种子逆境发芽及提高种质抗逆性方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界范围内土壤盐渍化问题日趋严重。氯化钠是最广泛分布的可溶性盐,严重影响着植物生长和作物产量。种子发芽和幼苗阶段是植物生活史的关键时期。理解该阶段的耐盐特征和机制,为改善植物耐盐性提供依据和理论基础。在过去的几十年中,植物育种者在寻求一种可靠且成本低的耐盐筛选方法以提高耐盐作物育种的效率。
     本研究以NaCl单盐胁迫为主要胁迫因子,研究了种子发芽在逆境下的响应,并探讨了几种有潜力的提高种质抗逆性方法,主要目的是研究温-盐,温-旱交互作用下种子发芽特征,探讨盐的渗透离子双重作用对种子发芽阶段的影响。描述不同盐胁迫持续时间对种子发芽复萌的影响,探讨植物在种子阶段可能的耐盐适应机制;试验一种能够提高种子抗逆性的方法——种子引发,包括引发剂的筛选,旨在选出种子引发效果最好、最便捷的引发剂,借助积温模型和水势模型探讨引发对种子发芽的作用机制,并模拟田间出土;探索早期幼苗阶段筛选大量耐盐种质的方法;研究模式物种的耐盐机制,为基因工作提供理论基础和资源。
     本文的主要结论是温度和盐分,温度和干旱交互影响着种子发芽表现。高温下盐的胁迫作用最大;低渗透势下胁迫能促进种子发芽;多数情况下盐的渗透效应起主导作用。高盐胁迫对种子发芽复萌存在积极或消极的作用。短期的胁迫对种子发芽有促进作用,即盐引发;长期胁迫可能导致种子死亡或进入次级休眠。短期胁迫后在低盐溶液中复萌不受影响;长期胁迫后低盐中可能不能恢复萌发。4种引发剂加速了玉米种子吸水;吸湿回干处理下10%PEG对幼苗生物量积累的效果最佳;综合产量因素来看,水是最便捷廉价的引发剂。引发处理降低了种子发芽的积温需求;引发效应在早春温度较低的条件下显示出最大作用;种子引发后,幼苗根系提前发育,意味着幼苗有更强的耐旱性。引发处理降低了种子发芽的水势常数,这种效应在低温下更显著,即环境水势一定的情况下,引发后的种子能够发芽的时间缩短,直接指示了种子抗旱性提高。抗逆育种工程需要快速且有指向性的筛选大量种质的方法,本研究结果指出早期幼苗(7日龄)的胚根长度是对盐胁迫最敏感的指标,可用于筛选有耐盐差异的大量基因型。方法简单,用时短。筛选前需要摸索合适的筛选浓度,该浓度因物种而异。就苜蓿属植物而言200mMNaCl可作为筛选的标准。根再生法筛选耐盐种质适用于物种种间和种内的筛选,水培法筛选七天,快速有效。藜麦已证实具有粮食价值,也是一种很好的模式物种,可以用于耐盐植物的基因和生理学研究。当藜麦在高水平盐胁迫(400mM)时,植株显示出一系列形态和生理上的变化,这些变化包括地上Na+量增加,优先积累在老叶片中;进入木质部的K+显著增加,进而导致叶片组织中K+积累;发育中的幼叶有更好地渗透保护以抵抗氧化胁迫;单位面积上气孔数的减少以及伴随的平铺细胞减少,气孔导度降低。这表示双子叶盐生植物为了抵御盐分的双重影响(渗透胁迫和离子毒害)产生的机制和对策。
Soil salinization is a serious worldwide problem and getting more and more serious. More than 800 million hectares of land throughout the world are salt affected. NaCl is the most soluble and widespread salt, which is limits plant gowth and yield greatly. Seed germination and seedling growth is the crucial phases in plant life cycle. Understanding the germination characteristic and mechanism of salt tolerance at this phase will provide theoretical basis for improving plant salt tolerance. In the past few decades, plant breeders in seeking a reliable and low-cost screening method to improve plant salt tolerance.
     This study used NaCl as the main stress factor, surveyed the response of seed germination under stress condition; and probed into several potential methods for improving germplasm salt resistance. We described the effects of salinity and temperature on seed germination, and discussed the double effects of salinity, viz osmotic and ionic on germination. We determined how salinity, exposure time and low salt concentration influence seed germination recovery and to get a whole knowledge seed germination strategy under constant changes’edaphic condition. We tested pre-sowing seed treatment as a shotgun approach to impove germination ability——seed priming,including selecting reagents which most effectively and low-cost; modeling the priming effect by thermal time model and hydrotime model and simulated emergence on the field. We also explored the method for screening salt tolerance germplasm at early seedlings. We researched on model species to explore the mechanism of salt tolerance, which could provide theoretical basis for genetic engineering.
     We obtained the important results and conclusions as follows.
     Temperature and salinity and their interaction influenced seed germination performance. High temperatures inhibited germination severly; Low water potential could improve germination; in most case, the osmotic effect of salinity plays a role. The increased salinity‘pre-treatment’raised the recovery percentage. As the exposure duration extended, the recovery percentage obviously decreased. Seed could recovery under non- or slight NaCl solutions, however, after seeds emerged in 400mM NaCl for 20d, the recovery ability under 100mM was remarkable lower than in 0 and 50mM NaCl. It is concluded that exposure to hyper-saline condition for short-time can stimulate germination in this species, and prolonged time can inhibit germination recovery.
     The four priming regents all accelerated seed imbibition; 10%PEG is the best osmoticum for seedling and biomass is highest; Water as the priming regent was low-cost and more convenience, and also took account of seed yield.
     Priming decreased the thermal requirement of all the tested crops; The simulated priming effect was maximized during the cooler conditions in early spring; The root system of primed seeds developed in advanced, and indicated that the seedlings were more tolerant to drought.
     Priming decreased hydrotime constant, the priming effect more significant at low temperature.If the environmental water potential fixed, then the primed seed could germinate earlier. This gave indirect evidence that priming can improve the drought tolerance in seed.
     The results indicated that the radicle of early seedlings (7 day age) is the most sensitive organ to salt stress, and can be used for screening a large number of salt tolerance genotypes. The method is simple and save time. The Root re-growth method could be applicable to screening salt tolerance germplasm inter- and intra- species.
     Quinoa already proven value as a seed crop for human consumption makes quinoa a prime candidate for becoming a‘model’species for the elucidation of the genetics and physiology of salt tolerance in plants.When quinoa plants are exposed to high levels of NaCl (400 mM), the plants show a suite of morphological and physiological changes that are indicative of mechanisms and strategies used by dicotyledonous halophytes to combat the dual affects of alinity, these being osmotic stress and ion toxicity. These changes include an increased amounts of Na+ in the shoot , with preferential accumulation of Na+ in old versus young leaves; a significant increase in K+ loading into the xylem with a resulting increased accumulation of K+ in leaf tissues; better osmoprotection of young developing leaves against associated oxidative stress; a significant reduction in the number of stomata per leaf area, as well as a concomitant decrease in the number of pavement cells; and a reduction in measured stomatal conductance that was less pronounced in salt tolerant varieties. Collectively, these traits contribute to the remarkable salinity tolerance of quinoa; a species that can complete its life cycle in NaCl concentrations equivalent of seawater.
引文
[1] FAO. Fao land and plant nutrition management service. 2008, Available from: http://www.fao.org/ag/agl/agll/spush.
    [2] Rengasamy P. Transient salinity and subsoil constraints to dryland farming in australian sodic soils: An overview[J]. Australian Journal of Experimental Agriculture, 2002, 42(3): 351-362.
    [3] Szabolcs I, Salt-affected soils[M].Boca Raton: CRC Press, 1989.
    [4] Ashraf M. Breeding for salinity tolerance in plants[J]. Critical reviews in plant sciences (USA), 1994,13(1):17-42
    [5] Ashraf M, McNeilly T, Bradshaw A. The response of selected salt-tolerant and normal lines of four grass species to nacl in sand culture[J]. New Phytologist, 1986, 104(3): 453-461.
    [6] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review Plant Biology, 2008, 59: 651-681.
    [7] Baskin CC and Baskin JM, Seeds: Ecology, biogeography,and evolution of dormancy and germination.[M].San Diego: Academic Press, 1998.
    [8] Bewley JD, Black M, Seeds: Physiology of development and germination [M].New York: Plenum Press, 1994.
    [9] Ghoulam C, Fares K. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.)[J]. Seed Science and Technology, 2001, 29(2): 357-364.
    [10] Ungar IA, Seed germination and seed-bank ecology of halophytes, in Seed development and germination. 1995,New York: Marcel Dekker Inc. 599-627.
    [11] Khan MA, Ungar IA. Influence of salinity and temperature on the germination of Haloxylon recurvum Bunge ex.Boiss[J]. Annals of Botany, 1996, 78(5): 547-551.
    [12] Pujol JA, Calvo JF, Ramirez-Diaz L. Recovery of germination from different osmotic conditions by four halophytes from southeastern spain[J]. Annals of Botany, 2000, 85(2): 279-286.
    [13] Welbaum GE, Tissaoui T, Bradford KJ. Water relations of seed development and germination in muskmelon(Cucumis melo L.): III.sensitivity of germination to water potential and abscisic acid during development[J]. Plant physiology, 1990, 92(4): 1029-1037.
    [14] Neumann P. Salinity resistance and plant growth revisited[J]. Plant, Cell and Environment, 1997, 20(9): 1193-1198.
    [15] Dodd GL, Donovan LA. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs[J]. American Journal of Botany, 1999, 86(8): 1146-1153
    [16] Zhang HX, Irving LJ, McGill C, et al. The effects of salinity and osmotic stress on barley germination rate: Sodium as an osmotic regulator[J]. Annals of Botany, 2010, 106(6): 1027-1035.
    [17] Pawar KN. Influence of water stress treatment on seed quality of groundnut genotypes[J].Research on Crops, 2011, 12(2): 402-404.
    [18]曾彦军,王彦荣,萨仁等.几种旱生灌木种子萌发对干旱胁迫的响应[J].应用生态学报, 2002, 13(8): 953-956.
    [19] Wurr DE, Fellows JR. A determination of the seed vigor and field performance of crisp lettuce seedstocks[J]. Seed Science and Technology, 1985, 13(1): 11-17.
    [20] Bradford KJ, Water relations in seed germination, in Seed development and germination, 1995, New York: Marcel Dekker Inc.,351-396.
    [21] Bewley JD. Seed germination and dormancy[J]. The plant cell, 1997, 9(7): 1055-1066.
    [22] Bradford KJ. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions[J]. Hortscience, 1986, 21(5): 1105-1112.
    [23] Heydecker W, Coolbear P. Seed treatment for improved performance: Survey and attempted prognosis. [J]. Seed Science Technology, 1978(5): 353-425.
    [24] Bennett M, Fritz V, Callan N. Impact of seed treatments on crop stand establishment[J]. HortTechnology (USA), 1992, 2(3): 345-349.
    [25] Pill WG, Necker A. The effects of seed treatments on germination and establishment of kentucky bluegrass (Poa pratensis L.)[J]. Seed Science and Technology, 2001, 29(1): 65-72.
    [26] Pill W, Frett J, Morneau D. Germination and seedling emergence of primed tomato and asparagus seeds under adverse conditions[J]. Hortscience, 1991, 26(9): 1160-1162.
    [27] Al-Humaid A. Effects of osmotic priming on seed germination and seedling growth of bermudagrass (Cynodon dactylon L.) under saline conditions[J]. Bulletin-faculty of Agriculture University of Cairo, 2002, 53(2): 265-274.
    [28] He CZ, Jin H, Zhu ZY, et al. Effect of seed priming with mixe-salt solution on germination and physiological characteristics of seedling in rice (Oryza sativa L.) under stress conditions.[J]. Journal of Zhejiang University (Agriculture Life Science), 2002(28): 175-178.
    [29] Babaeva EY, Volobueva VF, Yagodin BA, et al. Sowing quality and productivity of Echinacea purpurea in relation to soaking the seed in manganese and zinc solutions. [J]. Izvestiya Timiryazevskoi Sel’skokhozyaistvennoi Akademii, 1999, 4: 73-80.
    [30] Harris D. The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of Sorghum bicolor (L.) moench in semi-arid botswana[J]. Soil and Tillage Research, 1996, 40(1-2): 73-88.
    [31] Suzuki H, Khan AA. Effective temperatures and duration for seed humidification in snapbean (Phaseolus vulgaris L.)[J]. Seed Science Technology, 2001, 28: 381-389.
    [32] Finnerty T, Zajicek J, Hussey M. Use of seed priming to bypass stratification requirements of three aquilegia species[J]. Hortscience, 1992, 27(4): 310-313.
    [33] Srinivasan K, Saxena S, Singh B. Osmo-and hydropriming of mustard seeds to improve vigour and some biochemical activities[J]. Seed Science and Technology, 1999, 27(2): 785-789.
    [34] Thornton J, Powell A. Short term aerated hydration for the improvement of seed quality in Brassica oleracea L.[J]. Seed Science Research, 1992, 2(1): 41-49.
    [35] Thornton J, Powell A. Prolonged aerated hydration for improvement of seed quality in Brassica oleracea L.[J]. Annals of Applied Biology, 1995, 127(1): 183-189.
    [36] Powell A A, Thornton J M, Matthews S, et al. Invigoration of oilseed rape (Brassica napus) by aerated hydration.[J]. Seed Reserch Special Volume, 1993: 728-733.
    [37] Thornton J M, Collins ARS, Powell A A. The effect of aerated hydration on DNA synthesis in embryos of Brassica oleracea L.[J]. Seed Science Research, 1993, 3(3): 195-199.
    [38] Hardegree SP. Optimization of seed priming treatments to increase low-temperature germination rate[J]. Journal of range management, 1996: 87-92.
    [39] Seo BM. Optimum conditions for tobacco seed priming by PEG-6000.[J]. Korean Journal of Crop Science, 1999, 44(3): 263-266.
    [40] Small J, Gutterman Y. A comparison of thermo-and skotodormancy in seeds of Lactuca serriola in terms of induction, alleviation, respiration, ethylene and protein synthesis[J]. Plant growth regulation, 1992, 11(3): 301-310.
    [41] Cantliffe DJ. Priming of lettuce seed for early and uniform emergence under conditions of environmental stress, 1981: 29-38.
    [42] Huang YM, Wang HH, Chen KH. Application of the seed priming treatments in spinach (Spinacia oleracea L.) production.[J]. Journal of Chinese Social Horticultual Science, 2002, 48:117-123.
    [43] Tesfaye M. The effect of soaking, temperature and other pertreatments on the germination of enset seed[J]. Seed Science and Technology, 1992, 20(3): 533-538.
    [44] Darra B, Seth S, Singh H, et al. Effect of hormone directed presoaking on emergence and growth of osmotically stressed wheat (Triticum aestivum L.) seeds[J]. Agronomy Journal, 1973: 292-295.
    [45] Hurly R, Staden J, Smith M. Improved germination in seeds of guayule (Parthenium argentatum) following polyethylene glycol and gibberellic acid pretreatments[J]. Annals of Applied Biology, 1991, 118(1): 175-184.
    [46] Campbell J, Naidu B, Wilson J. The effect of glycinebetaine application on germination and early growth of sugarcane[J]. Seed Science and Technology, 1999, 27(2): 747-752.
    [47] Shanmugasundaram V, Kannaiyan M. Effect of concentration of seed hardening chemicals on physiological characters of pearl millet (Pennisetum typhoides)[J]. Journal of Agronomy and Crop Science, 1989, 163(3): 174-176.
    [48] Rangaswamy A, Purushothaman S, Devasenapathy P. Seed hardening in relation to seedling quality characters of crops[J]. Madras Agricultural Journal, 1993, 80(9): 535-537.
    [49] Varma S, Jhorar B, Aggarwal R. Effect of pre-sowing seed soaking in gibberellic acid on germination and early seedling growth of cotton (Gossypium hirsutum L.)[J]. Cotton Development (India), 1984.
    [50] Sharma A, Saran B. Effect of pre-sowing soaking in NAA and GA3 on germination and seedling growth in black gram[J]. New Agriculturist, 1992, 3: 21-24.
    [51] Gopal Singh B, Rama Rao G. Effect of chemical soaking of sunflower (Helianthus annuus) seed on vigour index[J]. Indian Journal of Agricultural Science, 1993, 63: 232-233.
    [52] Garcia-Huidobro J, Monteith J, Squire G R. Time, temperature and germination of pearl millet (Pennisetum typhoides)[J]. Journal of Experimental Botany, 1982, 33(2): 288-296.
    [53] Covell S, Ellis R. H, Roberts EH, et al. The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures. [J]. Journal of Experimental Botany, 1986, 37: 705-715.
    [54] Ellis R, Butcher P. The effects of priming and 'natural' differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control[J]. Journal of Experimental Botany, 1988, 39(7): 935-950.
    [55] Bierhuizen JF, Wagenvoort WA. Some aspects of seed germination in vegetables. 1.The determination and application of heat sums and minimum temperature for germination[J]. Scientia Horticulturae, 1974, 2: 213-219.
    [56] Dahal P, Bradford K J. Effects of priming and endosperm integrity on seed-germination rates of tomato genotypes.2.Germination at reduced water potential[J]. Journal of Experimental Botany, 1990, 41(232): 1441-1453.
    [57] Kebreab E, Murdoch AJ. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds[J]. Journal of Experimental Botany, 1999, 50(334): 655-664.
    [58] Labouriau L. On the physiology of seed germination in Vicia graminea L.[J]. Anais Acad. Bras. Cienc., 1970, 42(2): 235-62.
    [59] Ellis RH, Covell S, Roberts EH, et al. The influence of temperature on seed germination rate in grain legumes.2.Intraspecific variation in chickpea (Clcer arietinum L.) at constant temperatures[J]. Journal of Experimental Botany, 1986, 37(183): 1503-1515.
    [60] Alvarado V, Bradford K J. A hydrothermal time model explains the cardinal temperatures for seed germination[J]. Plant Cell and Environment, 2002, 25(8): 1061-1069.
    [61] Gummerson R. The effect of constant temperatures and osmotic potentials on the germination of sugar beet[J]. Journal of Experimental Botany, 1986, 37(6): 729.
    [62] Bradford KJ. A water relations analysis of seed germination rates[J]. Plant physiology, 1990, 94(2): 840.
    [63] Dahal P, Bradford K J. Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential[J]. Seed Science Research, 1994, 4(2): 71-80.
    [64] Munns R, James RA. Screening methods for salinity tolerance: A case study with tetraploid wheat[J]. Plant and Soil, 2003, 253(1): 201-218.
    [65] Yancey PH, Clark ME, Hand S C, et al. Living with water stress: Evolution of osmolyte systems[J]. Science, 1982, 217(4566): 1214.
    [66] Hare P, Cress W, Van Staden J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, Cell and Environment, 1998, 21(6): 535-553.
    [67] Morgan JM. Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology, 1984, 35(1): 299-319.
    [68] Ludlow M, Muchow R. A critical evaluation of traits for improving crop yields in water-limited environments1[J]. Advances in agronomy, 1990, 43: 107-153.
    [69] Serraj R, Sinclair T. Osmolyte accumulation: Can it really help increase crop yield under drought conditions?[J]. Plant, Cell and Environment, 2002, 25(2): 333-341.
    [70] Garthwaite AJ, Von Bothmer R, Colmer TD. Salt tolerance in wild Hordeum species isassociated with restricted entry of Na+ and Cl- into the shoots[J]. Journal of Experimental Botany, 2005, 56(419): 2365.
    [71] Islam S, Malik A, Islam A, et al. Salt tolerance in a hordeum marinum-triticum aestivum amphiploid, and its parents[J]. Journal of Experimental Botany, 2007, 58(5): 1219-1229
    [72] Lucas WJ, Kochian LV. Ion transport processes in corn roots:An approach utilizing microelectrode techniques, in Advanced agricultural instrumentation: Design and use., 1986, Dordrecht, Netherland:Martinus Nijhoff. pp:402-425.
    [73] Shabala S, Non-invasive microelectrode ion flux measurements in plant stress physiology., in Plant elecrophysiology-theory and methods, A Volkov, Editor. 2006, Berlin,Germany:Springer-Verlag. pp: 35-71.
    [74] Newman I. Ion transport in roots: Measurement of fluxes using ion selective microelectrodes to characterize transporter function[J]. Plant, Cell and Environment, 2001, 24(1): 1-14.
    [75] Shabala S, Shabala L, Van Volkenburgh E. Effect of calcium on root development and root ion fluxes in salinised barley seedlings[J]. Functional Plant Biology, 2003, 30(5): 507-514.
    [76] Pang J, Cuin T, Shabala L, et al. Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots[J]. Plant physiology, 2007, 145(1): 266.
    [77] Pang JY, Newman I, Mendham N, et al. Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia[J]. Plant, Cell and Environment, 2006, 29(6): 1107-1121.
    [78] Wherrett T, Ryan PR, Delhaize E, et al. Effect of aluminium on membrane potential and ion fluxes at the apices of wheat roots[J]. Functional Plant Biology, 2005, 32(3): 199-208.
    [79] Shabala S, Hariadi Y. Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll[J]. Planta, 2005, 221(1): 56-65.
    [80] Shabala SN. Leaf temperature kinetics measure plant adaptation to extreme high temperatures[J]. Australian Journal of Plant Physiology, 1996, 23(4): 445-452.
    [81] Shabala SN, Newman I A. H+ flux kinetics around plant roots after short-term exposure to low temperature: Identifying critical temperatures for plant chilling tolerance[J]. Plant Cell and Environment, 1997, 20(11): 1401-1410.
    [82] Shabala S, Shabala L, Gradmann D, et al. Oscillations in plant membrane transport: Model predictions, experimental validation, and physiological implications[J]. Journal of Experimental Botany, 2006, 57(1): 171-184.
    [83] Babourina O, Newman I, Shabala S. Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant arabidopsis seedlings[J]. Proceedings of the National Academy of Sciences, 2002, 99(4): 2433-2438.
    [84] Zivanovic B, Pang J, Shabala S. Light-induced transient ion flux responses from maize leaves and their association with leaf growth and photosynthesis[J]. Plant Cell and Environment, 2005, 28(3): 340-352
    [85] Shabala SN, Shabala SI, Martynenko AI, et al. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: A comparativesurvey and prospects for screening[J]. Australian Journal of Plant Physiology, 1998, 25(5): 609-616.
    [86] Shabala S, Newman I. Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: Masking role of the cell wall[J]. Annals of Botany, 2000, 85(5): 681-686.
    [87] Chen Z, Newman I, Zhou M, et al. Screening plants for salt tolerance by measuring K+ flux: A case study for barley[J]. Plant Cell and Environment, 2005, 28(10): 1230-1246.
    [88] Scott B, Ewing M, Williams R, et al. Tolerance of aluminium toxicity in annual medicago species and lucerne[J]. Australian Journal of Experimental Agriculture, 2008, 48(4): 499-511.
    [89] Devilliers AJ, Vanrooyen MW, Theron GK, et al. Germination of three namaqualand pioneers species, as influnenced by salinity,temperature and light[J]. Seed Science and Technology, 1994, 22(3): 427-433.
    [90] Khan MA, Ungar IA. Seed germination and dormancy of polygonum aviculare l. As influenced by salinity, temperature, and gibberellic acid[J]. Seed Science and Technology, 1998, 26(1): 107-117.
    [91] Khan MA, Ungar IA. Alleviation of salinity stress and the response to temperature in two seed morphs of halopyrum mucronatum (Poaceae)[J]. Australian Journal of Botany, 2001, 49(6): 777-783.
    [92] Khan MA, Gul B, Weber DJ. Germination responses of salicornia rubra to temperature and salinity[J]. Journal of Arid Environments, 2000, 45(3): 207-214.
    [93] Khan MA, Ungar IA. Germination responses of the subtropical annual halophyte zygophyllum simplex[J]. Seed Science and Technology, 1997, 25(1): 83-91.
    [94] Khan MA, Gulzar S. Germination responses of sporobolus ioclados: A saline desert grass[J]. Journal of Arid Environments, 2003, 53(3): 387-394.
    [95] Khan MA, Gul B. High salt tolerance in germinating dimorphic seeds of Arthrocnemum indicum[J]. International Journal of Plant Sciences, 1998, 159(5): 826-832.
    [96] El-Siddig K, Inanaga S, Ali A, et al. Response of tamarindus indica l. To iso-osmotic solutions of NaCl and PEG during germination[J]. Journal of Applied Botany, 2004, 78: 1-4.
    [97] Lesins K, Lesins I, Genus Medicago (Leguminosae). A taxogenetic study.[M].Netherlands: The Hague, 1979.
    [98] Mortenson MC, Schuman GE, Ingram LJ. Carbon sequestration in rangelands interseeded with yellow-flowering alfalfa (Medicago sativa ssp. Falcata)[J]. Environmental Management, 2004, 33(SUPPL. 1).
    [99] Michel BE, Kaufmann MR. The osmotic potential of polyethylene glycol 6000[J]. Plant physiology, 1973, 51(5): 914.
    [100] Khan MA, Ungar IA. The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triangularis willd[J]. American Journal of Botany, 1984, 71(4): 481-489.
    [101] Khan MA, Ungar IA. Effect of salinity on seed germination of Ttriglochin maritima under various temperature regimes[J]. Great Basin Naturalist, 1999, 59(2): 144-150.
    [102] Aiazzi MT, Carpane PD, Di Rienzo JA, et al. Effects of salinity and temperature on thegermination and early seedling growth of Atriplex cordobenisis gandoger et stuckert (Chenopodiaceae)[J]. Seed Science and Technology, 2002, 30(2): 329-338.
    [103] Song J, Feng G, Zhang FS. Salinity and temperature effects on germination for three salt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemum strobilaceum[J]. Plant and Soil, 2006, 279(1-2): 201-207.
    [104] Redmann R. Osmotic and specific ion effects on the germination of alfalfa[J]. Canadian Journal of Botany, 1974, 52(4): 803-808.
    [105] Sharma M. Simulation of drought and its effect on germination of five pasture species[J]. Agronomy Journal, 1973, 65(6): 982-987.
    [106] Collis-George N, Sands J E. Comparison of the effects of the physical and chemical components of soil water energy on seed germination[J]. Australia Journal of Agriculture Reserch, 1962, 13: 575-584.
    [107] Zhu J, Kang H, Tan H, et al. Effects of drought stresses induced by polyethylene glycol on germination of Pinus sylvestris var. Mongolica seeds from natural and plantation forests on sandy land[J]. Journal of Forest Research, 2006, 11(5): 319-328.
    [108]秦峰梅,张红香,武祎等盐胁迫对黄花苜蓿发芽及幼苗生长的影响[J].草业学报, 2010, 19(4): 71-78.
    [109]贾笃敬,曹致中,汪玺等金强河地区豆科牧草引种试验报告.[J].甘肃农业大学学报, 1986(3): 25-33.
    [110] Keiffer CH, Ungar IA. The effect of extended exposure to hypersaline conditions on the germination of five inland halophyte species[J]. American Journal of Botany, 1997, 84(1): 104-111.
    [111] Wei Y, Dong M, Huang ZY, et al. Factors influencing seed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of xinjiang, china[J]. Flora, 2008, 203(2): 134-140.
    [112] Tlig T, Gorai M, Neffati M. Germination responses of Diplotaxis harra to temperature and salinity[J]. Flora, 2008, 203(5): 421-428.
    [113] Wang L, Huang Z, Baskin CC, et al. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without kranz anatomy[J]. Annals of Botany, 2008, 102(5): 757-769.
    [114] Ungar I A, Ecophysiology of vascular halophytes[M].Bocaraton,FL: CEC Press, 1991.
    [115]郑慧莹,李建东,松嫩平原的主要盐生植物,《松嫩平原盐生植物与盐碱化草地的恢复》, 1999,科学出版社:北京. pp. 5-7.
    [116]马君玲,刘志民.沙丘区植物植冠储藏种子的活力和萌发特征[J].应用生态学报, 2008, 19(2): 252-256.
    [117] Yokoishi T, Tanimoto S. Seed-germination of the halophyte Suaeda japonica under salt stress[J]. Journal of Plant Research, 1994, 107(1088): 385-388.
    [118] FAO.Http://www.Fao.Org/docrep/r4082e/r4082e08.Htm#7.4%20sodicity. 1985.
    [119] Khan M A, Ungar I A. Effects of thermoperiod on recovery of seed germination of halophytes from saline conditions[J]. American Journal of Botany, 1997, 84(2): 279-283.
    [120] SPSS, Spss 11.5 for windows., in SPSS Inc. . 2002: Chicago.
    [121] Sharma TP, Sen DN. A new report on abnormally fast germinating seeds of Haloxylonspp. - an ecological adaptation to saline habitat [J]. Current Science ,1989, 58: 382-385.
    [122] Ungar IA. Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae)[J]. American Journal of Botany, 1996, 83(5): 604-607.
    [123] Ungar IA. Influence of salinity and temperature on seed germination[J]. Ohio Journal of Science, 1967, 67: 120-123.
    [124] Woodell S. Salinity and seed germination patterns in coastal plants[J]. Vegetatio, 1985, 61: 223-229.
    [125] Baskin BB. A classification system for seed dormancy[J]. Seed Science Research, 2004, 14: 1-16.
    [126] Khan MA, Gul B, Weber DJ. Germination of dimorphic seeds of Suaeda moquinii under high salinity stress[J]. Australian Journal of Botany, 2001, 49(2): 185-192.
    [127] Gul B, Weber DJ. Effect of salinity, light, and temperature on germination in Allenrolfea occidentalis[J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 1999, 77(2): 240-246.
    [128] Bajji M, Kinet J M, Lutts S. Osmotic and ionic effects of nacl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae) [J]. Canadian Journal of Botany-Revue Canadienne De Botanique, 2002, 80(3): 297-304.
    [129] Roberts H, Potter M E. Emergence patterns of weed seedlings in relation to cultivation and rainfall[J]. Weed Research, 1980, 20(6): 377-386.
    [130] Ritchie JT, Johnson A, Factors affecting evaporation, in Irrigation of agricultual crops, Stewart BA., Nielsen DR., Editors. 1990, American society of agronomy: Madison. pp. 369-390.
    [131] Heydecker W, Higgins J, Gulliver R. Accelerated germination by osmotic seed treatment[J]. 1973.
    [132] Heydecker W, Coolbear P. Seed treatments for improved performance - survey and attempted prognosis.[J]. Seed Science and Technology, 1977, 5: 353–425.
    [133] Nakamura S, Teranishi T, Aoki M. Promoting effect of polyethylene-glycol on the germination of celery and spinach seeds[J]. Journal of the Japanese Society for Horticultural Science, 1982, 50(4): 461-467.
    [134] Rood SB, Buzzell RI, Major D J, et al. Gibberellins and heterosis in maize-quantitative relationships[J]. Crop Science, 1990, 30(2): 281-286.
    [135] Nerson H, Govers A. Salt priming of muskmelon seeds for low-temperature germination[J]. Scientia Horticulturae, 1986, 28(1-2): 85-91.
    [136] Adegbuyi E, Cooper S. Osmotic priming of some herbage grass seed using polyethylene glycol(PEG) [J]. Seed Science and Technology (Netherlands), 1981,9(3):867-878
    [137] Huarte R, Staltari S, Chcrzempa SE, et al. Tripsacum dactyloides (L.) l. Caryopses water uptake dynamics and germination responses to gibberellic acid, fluctuating temperatures and pericarp scarification[J]. Seed Science and Technology, 2007, 35(2): 255-265.
    [138] TeKrony D. Relationship between laboratory indices of soybean seed vigor and field emergence[J]. Crop Science, 1977, 17(4): 573-577.
    [139] Bennett MA, Waters L. Seed hydration treatments for improved sweet maize germination and stand establishment.[J]. Journal of American Social Horticultural Science, 1987, 112:45-9.
    [140] Giri GS, Schillinger WF. Seed priming winter wheat for germination, emergence, and yield[J]. Crop Science, 2003, 43(6): 2135-2141.
    [141] Harris D, Joshi A, Khan PA, et al. On-farm seed priming in semi-arid agriculture: Development and evaluation in maize, rice and chickpea in india using participatory methods[J]. Experimental Agriculture, 1999, 35(1): 15-29.
    [142] Finch-Savage W, Dent K, Clark L. Soak conditions and temperature following sowing influence the response of maize (Zea mays L.) seeds to on-farm priming (pre-sowing seed soak)[J]. Field Crops Research, 2004,90(2-3): 361-374.
    [143] Simon EW, Early events in germination, in Seed physiology, Murray DR., Editor. 1984, Academic Press: Orlando, FL. pp. 77-115.
    [144] Garcia FC, Jimenez LF, Vazquez-Ramos JM. Biochemical and cytological studies on osmoprimed maize seeds[J]. Seed Science Research, 1995, 5: 15
    [145] Fu JR, Lu XH, Chen RZ, et al. Osmoconditioning of peanut (Arachis hypogeal) seeds with peg to improve vigor and some biochemical activities[J]. Seed Science and Technology, 1988, 16(1): 197-212.
    [146] Ibrahim AE, Roberts EH, Murdoch AJ. Viability of lettuce seeds. 2. Survival and oxygen-uptake in osmotically controlled storage[J]. Journal of Experimental Botany, 1983, 34(142): 631-640.
    [147] Mazor L, Perl M, Negbi M. Changes in some ATP-dependent activities in seeds during treatment with polyethyleneglycol and during the redrying process[J]. Journal of Experimental Botany, 1984, 35(157): 1119-1127.
    [148]杨耿斌,刘兴焱,高殿军等.黑龙江省北部早熟地区玉米种植中存在的限制因素及其解决措施[J].黑龙江农业科学, 2007, 6: 18-19.
    [149] Itabari JK, Gregory PJ, Jones RK. Effects of temperature, soil water status and depth of planting on germination and emergence of maize (Zea mays) adapted to semi-arid eastern kenya.[J]. Experimental Agriculture, 1993, 29(3): 351-364.
    [150] Taylor AG, Bennett MA, Bradford KJ, et al. Seed enhancements[J]. Seed Science Research 1998, 8: 245-256.
    [151] Harris DJ, Rashid AH, In:(Eds.), Sustainable maize production systems for nepal, in Prospects of improving maize yields with on-farm seed priming, Rajbhansari N.P., Ransom J.K., Adikhari K., et al., Editors. 2002, NARC and CIMMYT: Kathmandu. pp. 180-185.
    [152] Murungu FS, Chiduza C, Nyamugafata P, et al. Effects of 'on-farm seed priming' on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid zimbabwe[J]. Field Crops Research, 2004, 89(1): 49-57.
    [153] Hardegree SP, Jones TA, Van Vactor SS. Variability in thermal response of primed and non-primed seeds of Squirreltail [Elymus elymoides (Raf.) Swezey and Eelymus multisetus (J. G. Smith) M. E. Jones][J]. Annals of Botany, 2002, 89(3): 311-319.
    [154] Probert RJ, The role of temperature in germination ecophysiology, in Seeds:The ecology of regeneration in plant communities, Fenner M., Editor. 1992, C.A.B.International: Oxford. pp. 235-285.
    [155] Garciahuidobro J, Monteith J L, Squire GR. Time,temperature and germination of pearl millet (Pennisetum typhoides s&h).II.Alternating temperature[J]. Journal of ExperimentalBotany, 1982, 33(133): 297-302.
    [156] Arnold RLB, Ghersa CM, Sanchez RA, et al. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) pers. Seeds: Aquantitative analysis. [J]. Weed Research, 1990, 30(2): 81-89.
    [157] Shen Y Y, Li Y, Yan SG. Effects of salinity on germination of six salt-tolerant forage species and their recovery from saline conditions[J]. New Zealand Journal of Agricultural Research, 2003, 46(3): 263-269.
    [158] Finch-Savage WE, Dent KC, Clark L. Soak conditions and temperature following sowing influence the response of maize (Zea mays L.) seeds to on-farm priming (pre-sowing seed soak)[J]. Field Crops Research, 2004, 90(2-3): 361-374.
    [159] Arnold CY. The determination and significance of the base temperature in a linear heat unit system.[J]. Journal of the American Society for Horticultural Science, 1959, 74: 430-445.
    [160] Hardegree SP, Van Vactor SS. Predicting germination response of four cool-season range grasses to field-variable temperature regimes[J]. Environmental and Experimental Botany, 1999: 209-217.
    [161] Hardegree SP, Van Vactor SS. Germination and emergence of primed grass seeds under field and simulated-field temperature regimes[J]. Annals of Botany, 2000, 85(3): 379-390.
    [162] Bradford KJ, Steiner JJ, Trawatha S E. Seed priming influence on germination and emergence of pepper seed lots[J]. Crop Science, 1990, 30(3): 718-721.
    [163] Harris D, Raghuwanshi BS, Gangwar J S, et al. Participatory evaluation by farmers of on-farm seed priming in wheat in india, nepal and pakistan[J]. Experimental Agriculture, 2001, 37(3): 403-415.
    [164] Zheng GH, Wilen RW, Slinkard AE, et al. Enhancement of canola seed germination and seedling emergence at low temperature by priming[J]. Crop Science, 1994, 34(6): 1589-1593.
    [165] Tian Y, Zhang H, Wang P, et al. Predicting germination response of primed and non-primed seeds of five crops under field-variable temperature[J]. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science 2011: (Inpress).
    [166] Bradford KJ. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy[J]. Weed Science, 2002, 50(2): 248-260.
    [167] Kebreab E, Murdoch A. Modelling the effects of water stress and temperature on germination rate of orobanche aegyptiaca seeds[J]. Journal of Experimental Botany, 1999, 50(334): 655.
    [168] Windauer L, Altuna A, Benech-Arnold R. Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments[J]. Industrial Crops and Products, 2007, 25(1): 70-74.
    [169] Munns R, James R A, Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals[J]. Journal of Experimental Botany, 2006, 57(5): 1025-1043.
    [170] Flowers T. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396): 307.
    [171] Ashraf M. Some important physiological selection criteria for salt tolerance in plants[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2004, 199(5): 361-376.
    [172] Khan MA, Shirazi MU, Ali M, et al. Comparative performance of some wheat genotypes growing under saline water[J]. Pakistan Journal of Botany, 2006, 38(5): 1633-1639.
    [173] Rumbaugh MD, Pendery BM. Germination salt resistance of alfalfa (Medicago sativa L.) germplasm in relation to subspecies and centers of diversity[J]. Plant and Soil, 1990, 124(1): 47-51.
    [174] Alniemi TS, Campbell WF, Rumbaugh MD. Reponse of alfalfa cultivars to salinity during germination and post-germination growth[J]. Crop Science, 1992, 32(4): 976-980.
    [175] Tobe K, Li X, Omasa K. Seed germination and radicle growth of a halophyte, Kalidium caspicum (Chenopodiaceae)[J]. Annals of Botany, 2000, 85(3): 391-396.
    [176] Munns R, Richards RA, Improving crop productivity in saline soils, in productivity and sustainability: Shaping the future. Crop science congress.Proc. 2nd Chopra V L , Singh RB , Varma A, Editors. 1998, Oxford and IBH Publishing: New Delhi. p. 453–464.
    [177]姜世成,周道玮,靳英华.松嫩平原盐碱化草地消融期土壤水盐运移特征[J].东北师范大学学报(自然科学版), 2006, 38(4): 124-128.
    [178] Ashraf M, McNeilly T. Variability in salt tolerance of nine spring wheat cultivars[J]. Journal of Agronomy and Crop Science, 1988, 160(1): 14-21.
    [179] Kurth E, Jensen A, Epstein E. Resistance of fully imbibed tomato seeds to very high salinities[J]. Plant, Cell & Environment, 1986, 9(8): 667-676.
    [180] Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum)[J]. Plant and Soil, 2001, 231(2): 243-254.
    [181] Hollington P, Technological breakthroughs in screening/breeding wheat varieties for salt tolerance. , in Salinity management in agriculture 1998, CSSI Karnal,: India.
    [182] Kingsbury R. Selection for salt-resistant spring wheat [J]. Crop Science, 1984, 24(2): 310.
    [183] Richards R. Should selection for yield in saline regions be made on saline or non-saline soils?[J]. Euphytica, 1983, 32(2): 431-438.
    [184] Flowers TJ, Galal HK, Bromham L. Evolution of halophytes: Multiple origins of salt tolerance in land plants[J]. Functional Plant Biology, 2010, 37(7): 604-612.
    [185] Shabala S, Cuin TA. Potassium transport and plant salt tolerance[J]. Physiologia Plantarum, 2008, 133(4): 651-669.
    [186] Flowers TJ, Colmer TD. Salinity tolerance in halophytes*[J]. New Phytologist, 2008, 179(4): 945-963.
    [187] Shabala S, Mackay A. Ion transport in halophytes.[J]. Advances in Botanical Research, 2011, 57: 151-187.
    [188] Flowers T, Troke P, Yeo A. The mechanism of salt tolerance in halophytes[J]. Annual Review of Plant Physiology, 1977, 28(1): 89-121.
    [189] Glenn E, Brown JJ, Blumwald E. Salt tolerance and crop potential of halophytes[J]. Critical reviews in plant sciences, 1999, 18(2): 227-255.
    [190] Colmer T, Munns R, Flowers T. Improving salt tolerance of wheat and barley: Future prospects[J]. Australian Journal of Experimental Agriculture, 2005, 45(11): 1425-1444.
    [191] Jacobsen SE, Mujica A, Jensen C. The resistance of quinoa (Chenopodium quinoa willd.) to adverse abiotic factors.[J]. Food reviews international, 2003, 19(99-109).
    [192] FAO. Faostat data , fao statistical databases faostat. 2006; Available from: www.fao.org.
    [193] Garcia M, Raes D, Jacobsen S E. Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the bolivian highlands[J]. Agricultural water management, 2003, 60(2): 119-134.
    [194] Garcia M, Raes D, Jacobsen S E, et al. Agroclimatic constraints for rainfed agriculture in the bolivian altiplano[J]. Journal of arid environments, 2007, 71(1): 109-121.
    [195] Jacobsen SE, Monteros C, Christiansen J, et al. Plant responses of quinoa (Chenopodium quinoa willd.) to frost at various phenological stages[J]. European journal of agronomy, 2005, 22(2): 131-139.
    [196] Jacobsen SE, Monteros C, Corcuera L, et al. Frost resistance mechanisms in quinoa (Chenopodium quinoa willd.)[J]. European journal of agronomy, 2007, 26(4): 471-475.
    [197] Jacobsen SE, Liu F, Jensen CR. Does root-sourced aba play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa willd.)[J]. Scientia Horticulturae, 2009, 122(2): 281-287.
    [198] Gomez-Pando L, Alvarez-Castro R, Eguiluz-de l B A. Effect of salt stress on peruvian germplasm of chenopodium quinoa willd: A promising crop[J]. Journal of Agronomy and Crop Science, 2010.
    [199] Hariadi Y, Marandon K, Tian Y, et al. Ionic and osmotic relations in quinoa (chenopodium quinoa willd.) plants grown at various salinity levels[J]. Journal of Experimental Botany, 2011, 62(1): 185.
    [200] Rosa M, Hilal M, Gonz¨¢lez J A, et al. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa willd.) seedlings[J]. Plant Physiology and Biochemistry, 2009, 47(4): 300-307.
    [201] Jacobsen SE. The worldwide potential for quinoa[J]. Food reviews international, 2003, 19(1&2): 167-177.
    [202] Repo-Carrasco R, Espinoza C, Jacobsen S. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule)[J]. Food reviews international, 2003, 19(1/2): 179-190.
    [203] Vega Gálvez A, Miranda M, Vergara J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient andean grain: A review[J]. Journal of the Science of Food and Agriculture, 2010.
    [204] Shabala S N, Lew RR. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements[J]. Plant Physiology, 2002, 129(1): 290-299.
    [205] Shabala S, Cuin T, Osmoregulation versus osmoprotection: Re-evaluating the role of compatible solutes., in Horticulture, ornamental and plant biotechnology– advances and topical issues, Silva J Teixeira da, Editor. 2006, Global Science Book: Tokyo. pp. 405-416.
    [206] Raven J. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water.[J]. New Phytologist, 1985, 101: 25-77.
    [207] Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes[J].Phytochemistry, 1989, 28(4): 1057-1060.
    [208] Bohnert H J, Nelson D E, Jensen R G. Adaptations to environmental stresses[J]. The plant cell, 1995, 7(7): 1099-1111.
    [209] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell & Environment, 2002, 25(2): 239-250.
    [210] Lovelock C, Ball M. Influence of salinity on photosynthesis of halophytes[J]. Salinity: environment-plants-molecules, 2004: 315-339.
    [211] Flowers T, Hajibagheri M, Clipson N. Halophytes[J]. Quarterly Review of Biology, 1986: 313-337.
    [212] Ayala F, O'Leary J W. Growth and physiology of Salicornia bigelovii torr. At suboptimal salinity[J]. International Journal of Plant Sciences, 1995: 197-205.
    [213] Mateos-Naranjo E, Redondo-Gómez S, Andrades-Moreno L, et al. Growth and photosynthetic responses of the cordgrass spartina maritima to CO2 enrichment and salinity[J]. Chemosphere, 2010,81(6):725-731.
    [214] Inan G, Zhang Q, Li P, et al. Salt cress. A halophyte and Cryophyte arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles[J]. Plant physiology, 2004, 135(3): 1718-1737.
    [215] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733-749.
    [216] Chen ZH, Zhou MX, Newman I A, et al. Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance[J]. Functional Plant Biology, 2007, 34(2): 150-162.
    [217] Flowers T. Physiology of halophytes[J]. Plant and Soil, 1985, 89(1): 41-56.
    [218] Kemp P R, Cunningham G L. Light, temperature and salinity effects on growth, leaf anatomy and photosyntesis of Distichlis spicata L. greene[J]. American Journal of Botany, 1981: 507-516.
    [219] Karimi G, Ghorbanli M, Heidari H, et al. The effects of NaCl on growth, water relations,osmolytes and ion content in Kochia prostrata[J]. Biologia Plantarum, 2005, 49(2): 301-304.
    [220] Boughalleb F, Denden M, Tiba BB. Photosystem II photochemistry and physiological parameters of three fodder shrubs, nitraria retusa, Atriplex halimus and Medicago arborea under salt stress[J]. Acta Physiologiae Plantarum, 2009, 31(3): 463-476.
    [221] Maricle BR, Koteyeva NK, Voznesenskaya EV, et al. Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C4 genus Spartina (Poaceae)[J]. New Phytologist, 2009, 184(1): 216-233.
    [222] Boyer JS, Wong SC, Farquhar GD. CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials[J]. Plant physiology, 1997, 114(1): 185.
    [223] Marschner H, Mineral nutrition of higher plants. 2nd ed.[M].New York: Academic Press, 1995.
    [224] Blatt M R. Cellular signaling and volume control in stomatal movements in plants[J]. Annual Review of Cell and Developmental Biology, 2000, 16(1): 221-241.
    [225] Karley A J, Leigh R A, Sanders D. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley[J]. Plant physiology, 2000, 122(3): 835-844.
    [226] Storey R, Jones R. Responses of Atriplex spongiosa and Suaeda monoica to salinity[J].Plant physiology, 1979, 63(1): 156-162.
    [227] Albert R. Salt regulation in halophytes[J]. Oecologia, 1975, 21(1): 57-71.
    [228] James RA, Munns R, Von Caemmerer S, et al. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl in salt-affected barley and durum wheat[J]. Plant, Cell & Environment, 2006, 29(12): 2185-2197.
    [229] Vera-Estrella R, Barkla BJ, García-Ramírez L, et al. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance[J]. Plant physiology, 2005, 139(3): 1507-1517.
    [230] Balnokin YV, Kotov A, Myasoedov N, et al. Involvement of long-distance na+ transport in maintaining water potential gradient in the medium-root-leaf system of a halophyte suaeda altissima[J]. Russian Journal of Plant Physiology, 2005, 52(4): 489-496.
    [231] Shabala S, Babourina O, Rengel Z, et al. Non-invasive microelectrode potassium flux measurements as a potential tool for early recognition of virus-host compatibility in plants[J]. Planta, 2010, 232(4): 807-815.
    [232] Miyazawa S I, Terashima I. Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: Relationships between leaf anatomical characteristics and photosynthetic rate[J]. Plant, Cell & Environment, 2001, 24(3): 279-291.
    [233] Kim S. Changes in the plastid ultrastructure duringsedum rotundifolium leaf development[J]. Journal of Plant Biology, 2006, 49(5): 376-383.
    [234] Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress[J]. Physiologia plantarum, 2008, 133(3): 481-489.
    [235] Scandalios J G. Oxygen stress and superoxide dismutases[J]. Plant physiology, 1993, 101(1): 7.
    [236] Cuin TA, Shabala S. Compatible solutes reduce ros-induced potassium efflux in arabidopsis roots[J]. Plant Cell and Environment, 2007, 30(7): 875-885.
    [237] Adams P, Nelson DON E, Yamada S, et al. Growth and development of Mesembryanthemum crystallinum (Aizoaceae)[J]. New Phytologist, 1998, 138(2): 171-190
    [238] Penuelas J, Munné-Bosch S. Isoprenoids: An evolutionary pool for photoprotection[J]. Trends in Plant Science, 2005, 10(4): 166-169.
    [239] Gershenzon J. Metabolic costs of terpenoid accumulation in higher plants[J]. Journal of Chemical Ecology, 1994, 20(6): 1281-1328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700