用户名: 密码: 验证码:
巨型框架结构—筏基—砂卵石地基的静动力共同作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨型框架结构-筏基-砂卵石地基作为一种新型的大型结构体系随着经济与城市化建设的发展而逐渐开始应用。巨型框架建筑体系复杂,上部结构、基础及地基是统一的整体,三者相互联系、相互影响,共同作用,若仍沿用传统的刚性基础假定设计巨型框架结构,而不考虑建筑物共同作用影响则不甚合理,且将与实际结构的力学特性有较大的出入,其共同作用己是许多重大实际工程中一个不可回避的关键科学问题。鉴于此,本论文针对某典型巨型框架结构体系开展深入、细致分析,对其进行静、动荷载作用下的共同作用特性研究。
     本文基于国内外目前共同作用研究发展的趋势,在充分借鉴并发挥前人研究的基础上,采用理论分析、土工试验、数值模拟相结合的方法,围绕巨型框架上部结构-筏基-砂卵石地基共同作用的机理、影响因素及计算模型展开了系统研究。本文主要研究内容及创新点如下:
     (1)进行砂卵石土静动力特性研究和砂卵石土地基计算模型的研究。通过砂卵石土三轴固结排水剪切试验,分析砂卵石土的体变规律,通过砂卵石土动三轴试验,分析固结压力、固结应力比、振动频率对动本构关系、动弹性模量与动阻尼比的影响规律。其中,进行邓肯-张模型对砂卵石土的适用性分析,建议采用双线型关系表达泊松比;建立了砂卵石土最大动弹性模量与最大阻尼比计算的数值方程;对文克尔地基模型进行改进,确定了砂卵石土地基模型计算的数值参数。
     (2)进行砂卵石土地基上的筏基计算研究。分析了薄板小挠度理论建立的地基上的板的基本方程与文克尔地基上正交各向异性板的有限元法,针对薄板理论、中厚板理论、空间弹性理论,建立三种筏板计算数值模型并进行共同作用数值计算,对比分析不同计算理论对筏板变形与内力的影响,提出采用各计算理论的应用条件。
     (3)进行砂卵石土地基与筏基共同作用的非线性研究。对砂卵石土地基、筏板的钢筋混凝土材料及两者接触的非线性进行了理论分析,通过ANSYS算例数值分析,对比各部位采用非线性计算的结果特征,表明在共同作用分析中最好同时考虑地基与基础两者的非线性,而简化分析过程,应首先考虑地基土的非线性。
     (4)巨型框架结构-筏基-砂卵石地基的静力共同作用数值分析。建立了在竖向静力荷载下的共同作用数值模型,分析共同作用中的巨型框架结构响应特性,以地基条件、筏板厚度、筏板计算理论、次框架结构等方面进行静力共同作用影响分析。其中,提出底部次框架结构可改善基础不均匀沉降的作用机理;提出共同作用中的筏板基础存在一个最佳厚度;阐述了地基刚度增加使得共同作用效果愈加不显著的结论,而且地基整体变形决定基础的沉降,局部变形决定筏板的应力分布。
     (5)巨型框架结构-筏基-砂卵石地基的动力相互作用数值分析。对地基地震波的有限元计算范围及边界截取进行分析,依据人工边界的数值模拟,确定粘弹性边界计算精度与计算区域,同时进行上部巨型框架结构计算简化模型研究,通过地震作用上部结构数值计算分析了次框架对巨型框架结构动态响应的影响。通过地震作用下巨型框架结构-筏基-砂卵石地基的相互作用数值计算,进行结构动力相互共同机理分析。其中,提出次框架的刚度增大效应与相互作用中的上部结构刚度减小效果相当的结论;提出相互作用中薄基础对上部结构顶层不利,而结构底部的动态响应受地基或基础的影响比较大的结论。
Mega-frame structure is a new type of large-scale structure, and gradually begins to be widely used as the urbanization and economic development. For Mega-frame structure has the character of complex system, if it is built depended on the hypothesis of rigid foundation without regard to the interaction of superstructure and base, the result will be unreasonable and cause a big discrepancy between calculation and reality. Superstructure, base and foundation are an organic whole which connect and influence each other. And the interaction of Mega-frame structure becomes an unavoidable key scientific question in some important real projects. So, the paper’s aim at only one kind of mega-frame structure and research on static and dynamic interaction carefully.
     Based on the developing trends of the interaction research,the paper used theoretical analysis, soil tests and numerical simulation to study the interaction of the mega frame structure - based raft - sand gravel foundation. The main works and conclusions in this paper are as follows:
     (1) Static and dynamic characteristics of sand gravel are analyzed and the numerical model of foundation is researched. Based on the results of consolidated and drained triaxial shear tests, the transmogrification of sand gravel is studied. Based on the dynamic triaxial tests, the rule about the dynamic characters of sandy gravel soil under different confining pressure, solidify ratio and vibration frequency are analyzed. Among these work, the conclusion that the strength and elastic modulus of sand gravel can use Duncan-Chang Model to calculate, but the transmutation and poisson ratio need crewel model to determine are innovative. The numerical equation about the maximum dynamic modulus and the maximum poisson ratio are also innovative. Finally, the soil medel of Wrinkler are improved and the numerical parameters are gained.
     (2) The calculated method about raft foundation on sand gravel is investigated. The equation of raft based on the theory about elastic thin plate and the finite element method of orthotropic plate for Wrinkler is analyzed. Base on the thin plate theory, the moderately-thick plate theory and the space elastic theory, three numerical models about raft are calculated. After the deformation and internal force of raft under different theory are compared and analyzed, the conditions for the application of theoretical calculations are innovative.
     (3) The nonlinear analysis about raft foundation and sand gravel interaction are researched. The elastic-plastic characteristic of sand gravel, reinforced concrete raft foundation and the contact nonlinear are analyzed. The nonlinear numerical calculation are performed, the nonlinear characteristic about three parts will change the result of calculation. So the analysis about raft foundation and sand gravel interaction would adopt nonlinear calculation, and the priority is given to the nonlinear characteristic of sand gravel in the simplify process.
     (4) The static interaction of Mega frame-raft foundation-sand gravel soil is analyzed by numerical calculation. After the numerical model about the mega-frame structure considering the vertical static load under interaction are calculated, the response about mega-frame under interaction are analyzed, and the characteristic of interaction are researched by soil foundation, thickness of raft, theoretical calculation about raft, hypo-frame and others. Among these work, the innovative conclusions in this paper are as follows: the hypo-frame at the bottom of mega-frame structure adjust the uneven settlement of foundation; the raft foundation has a best thickness to be felicitous; the stiffness soil will weaken interaction when the foundation increase its thickness; the whole deformation of foundation aroused the settlement of raft and the local deformation determined the stress distribution of raft.
     (5) The dynamic interaction of mega frame-raft foundation-sand gravel soil is analyzed by numerical calculation. The area and boundary truncation of foundation under earthquake waves are researched by the finite element method. The calculation model about the upper part of the mega-frame structure is researched, and the hypo-frame can change the dynamic response of mega-frame structure based on the numerical calculation of mega-frame structure under earthquake. Finally the dynamic interaction are analyzed by numerical calculation. Among these work, the innovative conclusions in this paper are as follows: the increasing stiffness by hypo-frame is quite to the reducing stiffness by interaction; the raft foundation which are thin will be disadvantage to the top parts of structures; the soil foundation and raft foundation has nonnegligible influences on the dynamic response about the bottom of structures.
引文
[1]罗伯逊.钢结构在高层建筑中的作用[J].顾慰祖译.钢结构, 1990, 5(1): 42-51.
    [2] Shaoliang Bai, Zhengliang Li, Zhengqiang Yuan. Vertiacal Seismic Action on Megastructure Systems of Tall Building[J]. Chongqing Jianzhu University, 1998, 20 (6): 1-6.
    [3]惠卓,秦卫红,吕志涛.巨型建筑结构体系的研究与展望[J].东南大学学报(自然科学版),2000,30(4):1-8.
    [4]何国松,方鄂华,钱稼茹.巨型框架节点的非线性有限元分析[J].清华大学学报, 2000, 40(11):98-101.
    [5]周晓峰.巨型钢框架结构的静力、抗震和抗风分析[D].浙江大学博士论文, 2001.
    [6]贾彬,王汝恒,王钦华.巨型框架结构风荷载特性的风洞试验研究[J].工业建筑, 2004, 34(8): 28-30.
    [7] Ruheng Wang, Bin Jia. Experimental Study on Wind Loads on Mega structures[J]. Proceeding of 2006 Xian International Conference of Architecture and Technology. 2006: 346-350.
    [8]贾彬,王汝恒,王钦华.矩形建筑结构静风荷载的干扰效应研究[J].工业建筑, 2005, (35): 188-134.
    [9]熊曜.规则巨型框架结构风荷载特性及风致响应研究[D].西南科技大学硕士论文, 2005.
    [10]土工试验规程SL237-1999[M].北京:中国水利水电出版社, 1999.
    [11]郭庆国.粗粒土的抗剪强度特性及其参数[J].陕西水力发电, 1990.3: 29-36.
    [12]刘开明,屈智炯,肖晓军.粗粒土的工程特性及本构模型研究[J].成都科技大学学报, 1993.6: 93-102.
    [13]田树玉.粗粒土抗剪强度特性的研究[J].大坝观测与土工测试, 1997, 21(2): 35-38.
    [14]田堪良,张慧莉,骆亚生.堆石料的剪切强度与应力一应变特性[J].岩石力学与工程学报, 2005, 24(4): 657-661.
    [15]殷家瑜,赖安宁,姜朴.高压力下尾矿砂的强度与变形特性[J].岩土工程学报, 1980, (2):17-22.
    [16]张启岳,司洪洋.粗颗粒士大型三轴压缩试验的强度与应力~应变特性[J].水利学报, 1982, (9):22-31.
    [17] De.Me11o, V.B.B. Reflection on decisions of practical significance to embankment dam construction[C]. 17th Rankine lecture.Geotechnique, 1977, 27 (3): 281-354.
    [18]日本土质工学会编.粗粒料的现场压实[M].中国水利水电出版社, 1999.
    [19]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社, 1998.
    [20] Leps T M. Review of shearing strength of rockfill[J]. Journal of the Soil Mechanics andFoundation Division, ASCE, 1983, 96(SM4): 667-678.
    [21] Duncan J M, Byrne P, et al. Strength, stress-strain and bulk modulus parameters for finite element analysis of stress sand movements in soil masses[R]. In:Report No.UCB/GT/80-O1, University of California, Berkerley, 1980.
    [22]郭庆国.关于粗粒土应力-应变特性及非线性参数的试验研究[J].水利学报, 1983, (11): 44-50.
    [23]张誉,贾彬,王汝恒.砂卵石土静力特性研究[J].山西建筑, 2008, 34(21): 77-79.
    [24]谢定义.土动力学[M].西安:西安交通大学出版社, 1988.
    [25]陈存礼,胡再强.强夯地基黄土的动力特性参数及其与振动频率的关系[J].西安理工大学学报, 1998, 14(2): 216-220.
    [26]何平,张家懿,朱元林.振动频率对冻土破坏之影响[J].岩土工程学报, 1995, 5(3): 78-81.
    [27]贾革续.粗粒土工程特性的试验研究[D].大连理工大学硕士学位论文, 2003.
    [28]吴世明.土动力学[M].北京:中国建筑工业出版社, 2000.
    [29] Hardin B O, Drnevich V P. Shear modulus and damping in soils: design equations and curves [J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1972, 98(7): 667-692.
    [30] Rolins K M, Evans M D. Shear modulus and damping relationships for gravels [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(5): 396-405.
    [31]孔宪京,韩国城,林皋.粒径对动剪切模量的影响[J].东北水利发电学报, 1988, 4(4): 9-15.
    [32]梁永霞.模拟堆石料的动力变形测试及其应用[A].第三届全国土动力学学术会议论文集[C].上海:同济大学出版社, 1990, 121-124.
    [33] Hatanaka M, Suzuki Y, et al. Cyclic undrained shear properties of high quality undisturbed Tokyo gravels [J]. Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, 1988, 28(4): 57-68.
    [34]王汝恒,贾彬,邓安福等.砂卵石土动力特性的动三轴试验研究[J].岩石力学与工程学报. 2006, 25(2): 4059-4064.
    [35]贾彬,王汝恒.砂卵石土动强度的试验研究[J].工业建筑, 2006, 36(5): 71-73.
    [36]王汝恒,邓安福,姚勇等.振动频率对饱和砂卵石土动力特性的影响[J].第七届全国土动力学学术会议论文集, 2006, 11: 208-212.
    [37] Roscoe K. H.,Schofield A. N., Thurairajah, A.. Yielding of clays in States Wetter than Critical[J]. Geotechnique, 1963, 13.
    [38] Lade P.V, Duncan J.M.. Elasto-plastic stress-strain theory for cohesionless soil[J]. J.G.E.D., ASCE, 1975, 101(10): 1037-1053.
    [39]李广信.土的三维本构关系的探讨与模型验证[D].北京:清华大学水利系, 1985, 3.
    [40]高莲士,赵红庆,陈学军.粗粒料非线性解耦K-C模型及参数增量回归方法[J].清华大学水利水电工程系, 1995, 6.
    [41] Kondner, R. L.,Hyperbolic Stress-strain Response: Cohesive Soils[J], J.S.M.F.D., ASCE, 1963, 89(1):115-143.
    [42] Duncan J.M. , Chang C. Y.. Nonlinear Analysis of Stress and Strain in Soils[J]. J.S.M.F.D., ASCE, 1970, 96(5): 1629-1653.
    [43]河海大学岩土工程研究所,国家电力公司成都勘查设计研究院.狮子坪水电站心墙堆石坝静动力有限元应力应变计算分析[R]. 2002. 11.
    [44]河海大学岩土工程研究所,国家电力公司成都勘查设计研究院.糯扎渡水电站可行性研究阶段心墙堆石坝静动力有限元应力应变分析[R]. 2003. 4.
    [45]河海大学岩土工程研究所,国家电力公司成都勘查设计研究院.双江口心墙堆石坝静力三维有限元应力变形分析[R]. 2004.8.
    [46]孔宪京,韩国城等.高土石坝坝料及地基动力工程性质研究:粗粒料动应力应变关系试验研究[R].“八五”国家科技攻关项目报告, 85-208-02-04-1-08.大连:大连理工大学土木工程系, 1994.
    [47]栾茂田,林皋等.岩土地震工程与土动力学中若干最新进展评述[A].第五届全国土动力学学术会议论文集[C].大连:大连理工大学出版社, 1998: 20-46.
    [48] Rolins K M, Evans M D. Shear modulus and damping relationships for gravels [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(5): 396-405.
    [49] Evans M D, Zhou S. Liquefaction behavior of sand-gravel composites [J]. Journal of Geotechnical Engineering, ASCE, 1995,121(3): 287-298.
    [50] Hardin B O,Drnevich V P. Shear modulus and damping in soils: design equations and curves [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98(7):667-692.
    [51] Yasuda N, Matsumoto N. Comparisons of characteristics of rockfill materials using monotonic and cyclic loading laboratory tests and in situ test [J].Canadian Geotechnical Journal, 1994,31(1):162-174.
    [52]吴怀忠,王汝恒,郭文等.砂卵石土动强度与动弹性模量试验分析[J].工业建筑. 2006, 36(9): 50-52.
    [53]王汝恒,郭文,李强.四川地区饱和砂卵石土动模量和动阻尼比的试验研究[J].第七届全国土动力学学术会议论文集, 2006, 11: 203-207.
    [54]张誉,王汝恒,贾彬.砂卵石土在动荷载作用下的阻尼比研究[J].工业建筑, 2008, 38(4).
    [55] Meyerhof G.G. Some Recent Foundation Research And Its Application To Design[J]. Struct. Eng. 1953, 31: 151-167.
    [56]张琪玮.超高层筒中筒结构静、动力共同工作研究[D].西安建筑科技大学, 2005.
    [57] G.G.Meyerhof. Some recent fundation research and its application to design[J]. Struct.Eng.r, 1953, 31: 151-167.
    [58] S.Chamecki. Structural rigidity in calculating settlements.J.Soil Mech.and Found[J]. Div., ASCE, 1956, 82(1): 1-9.
    [59] H.Grosshof. Influence of flexural rigidity of superstructure on the distribution of contaet pressure and bending moments of an elastic combined footing[J]. Proc.4th ICSMFE,London 1957, 1: 300-306.
    [60] H.Sommer.A method of calculation of settlement contact pressures and bending moments in a fundation including the flexural rigidity of the superstructure[J]. Proc.6th ICSMFE,Montreal 1965, 2: 197-201.
    [61] O.C.Zeinkeiwicz and Y.K.Cheung.Plates and tnaks on elastic fundation an application finite element method[J]. J.Solids and Struct, 1965, 1: 451-461.
    [62] J.S.Przemienicki.Theory of matrix structural analysis[M]. New York Wiley, 1968.
    [63] M.J.Haddadin.Mats and combined footing sanalysis by the finite element methods[J]. Proe. ACI, 1971, 68, 2: 945-949.
    [64] J.T.Christian. Soi1 structure-interaetion for tall buildings[J]. Planing and Design of Tall Buildings, Lehigh U., 1972, l: 967-983.
    [65] H.G.Poulos, E.H.Davis. Pile foundation analysis and design[M]. New York Wiley, 1980.
    [66]张问清,赵锡宏,宰金珉.任意力系作用下层状弹性半空间的有限元分析方法[J].岩土工程学报, 1981(2): 15-23.
    [67]宰金珉,张问清.高层空间剪力墙结构与地基共同作用三维问题的双重扩大子结构有限元-有限层分析[J].建筑结构学报, 1983(5):35-40.
    [68]朱百里,曹名葆,魏道垛.框架结构与地基基础共同作用的数值分析[J].同济大学学报. 1981(4): 15-31.
    [69]裴捷,张问清,赵锡宏.考虑砖填充墙的框架结构与地基基础共同作用的分析方法[J].建筑结构学报, 1984(4): 58-69.
    [70]董建国,杨敏,赵锡宏.筏式和箱式承台弯矩的计算[J].岩土工程学报, 1992(4): 32-37.
    [71]王汝恒,郭文,张春涛.基于共同作用下巨型框架结构的动力特性分析[J].华中科技大学学报, 2008, 25(4): 61-63.
    [72]张春涛,王汝恒,贾彬.基于共同作用下筏板基础的力学机理研究[J].华中科技大学学报, 2008, 25(4): 293-295.
    [73]董建国,钱宇平,赵锡宏.小雁塔宾馆高层建筑剪力墙-箱基-地基共同作用的分析[J].结构工程师, 1986(2): 31-36.
    [74]王振宇,张保印.高层建筑上部结构与箱基和砂卵石地基共同作用的数值模拟[J].建筑结构, 2000, (11): 3-9.
    [75]王振宇,张保印,高歌.砂卵石地基高层建筑箱基基底反力实测研究[J].建筑结构学报, 2000, (4): 72-75.
    [76]陈志明.高层建筑与地基基础共同作用的理论应用与现场测试研究[D].同济大学博士学位论文, 2001.
    [77]黄熙龄.高层建筑厚筏反力及变形特征试验研究[J].岩土工程学报, 2002, 24 (2):132-136.
    [78]熊建国.土-结构动力相互作用问题的新进展(I)[J].世界地震工程, 1992, (2): 22-29.
    [79] Quinlan,P.M. The elastic theory of soil dynamics[A].Symp.on Dyn.Testing of soils[C].ASTM一STP ASTM, 1987, 156: 3-34.
    [80] Sung,T.Y. Vibrations in semi-infinite solids due to periodic surface loadings[A].Symp.On Dynamic Testing of soils[C].ASTM一STP ASTM,1987, 156: 35-64.
    [81] Lysmer, J.Riehart, F.E.T. Dynamic response of footings to vertical loadings[J]. Soil mech.division. ASCE. 1966, 92(1): 65-91.
    [82] Kashio J.Steady state response of a circular disk resting on layered medium[D]. Rice University,Houston,TX,1970.
    [83] Lueo J.E. Impednace functions for a rigid foundation on layered medium[J]. Nucl.Engrg.Des., 1974, 31: 204-231.
    [84] Kausel E., Roesset J.M. Dynmaic stiffness of circular foundations.
    [85] Waas G.Linear two-dimensional analysis of soil dynamics problems in semi-infinite layered media[D]. University of California at Berkeley, 1972.
    [86] LysmerJ., Kuhlemeyer R.L. Finite dynamic model for infinite media[J]. J.Engng.Mech.Div, ASCE 1974, 95: 859-877.
    [87] Cole D.L., Kosloff D.D., Minster J.B. A numerical boundary integral equation method for elastodynamics Int[J]. Bulletin of the Seismological Society of Ameriea, 1978, 68: 1331-1357.
    [88] Dominguez J. Dynamic stiffness of rectangular foundation[R]. Report of Civil-engineering Department, MIT,MA,USA,1978.
    [89] Von Estorff O., Schmid G. Application of the boundary element method to the analysis of the vibration behavior of strip foundations on a soil layer[J]. Proc Int.SymP.on Dynamic Soil-Sturcture Interaction, Minneapolis, Ml. Rotterdam: A.A.Balkema, 1984: 11-17.
    [90]廖振鹏,黄孔亮,杨柏坡,袁一凡.瞬态波透射边界[J].中国科学(A辑), 1988, 6(27): 556-564.
    [91] Wolf J.P. Dynamic soil-structure interaction in time domain[M]. Englewood Cliffs, NJ, Prentice-Hall, 1988.
    [92] Beer G, Meek J.L. The coupling of the boundary and finite element methods for infinite domain problems in elastoplasticity[A]. Boundary element methods[C]. Berlin, 1981: 575-591.
    [93] Beskos D.E. Boundary element methods in dynamic analysis[J]. Appl.Mech.Rev., 1988, 40: 1-23.
    [94] Abscal R.Dominguez, J. Vibration of footings on viscoelastic soil[J]. Engineering Mechanical, ASCE, 1985, 111(2): 123-141.
    [95] Ahmad S., Benerjel R.K. Multi donmain boundary element method for the dimensional problems in elastic dynamics[J]. Int.J.Number,Methods in eng, 1988, (26): 91-991.
    [96] Ahmad S., Benerjel P.K. Time domain transient elastic dynamic analysis of 3-D solids by BEM[J]. Int.J.Number,Methods in eng.1988, (26): 1709-1728.
    [97] J.P.Wolf, Chongmin Song. Dynamic-stiffness matrix in time domain of unbound medium by infinitesimal finite element cell method[J]. Earthquakes engineering and structure dynamic 1994, 23(10): 1235-1249.
    [98] Y.C.Han, P.E. Dynamic vertical response of piles in nonlinear soil,Journalof geotechnical and geoenvironmental engineering[J]. ASCE. 1997, 123(8): 710-716.
    [99]职洪涛,俞载道,曹国敖.基础提离、滑移对多层房屋地震反应影响分析[J].同济大学学报, 1998, 26(4): 367-371.
    [100]熊建国.土-结构动力问题的新进展(II)[J].世界地震工程, 1992(4): 17-25.
    [101]王继庄.粗粒料的变形特性和缩尺效应[J].岩土工程学报, 1994, 16(4): 90-95.
    [102]周云东.砂土地震液化大变形研究[D].南京:河海大学, 2003.
    [103]沈珠江.关于土力学发展前景的设想[J].岩土工程学报, 1994, 16(1): 1-2.
    [104]韩国城,孔宪京等.天生桥面板堆石坝堆石料动力变形特性研究[R].“七五”国家科技攻关报告.大连:大连理工大学土木工程系, 1988.
    [105]吴兴征,栾茂田,辛军霞.堆石料的动力剪切模量和阻尼比的三参数经验关系[R].“九五”国家科技攻关,大连:大连理工大学土木工程系, 2000.
    [106]王皆伟,王汝恒.四川地区砂卵石土动强度试验分析[J].四川建筑科学研究, 2006, 32(1): 112-114.
    [107]闫勋念.粗粒土力学特性三轴试验与模拟研究[D].河海大学,2006.
    [108]司洪洋.确定土石坝坝壳料邓肯模型参数的几个问题[J].水力发电, 1983, 8: 31-35.
    [109]刘萌成,高玉峰,刘汉龙,陈远洪.堆石料变形与强度特性的大型三轴试验研究[J].岩石力学与工程学报, 2003, 22 (7): 1104-1111.
    [110]张嘎,张建民.粗颗粒土的应力应变特性及其数学描述研究[J].岩土力学, 2004, 25(10): 1587-1591.
    [111]宰金珉,宰金璋.高层建筑基础分析与设计-土与结构物共同作用的理论与应用[M].北京:中国建筑工业出版社, 1993.
    [112] A.P.S Selvadurai著.范文田等译.土与基础相互作用的弹性分析[M].北京:中国铁道出版社, 1984.
    [113]生跃,黄义.双参数弹性地基上自由矩形板[J].应用数学和力学, 1987, 8(4):33-36.
    [114]蔡长忠.弹性地基自由边圆形厚板在偏心集中力作用下弯曲问题的Fourier级数解.[J]工程力学, 1986, (4): 27-39.
    [115]熊渊博. Kirchhoff板问题的无网格局部Petrov-Galerkin方法研究[D].湖南大学博士学位论文, 2005.
    [116] Sharma K.G., Nagpal A.K., Grag M.K. Finite element analysis of rafts resting on elastic half space[J]. Indian Geotechnical Journal, 1984, 14(1): 28-39.
    [117]张季荣,蔡敏.弹性地基上片筏基础的有限单元法分析[J].浙江大学学报, 1988, 22: 71-78.
    [118]寇玮琴.高层建筑筏板基础与地基共同作用的有限元分析[D].西南交通大学硕士学位论文, 2006.
    [119] Betters, Peter, More on lnfinite Element[J]. Int.J.Numer.Meth.Eng., 1980, 1(15): 1613-1626.
    [120] G.Beer, J.L.Meek. Infinite Domain Element[J]. Int.J.Numer.Meth.Eng., 1981, 1(17): 43-52.
    [121] O.C.Zienkiewicz, et al. A Novel Boundary Infinite Element[J]. Int.J.Numer.Meth.Eng., 1983, 1(19): 393-404.
    [122] H.Kupfer. Das Verhalten Des Betons unter Mehrachsiger Kurzzeitbelastung unter Besonderer Berucksichtigung der Zweiachsign Beanspruchung[M]. DAS. Heft. 1973.
    [123] K.H.Gerstle. Simple Formulation of Biaxial Behavior[J]. Journ, of ACL, 1981, 78(5): 14-18.
    [124]沈聚敏,王传志,江见鲸,钢筋混凝土有限元与板壳极限分析,清华大学出版社,1993.
    [125]陈波,吕西林,李培振,陈跃庆.用ANSYS模拟结构-地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动, 2002, 22(1): 126-131.
    [126]干腾君.考虑上部结构共同作用的筏板基础分析及其优化[D].重庆大学博士学位论文, 2001.
    [127]西南科技大学土木工程与建筑学院,四川荣智规划勘测设计有限公司.“绵阳.阳光.曼哈顿”建筑物沉降变形研究[R]. 2008.4.
    [128]杨学英,王鹏,李元美等.结构-地基动力相互作用问题的有限元分析[J].建筑科学, 2008, 24(3): 21-38.
    [129]朱志辉.土一箱基一框架结构动力相互作用的试验研究与理论分析[D].湖南大学硕士学位论文, 2006.
    [130]廖振鹏.工程波动导论(第二版)[M].北京:科学出版社, 2002.
    [131]赵密.粘弹性人工边界及其与透射人工边界的比较研究[D].北京工业大学硕士学位论文, 2004.
    [132]周坚,邓思华.巨型框架超高层建筑结构分析[C].第九届建筑工程计算机应用学术会议论文集, 1998.
    [133]鞠笑辉.巨型钢框架结构等效模型建立方法及结构分析[D].哈尔滨建筑大学硕士学位论文, 1996.
    [134]蔡益燕.巨型钢框架弹塑性分析的等效模型[J].建筑结构, 1993 , (1): 49-52.
    [135] Song-Dae Kim and Won-Kee Hong etc. A modified Dynamic Inelastic Analysis of Tall Buildings Considering Changes of Dynamic Characteristics[J]. The Structural Design of Tall Buildings. 1999, (8): 57-73.
    [136] Frazad Naeim and Roger M. Duulio etc. Seismic Performance Analysis Multistory Northridge Steel Moment Frame Building Damaged During the 1994 Northridge Earthquake[J]. The Structural Design of Tall Buildings. 1995, (4): 263-312.
    [137]张耀春,何若全等.高层钢框架结构分析的几个问题[J].哈尔滨建筑大学学报, 1990, (2): 119-128.
    [138]李君,张耀春.超级元在巨型钢框架结构分析中的应用[J].哈尔滨建筑大学学报, 1999, (1): 38-42.
    [139] W.F.Chen, S.E.Kin. Design of Steel Structures with LRFD Using Advanced Analysis[C]. Proceedings of the 5th International Colloquium on Stability and Ductility of Steel Structures. Nacgya, Japan.1997(3): 21-32.
    [140]宋启根,周志华.结构分析方法的进展.现代土木工程的新发展[M].东南大学出版社, 1997: 215-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700