 1997年03期.
    [57] .Fuglsang, P. L., and Madsen, H. A * . A Design Study of a 1 MWStall Regulated Rotor, Ris? National Laboratory, Roskilde, Denmark. 1995.
    [58] . Fuglsang, P. L., and Madsen, H. A * . Optimization method for wind turbine rotors.Ris? National Laboratory, DK-4000 Roskilde, Denmark, 1998.
    [59] .李本安等编.风力机结构动力学.北京:北京航空航天大学出版社,1999.9.17-48.
    [60] .Dou Xiurong. Study on the Aerodynamic Performance and the Structural Dynamics Behavior of a HAWT. ShanDong Industrial Univ.Doctor dissertation. 1995.
    [61] .Stoddard F S. Structural Dynamics, Stability and Control of High Aspect Raito Wind Turbines. RFP-3027/670251 3353/79-9, 1978:216-237.
    [62] .左鹤声,彭玉莺著.振动试验模态分析.北京:中国铁道出版社,1995.45-190.
    [63] .Det Norske Veritas, Copenhagen and Wind Energy Department, Riso National Laboratory, Guidelines for Design of Wind Turbine, 2nd ed, Denmark :Jydsk Centraltrykkeri, 2002.
    [64] .孙如林.水平轴风轮气动载荷分析.中国风能论文集,万国学术出版社.
    [65] .窦修荣.水平轴风力机气动性能及结构动力学特性研究.山东工业大学博士学位论文,1995.
    [66] .李永强,郭星辉,李健.科氏力对旋转叶片动频的影响.振动与冲击,2006,25(1) .
    [67] .徐自立,李辛毅,Park Jong一Po. Ryu Seok一Ju科氏力对高速旋转汽轮机叶片动态特性的影响,2003,37.
    [68] .BLADE FOR WINDOWS.Theory Manual,Garrad Hassan and Partners Limited, June 2006.
    [69] .BLADE FOR WINDOWS.User Manual,Garrad Hassan and Partners Limited,July 2006.
    [70] .Miller R H, et al. Aerodynamics of Horizontal Axis Wind Turbines. MIT Aeroelastic andStructure Research Lab., TR-184-8, 1978.
    [71] .胡士山.水平轴风力机叶片气动优化CAD及性能分析,清华大学硕士学位论文,1997.
    [72] .陈严,欧阳高飞,叶枝全.大型水平轴风力机传动系统的动力学研究.太阳能学报,2003年10月,第26卷第5期.
    [73] .王德俊,何雪浤等.现代机械强度理论及应用,北京:科学出版社2003.9:53-124.
    [74] .孙训方,胡增强等.材料力学,北京:高等教育出版社,1994.9:65-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700