用户名: 密码: 验证码:
高压直流输电与交直流混合系统的模糊控制及协调控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决我国资源分布与电力负荷之间布局不均衡的状况,国家实施了“西电东送”和全国联网的发展战略,由于直流输电在远距离大容量送电和电网互联等方面本身具有的特点与优势,因此我国的“西电东送”工程和全国联网,都将直流输电工程纳入整体规划方案。届时,直流输电将在我国西电东送,全国联网以及和周边国家的联网送电中得到更大的发展和发挥越来越重要的作用,而我国的电网也将成为多馈入交直流混合大系统。因此研究高压直流输电控制对整个交直流混合系统稳定性影响的问题与多馈入交直流混合系统中各控制元件之间的协调问题必将变得现实而具体。
     目前,高压直流输电系统中常用的控制方法仍是基于状态方程的经典控制理论。在一定范围内,虽然它们具有一定的适应性和鲁棒性,但实际的交直流混合系统是一个典型的强非线性、时变系统,其运行方式不断变化,而且还伴有很多不确定因素,因此仅靠线性或非线性控制理论来维持交直流系统在所有运行工况下有好的运行性能是有相当难度的,必须将控制理论与人工智能结合起来,即进行人工智能控制,而模糊控制是人工智能控制理论中的一个重要分支。
     本文第一章首先概述了高压直流输电系统的发展、国内外交直流输电系统的研究现状及存在问题。
     第二章概述了高压直流输电系统的控制原理和控制特性,同时给出了交直流输电系统的数学模型。
     第三章针对直流输电系统本身的特点并结合模糊智能推理,在HVDC的换流站增加辅助模糊控制,其目的是利用直流输电系统来提高和改善本身的运行
    
    性能、提高交直流系统的暂态稳定性。
     第四章着重研究如何利用直流输电系统来提高交流系统的稳定性,本章按
    照基于后件函数的模糊逻辑推理,设计了一个提高交直流混合系统阻尼特性的
    模糊控制器,其目的是改善和提高交流系统在受到干扰后交流系统的动态性能
    和阻尼特性。
     第五章针对在包含多条直流线路的交直流馄合系统中,各控制元件的设计
    目标只是满足某局部的要求而相互之间缺乏统一与协调的问题,按照模糊智能
    推理方法与最优分散协调控制算法设计出智能模糊分散协调控制器,重点研究
    了在多馈入交直流混合系统中如何在众多的控制元件之间实现协调从而使系统
    总体性能实现最优的问题。
With the development of power system and our country's economy, Our country will implement the developing strategy of "the west power transmitted to the east area". At that time, several HVDC transmission lines will be built, there will appear large and complicated AC/DC Systems in our country. It will be practice and concrete of studying the problem of the HVDC control affecting the whole AC/DC systems' stability and the problem of the coordination among the many controllable components in the multi-infeed AC/DC systems.
    At present, the control method in HVDC systems is still the typical control theory based on the state equations. Although the traditional method has adaptability and robust to some extent, the dynamic characters of the actual system are not always satisfactory because that the actual AC/DC mixed systems are typical nonlinear and time-varying systems. So the classic control theory should integrate with the artificial intelligent technique in order to improve the dynamic characters of the whole AC/DC systems. The fuzzy logic control technique is one of the important branches of artificial intelligent technique.
    The AC/DC control problems and the background of this thesis are summarized in the first chapter, as well as the development of HVDC technique.
    In chapter 2, the control theory and the control method of HVDC system and its mathematic model are presented.
    
    
    In chapter 3, according to the characters of HVDC system, the auxiliary fuzzy logic control is added to the inverter in HVDC system by fuzzy logic reasoning in order to maintain invariance and stability of the direct current and improve the transient performance of the AC system.
    The study of how to use the HVDC system to improve the stability of AC system is stressed in chapter 4. In terms of the fuzzy logic reasoning based on the back function, a fuzzy logic controller is designed to improving the dynamic characters and enhancing the damping of AC system.
    In virtue of the fuzzy logic reasoning method and the algorithm of optimal decentralize and coordination, a intelligent fuzzy and decentralized and coordinated controller is designed in chapter 5, the controller is used to settle the coordination problem among the many controllable components and achieve the object that the minimal dynamic index of the whole AC/DC system.
引文
[1] 李兴源,高压直流输电系统的运行和控制,北京:科学出版社,1998.
    [2] 浙江大学发电教研组直流输电科研组.直流输电.电力工业出版社,1982.
    [3] R.L.Cresap, D.N.Scott. Operation experience with modulation of the Pacific HVDC intertie.IEEE Trans. On Power Apparatus and Systems, Vol.97, No.4, July/August 1978, pp. 1053~1059.
    [4] John Reeve, Mansour Sultan. Robust Adaptive Control of HVDC System. IEEE Trans. On Power Delivery, Vol.9, No.3, July 1994, pp 1487~1493.
    [5] O.B.Nayak, A.M.Gole, D.G.Chapman, J.B.Davier, Control Sensitivity Indices for Stability Analysis of HVDC Systems, IEEE Transactions on Power Deliver, Vol. 10,No.4,October 1995.
    [6] D.Jovcic, N.Pahalawaththa, M.Zavahir. Stability Analysis of HVDC Control Loops. IEE Proc.-C:Gener. Transm. Distrib, Vol. 146, No.2, March 1999, pp 143~148
    [7] A.Daneshpooy, A.M.Gole, D.G.Chapman, J.B.Davies. Fuzzy Logic Control for HVDC Transmission. IEEE Transactions on Power Deliver, Vol, 12, No.4,October 1997.
    [8] K.G.Narendra, K.Khorasan, V.K.Sood, R.V.Patel. Intelligent Current Controller for an HVDC Transmission Link. IEEE Transactions on Power Systems, Vol. 13, No.3, Augest 1998.
    [9] H.J.C.Peiris, U.D.Annakkage, N.C.Pahalawaththa. Generation of fuzzy rules to develop fuzzy logic modulation controllers for damping of power system oscillations. IEEE Transactions on Power System, Vol. 14,No.4,Novermber Vol. 14,No.2,May 1999.
    [10] Dash.EK, Routray.A, Liew. Design of an energy function based fuzzy tuning controller for HVDC links. International Journal of Electrical Power and Energy System. Vol.21, No.5,1999.
    [11] Dash.EK, Routray.Aurobinda, Panda.S.K. Gain scheduling adaptive control strategies for HVDC systems using fuzzy logic. Proceedings of the IEEE International Conference on Power Electronics. Jan8-11, 1996, pp134~139.
    [12] Yoon.Jae.Young, Hwang.Gi-Hyun. Park.June.Ho. Genetic algorithm approach to design
    
    an optimal fuzzy controller for rectifier current control in HVDC system. Proceedings of the IEEE Conference on Evolutionary Computation. May 4-9 1998, Anchorage, AK, USA, pp404~409.
    [13] Narendra.K.G, Sood.V.K, Khorasani.K. Investigation into an artificial neural network based on-line current controller for an HVDC transmission link. IEEE Transactions on Power Systems. Vol. 12, No4, Nov, 1997,pp 1425~14310.
    [14] Dash.P.K, Routray.Aurobinda, Mishra. Sukumar. Neural network based feedback liberalizing controller for HVDC links. Electric Power Systems Research, Vol.50, No.2, 1999, pp125~132.
    [15] V. K. Sood, N. Kandil, R.V. Patel, K. Khorasani. Comparative Evaluation of Neural-Network-Based and PI Controllers for HVDC Transmission. IEEE Transaction on Power Electronics, Vol.9, No.3, May, 1994, pp.288~296.
    [16] 卢强,孙元章.电力系统非线性控制.科学出版社,1993.
    [17] 卢强,王仲鸿,韩英铎.输电系统最优控制.科学出版社,1982.
    [18] 韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制.清华大学出版社,1997.
    [19] The IEEE Special Stability Controls Working Group, The Dynamic Performance and Modeling of DC Systems Joint Working Group. HVDC controls for system dynamic performance. IEEE Trans. on Power Systems. Vol.6, No.2, May 1991, pp743~752.
    [20] Yuan-Yih Hsu, Li Wang. Damping of a parallel ac-dc power system using PID power system stabilizers and rectifier current regulators. IEEE Transactions on Energy Conversion, Vol.3, No.3, Septemper 1988.
    [21] 陈淮金.直流调制对交直流系统稳定性影响的研究.电力系统自动化,Vol.18,No.9,1994,PP.13~17.
    [22] Masatoshi.Sanpei, Atsuyuki.Kakehi, Hideo.Takeda. Application of Multi-variable Control For Automatic Frequency Controller of HVDC Transmission System. IEEE Trans, On Power Delivery. Vol.9, No.2, 1993, pp1063~1068.
    [23] H.J.C.Peiris, U.D.Annakkage, N.C.Pahalawaththa. Frequency regulation of rectifier side AC Systems of an HVDC scheme using coordinated fuzzy logic control. Electric Power Systems Research. 48(1998),pp89~95.
    
    
    [24] 邵震霞,李兴源.HVDC紧急功率支援自适应模糊控制器设计.电力系统自动化,2002,26(10).
    [25] 冯冬青,谢宋和.模糊智能控制.北京:化学工业出版社,1998.
    [26] Choudhry M A,Emarah A S,Ellithy K A,Galanos G D. Stability Analysis of a Modulated AC/DC system Using the Eigenvalue Sensitivity Approach. IEEE Trans, PAS-1(2), 1986 pp 128~135.
    [27] Emarah A S,Choudhry M A ,Galanos G D. Design of Optimal Modulation Controllers for Multi-area AC/DC Systems Using Eigenvalue Sensitivities .IEEE Trans,PAS-2(3), 1987. pp 522~528.
    [28] 曾得文.全国电力系统联网的基本格局及其分析.中国电力,Vol.32,No.10,1999,pp.29~33.
    [29] 张滨,卢章辉,岑文辉,叶肇基等.从华东电网远景规划看全国电网互联问题.电网技术,Vol.23,No.5,1999,pp.28~30.
    [30] 杨卫东,徐政,韩祯祥.多馈入交直流电力系统研究中的相关问题.电网技术,Vol.24,No.8,2000,PP.13~17.
    [31] 徐政.含多个直流换流站的电力系统交直流相互作用特性综述.电网技术,Vol.22,No.2,1998,pp.16~19.
    [32] 李洪兴,汪群,段钦治,雪家雄.工程模糊数学方法及应用.天津:天津科学技术出版社,1991.
    [33] Koji.Yamaji, Masakazu.Sato, Cooperative Control Between Large HVDC System and Thermal Power Plant. IEEE Transactions on Power System, Vol. 14, No.2, May 1999.
    [34] 陈淮金,韩英铎,王仲鸿.多机电力系统分散最优励磁控制器研究.控制理论与应用,1989,6(3)pp.31~38.
    [35] 陈淮金,韩英铎,王仲鸿.多机电力系统分散输出反馈励磁控制器研究:模型与算法.中国电机工程学报,1990,10(2)pp.32~39.
    [36] 李春文,刘艳红.基于逆系统方法的HVDC系统一般非线性控制.电力系统自动化,Vol.24,No.22,2000,PP.1~4.
    [37] A.E.Hammad. Stability and control of HVDC and AC Transmission in Parallel. IEEE Trans. On Power Delivery, Vol.14, No.4, 1999, pp.1545~1554.
    
    
    [38] 修林成,姜其荣,韩英铎,胡东成.基于线性最优控制的人工神经网络自适应励磁控制器.清华大学学报,1995,35(S3),pp 50~55.
    [39] Carpenter.G.A, Grossberg.S. The Art of Adaptive Pattern Recognition by Self-Organizing Neural Networks. IEEE Trans. On Computer, 1988, March. Pp77~88.
    [40] 邵震霞.人工智能技术在高压直流输电控制中的应用.四川大学硕士论文,2002.
    [41] K.W.V.To, A.K.David, A.EHammad. A robust coordinated control scheme for HVDC Transmission with parallel ac systems. IEEE Transactions on Power Dlivery, Vol.9, No.3, July. 1994, pp.1710~1716.
    [42] 唐峰,孙元章,沈赞埙.交直流电力系统中附加控制器与稳定器的协调设计.西安交通大学学报,Vol.27,No.1,1994,pp.41~48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700