用户名: 密码: 验证码:
水电机组模糊GPSS优化设计及其控制性能仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三峡水电站的逐步建成和“西电东送”计划的实施,我国的水电开发进入了高速发展的时期,大型巨型水电站不断建成投运,超高压远距离输电系统不断增长,水电在我国电力系统中所占比重越来越大。水电的迅速发展使得水电系统稳定控制问题显得更加突出,开展相关研究具有重要和现实的意义。
     本文对同步发电机组稳定控制的研究现状进行了综述和分析。认为:与常规PSS相比,调速器侧PSS(GPSS)具有良好的解耦特性,更宜用于多机系统的稳定控制;由于水轮机特性的强非线性、工况的时变性以及引水系统的水击效应所导致的水电系统数学模型的不确定性,采用智能控制理论设计水电机组GPSS较常规设计方法更为合理。本文将模糊控制理论和MATLAB应用于水电机组GPSS的设计,提出了模糊GPSS优化设计的首尾轮换交叉遗传算法,基于Simulink模型对模糊GPSS改善水电机组稳定性的效果进行了仿真研究。
     作为设计和评价水电机组模糊GPSS的基础,本文归纳建立了简单水电系统稳定分析与控制的数学模型,它包括:计及弹性水击的水力系统线性化模型、混流式水轮机线性化模型以及在此基础上的水力系统—水轮机线性化模型;单机无穷大系统两种详细程度不同的线性化模型,即k_1-k_6模型和c_1-c_(12)模型;基于同步发电机三阶模型的单机无穷大系统非线性模型;励磁系统和调速器模型等。基于这些模型,建立了水电系统线性化Simulink模型和具有模拟输电网络短路前后不同阶段网络结构变化功能的非线性Simulink模型。
     本文将模糊控制理论应用于水电机组GPSS的设计。这种模糊GPSS采用二输入单输出结构,以机组转速误差及其导数为输入量,以三角形函数作为模糊量的隶属函数,根据水电机组稳定控制要求和操作人员的经验制定控制规则,以Mamdani的max-min合成法和重心法分别作为模糊推理方法和清晰化方法。利用MATLAB的模糊逻辑工具箱建立水电机组模糊GPSS的模糊推理系统,实现了模糊GPSS的计算机辅助设计。
     本文采用遗传算法进行模糊GPSS量化因子和比例因子的优化设计。针对传统单点交叉遗传算法在处理多参数优化问题时存在的不足,提出了首尾轮换交叉遗传算法。该算法的基本思想是:当遗传代数为奇数时,采用尾部单点交叉;当遗传代数为偶数时,采用头部单点交叉。这种算法保证了被优化参数参与优化过程的概率基本均等,较大幅度地提高了进化速度。以ITAE指标作为设计水电机组模糊GPSS的评价函数,对首尾轮换交叉遗传算法与常规交叉遗传算法进行比较,结
    
    郑州大学工学硕士论文
    果表明,对同样的参数精度,前者的进化速度明显高于后者。
     本文采用时域仿真法对模糊GPSS的控制效果进行检验。以简单水电系统为对
    象,使用基于kl一气模型和c,一cl:模型并计及弹性水击的简单水电系统两种线性化
    Simulink模型,对PD、PD+常规GPss和PID+模糊GPSS三种调速控制方式下
    的系统小扰动过程进行仿真对比研究;使用具有输电网络短路前后各阶段网络结
    构变化模拟功能、计及同步发电机非线性特性和弹性水击的简单水电系统非线性
    Simulink模型,对PD、PID+常规GPSS和PID+模糊GPSS三种调速控制方式下
    的系统大扰动过程进行仿真对比研究。结果表明,水电机组采用模糊GPSS,无论
    对于大小扰动,都能够很好地改善简单水电系统的稳定性能;无论是对于运行工
    况变化、对于模糊GPSS自身参数变化、对于扰动强度的大小,还是对于模型类型
    以及参数差异都具有较强的鲁棒性。本文还以三机九节点系统为对象,使用基于
    发电机E’模型的非线性Simulink模型,对GPSS在多机系统大小扰动下的控制性
    能进行了仿真研究,结果表明,与无GPSS和常规GPSS控制方式相比,模糊GPSS
    对于改善多机系统的小扰动稳定性和大扰动稳定性都具有明显的作用。
With the gradual built of Three-Gorges Hydraulic Power Station and the execution of the project" electric power transmission from west to east", the hydroelectric resource is being developed at top speed and the hydroelectric occupy more and more specific weight. The continuous completion and commissioning of large hydraulic power station, as well as the continuous increasing of extra-high voltage and long distance power transmission system, deteriorate the stability control problem of hydro-electricity system. The associated study is very important and immediate.
    In this thesis, by the summarizing and analyzing about the present stability control study state of synchronous generator unit, it is achieved that the governor PSS (GPSS) is more suitable for the stability control of multi-machine system because of its better decoupled character than conventional PSS; the intelligence control theory is more reasonable than conventional methods to design the hydro-generator unit GPSS because of the uncertainty of mathematical model of hydro-electricity system caused by intense nonlinear character and time-variant operating mode of hydro-turbine and water-hammer effect of hydraulic system. Based on the Fuzzy Control Theory and MATLAB, the hydro-generator unit GPSS is designed. The Head-and-Tail Alternate Crossover Genetic Algorithm is proposed to optimize the parameters of Fuzzy GPSS. The effect of Fuzzy GPSS improving hydro-electricity system stability is studied based on the simulation model.
    As the basic work of the designing and evaluating of Fuzzy GPSS, the mathematic models of simple hydro-electricity system stability analyzing and controlling are founded and summarized which include the linearized model of hydraulic system-hydoturbine based on the linearized model of hydraulic system considering elastic water hammer and the linearized model of Francies turbine, two different linearized model of single-machine infinite-bus system( k1 - k6 model and c1 - c12 model), the nonlinear model of single-machine infinite-bus system based on three-order model of synchronous generator, the model of exciting system and the model of governor. Based on these models, two kinds of linearized Simulink models and a nonlinear Simulink model of simple hydro-electricity system are founded and the latter can simulate the variation of power transmission network before and after short-circuit happened.
    
    
    The Fuzzy Control Theory is used to design GPSS of hydro-generator unit. The GPSS have one output and two inputs which are speed error and its derivative. Selecting triangular function as fuzzy variable's membership function, Mamdani max-min synthetic method as fuzzy inference method and centroid method as denazification method, fuzzy control rules are given according to the control expectation of governor and the experience of operating staff. With MATLAB and its Fuzzy Logic Toolbox, fuzzy inference system (FIS) of hydro-generator unit fuzzy GPSS is founded and so the Fuzzy GPSS is attained with the aid of computer.
    Genetic Algorithm (GA) is used to optimize quantification factor and proportion factor of Fuzzy GPSS. An improved GA that is named Head-and-Tail Alternate Crossover GA is proposed to overcome the shortcoming of conventional single-point crossover GA on the optimizing of multi-parameter system. The basic idea of the algorithm is that the bits of binary string behind the crossover point are crossed if the generation number is odd and the bits in the front of crossover point are crossed if the generation number is even. In the improved GA, it is ensured that the optimized probability of every parameter is approximately equal and so the search is speeded to a great extent. Taking ITAE criterion as evaluating function of hydro-generator fuzzy GPSS, the Head-and-Tail Alternate Crossover GA is compared to classical GA. The results show that the evolutionary rate of the former is apparently higher than the latter under a same accuracy.
    The effect of Fuzzy GPSS is tested using time-domain simulation method in this thesis. Usin
引文
[1] 吕伟业.中国电力工业发展及产业结构调整[J].中国电力,2002,25(1):1~7.
    [2] 丁新良.750kV 电压等级是西北电网发展的必然选择[J].电网技术,2002,26(3):23~26.
    [3] 刘肇旭,印永华,郑美特,等.南方互联电力系统中期动态稳定破坏事故调查与分析[J].电网技术,1996,20(7):55~58.
    [4] 安振山.超高压交流输电系统运行稳定性问题[J].四川电力技术,1998,5:13~17.
    [5] 方思立,朱方.电力系统稳定器的原理及其应用[M].北京:中国电力出版社,1996.
    [6] 刘增煌,方思立.电力系统稳定器对电力系统动态稳定的作用及与其他控制方式的比较[J].电网技术,1998,22(3):4~10.
    [7] 朱方,刘增煌,高光华.电力系统稳定器对三峡输电系统动态稳定的影响[J].电网技术,2002,26(8):44~47.
    [8] 史洪德,范维维.二滩水电站PSS对抑制系统低频振荡的作用[J].水力发电,2000,5:20~23.
    [9] Lim Choo-Min, Elangovan S.A. A New Stabilizer Design Technique for Multi-Machine Power Systems[J]. IEEE Trans. on Power Apparatus and Systems, 1985, 104(9):2393~2403.
    [10] Ostojic D.R. Stabilization of Multi-Modal Electromechanical Oscillations by Coordinated Application of Power System Stabilizers[J]. IEEE Trans. on Power Systems, 1991, 6(4): 1439~1445.
    [11] Lei X, Huang H., Zheng S.L., et al. Global Tuning of Power System Stabilizers in Multi-Machine Systems[J]. Electric Power Systems Research, 2001,58:103~110.
    [12] 王克文,谢志棠,史述红,等.基于概率特征根分析的电力系统稳定器参数设计[J].电力系统自动化,2001,25(11):20~23.
    [13] F.R.Schleif, G.E.Martin, R.R.Angell. Damping of System Oscillations with Hydrogenerator Unit[J]. IEEE Trans. Power Apparatus and Systems, April, 1967: 438~442.
    [14] H.A.M.Moussa, Y.N.Yu. Improving Power System Damping through Supplementary Governor Control[J]. IEEE PES. Pap. C72:470~473(1972).
    [15] YU Yao-nan. Electric Power System Dynamics[M]. Academic Press, 1983.
    
    
    [16] 郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究,第一部分:可行性分析[J].电力系统自动化,1992,16(5):36-40.
    [17] 郝玉山,王海风,韩祯祥,等.电力系统稳定器实现于调速系统之研究,第二部分:多机系统中特性分析[J].电力系统自动化,1993,17(3):26~32.
    [18] 窦春霞.组合电力系统稳定器GPSS的设计[J].电力系统及其自动化学报,2000,12(2):13~15.
    [19] 董清,郝玉山,郝育黔,等.调速系统电力系统稳定器动模实验系统[J].华北电力大学学报,1999,26(2):49~54.
    [20] 董清,高曙,侯子利,等.利用功角和转速的非线性最优调速附加控制提高汽轮发电机静态和暂态稳定性的研究[J].中国电机工程学报,2001,21(2):46~49.
    [21] 王云,何利铨.模糊-线性最优HGPSS原理[J].贵州工业大学学报,1998,27(4):62~66.
    [22] 李士勇.模糊控制.神经网络和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996.
    [23] 周双喜,汪兴盛.基于直接反馈线性化的非线性励磁控制器[J].中国电机工程学报,1995,15(4):281~288.
    [24] 马幼捷,周雪松,迟正刚.基于直接反馈线性化理论的微机非线性励磁控制器[J].控制理论与应用,1997,14(6):857~861.
    [25] You-yi Wang, David J.Hill. Robust Nonlinear Coordinated Control of Power Systems[J]. Automatic, 1996, 32(4):611~618.
    [26] 卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993.
    [27] 孙郁松,孙元章,卢强.水轮发电机水门非线性控制规律的研究[J].电力系统自动化,1999,23(23):33~36.
    [28] 李春文,杜继宏,李鹏,等.基于逆系统方法的汽轮发电机组汽门开度的非线性控制[J].电子技术应用,1998,4:27~29.
    [29] 张腾,戴先中,陈翔.基于逆系统方法的汽轮发电机综合控制器[J].电力系统自动化,2001,25(6):27~30.
    [30] Chan Wah-chun. An Optimal Variable Structure Stabilizer for Power System Stabilization[J]. IEEE Trans, 1983, 102(6).
    [31] 于浩,陈学允,李生,等.带等效控制项的非线性变结构附加汽门控制器的研究[J].中国电力,1999,32(4):47~49.
    [32] 于占勋,刘瑞叶,陈学允.带等效控制项的非线性变结构附加励磁控制[J].电力系统自动化,1999,23(1):37~39.
    [33] 谢小荣,崔文进,唐义良,等.一种非线性自适应最优励磁控制器设计[J].电力系统自动化,2001,25(3):50~54.
    
    
    [34] N.C.Pahalawatha, G.S.Hope, O.P.Malik. Multivadable Self-Tuning Power System Stabilizer Simulation and Implementation Studies[J]. IEEE Trans. on Energy Conversion, 1991, 6(2):310~318.
    [35] 卢强,梅生伟,申铁龙,等.非线性H∞励磁控制器的递推设计[J].中国科学E辑,2000,30(1):70~78.
    [36] 赵闻飚,施颂椒,郭尚来.水轮发电机组状态反馈综合最优控制系统[J].上海交通大学学报,1996,30(4):126~131.
    [37] 田立军,郭雷,陈珩.H∞电力系统稳定器的设计[J].中国电机工程学报,1999,19(3):59~452.
    [38] 范澍,毛承雄,陆继明.基于BP神经网络的最优励磁控制器[J].电力系统自动化, 2000,24(8):29~32.
    [39] 管霖,程时杰,陈德树.神经网络电力系统稳定器的设计与实现[J].中国电机工程学报,1996,16(6):384~387.
    [40] Zhang Y., Malik O.P., Chen G.P. Artificial Neural Network Power System Stabilizers in Multi-Machine Power System Environment[J]. IEEE Trans. on Energy Conversion, 1995, 10(1): 147~155.
    [41] 谭西梅,周双喜.新型模糊逻辑励磁控制器的研究[J].电力系统自动化,1998,22(8):8~11.
    [42] M.Sanaye-Pasand, O.P.Malik. A Fuzzy Logic Based PSS Using a Standardized Rule Table[J]. Electric Machines and Power Systems, 1999, 27:295~310.
    [43] Hamid A.Toliyat, Javad Sadeh, Reza Ghazi. Design of Augmented Fuzzy Logic Power System Stabilizers to Enhance Power Systems Stability [J]. IEEE Trans. on Energy Conversion, 1996. 11 (1):97~103.
    [44] S.A.Gawish, F.A.Khalifa, W.Sabry, et al. Large Power Systems Stability Enhancement Using a Delayed Operation Fuzzy Logic Power System Stabilizer[J]. Electric Machines and Power Systems, 1999, 27:157~168.
    [45] P.Hoang, K.Tomsovic. Design and Analysis of an Adaptive Fuzzy Power System Stabilizer[J]. IEEE Trans. on Energy Conversion, 1996. 11 (2): 455~461.
    [46] Senjyu Tomonobu, Gibo Naoki, Uezato Katsumi. Cooperative Fuzzy Control of AVR and GOV Based on Sliding Mode to Improve Transient Stability of Power Systems [J]. Electrical Engineeering in Japan, 1995, 115(2): 78~88.
    [47] M.A.Abido, Y.L.Abdel-Magid. A Hybrid Neuro-Fuzzy Power System Stabilizer for Multimachine Power Systems[J]. IEEE Trans. on Power Systems, 1998, 13(4): 1323~1330.
    [48] Y.W.Eng, S.Elangovan. A Neural Fuzzy Power System Stabilizer Based on α-level
    
    Sets[J]. Journal of Intelligent and Fuzzy Systems, 1999, 7:223~238.
    [49] N.Hosseinzadeh, A.Kalam. A Rule-Based Fuzzy Power System Stabilizer Tuned by a Neural Network[J]. IEEE Trans. on Energy Conversion, 1999. 14(3):773~779.
    [50] A.Harid, O.P.Malik. A Fuzzy Logic Based Power System Stabilizer with Learning Ability[J]. IEEE Trans. on Energy Conversion, 1996, 11(4):721~727.
    [51] O.P.Malik, A.Hariri. Power System Stabilizer Based on a Self-Learning Adaptive Network Fuzzy Inference System[J]. Trans. of the Institute of Measurement and Control, 2002, 24(2): 153~173.
    [52] 陆翔,戴先中,张腾,等.多目标励磁控制的神经网络逆系统方法[J].电力系统自动化,2000,26(12):35~39.
    [53] Jinyu Wen, Shijie Cheng, O.P.Malik. A Synchronous Generator Fuzzy Excitation Controller Optimally Designed with a Genetic Algorithm[J]. IEEE Trans. on Power Systems, 1998. 13(3): 884~889.
    [54] Ragaey A.F.Saleh, Hugh R.Bolton. Genetic Algorithm-Aided Design of a Fuzzy Logic Stabilizer for a Superconducting Generator[J]. IEEE Trans. on Power Systems, 2000, 15(4):1329~1335.
    [55] Abido M.A.,Abdel-Magid Y.L. Hybridizing Rule-Based Power System Stabilizers with Genetieal Algorithm [J]. IEEE Trans. on Power Systems, 1999, 14(2): 600~607.
    [56] 文劲宇,王国兴,程时杰,等.用遗传算法设计模糊式电力系统稳定器[J].电力系统自动化,1999,23(4):22~24.
    [57] 窦春霞.用FCGA优化的电力系统自适应模糊稳定器GPSS的设计[J].大电机技术,2002,2:62~65.
    [58] 刘宪林.基于同步机和水系统详细模型的电力系统小扰动稳定研究[D].哈尔滨工业大学工学博士学位论文,2002,3.
    [59] 王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002,1.
    [60] Ziegler J.G., Nichols N.B. Optimum Setting for Automatic Controllers[J]. Trans. ASME, 1942, 64: 759~768.
    [61] 《电力系统的控制与稳定》翻译组译.电力系统的控制与稳定[M].P.M.安德逊,A.A.佛阿德著.北京:水利电力出版社,1979,3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700