用户名: 密码: 验证码:
西秦岭阳山金矿带成矿流体演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西秦岭阳山金矿是我国已探明资源/储量最大的独立金矿床。本文基于对阳山金矿带系统的岩相学研究,厘定了其金成矿阶段及其矿物世代,进行了流体包裹体显微测温、成分分析和C-H-O同位素研究,探讨了成矿流体的来源与演化以及金元素迁移与富集成矿机理。
     1、根据含矿细脉和矿石样品的岩相学观察结果,金成矿作用从早到晚可划分为四个阶段:贫矿化石英脉阶段(Ⅰ)、石英-硫化物脉阶段(Ⅱ)、石英-辉锑矿脉阶段(Ⅲ)以及石英-碳酸盐脉阶段(Ⅳ)。
     2、流体包裹体显微测温和成分分析表明成矿流体为中低温(120℃~320℃)、低盐度(<10%NaCl eqv)、富CO_2流体。Ⅰ阶段成矿流体为H_2O-NaCl-CO_2体系,主要表现为富CO_2包裹体,均一温度集中于260℃~320℃,盐度为0.62%~4.87%NaCl eqv;Ⅱ阶段主要为含CO_2包裹体和水溶液包裹体(CO_2/H_2O比值明显低于Ⅰ阶段,表明此阶段CO_2等挥发份大量逸出),均一温度集中于220℃~280℃,盐度集中在6%~10%NaCl eqv;Ⅲ、Ⅳ阶段仅发育水溶液包裹体,成矿流体已演化为H_2O-NaCl体系,均一温度分别集中于160℃~240℃和120℃~180℃,盐度分别为5%~7%NaCl eqv和2%~7%NaCl eqv。
     3、成矿流体的C、H、O稳定同位素研究结果表明Ⅰ、Ⅱ阶段成矿流体(δD值为-78‰~-56‰;δ~(18)OW-SMOW值为5.94‰~13.11‰)以变质流体为主,Ⅲ、Ⅳ阶段成矿流体(δD值为-82‰~-61‰;δ~(18)OW-SMOW值为4.484‰~6.45‰)中混入大气降水;不同成矿阶段其δ13CCO_2变化不是很大,介于-2.5~-4.1‰之间,也表明成矿流体具有混合来源的特征。
     4、综合流体包裹体显微测温、成分分析和C-H-O同位素研究,认为金成矿作用主阶段,金主要以硫化物的络合物形式在成矿流体中运移,可能由于压力的剧降,引起CO_2等挥发份大量逸出、pH值升高、温度降低,导致金-硫络合物分解,金及载金矿物(毒砂和黄铁矿)一起沉淀。金成矿作用晚阶段,随着大气降水的加入,发生流体混合,这也可能是引起金-硫络合物大量沉淀和明金出现的主要原因。
The Yangshan gold belt is the largest independent gold deposit with huge proved gold resources/reserves. Base on the systematic petrological research, the ore stages and mineral paragenetic sequence were determined, and the microthermometry, composition of the fluid inclusions and the C-H-O isotopes were analyzed, also the origin and evolution of the ore-forming fluids, and the migration and enrichment mechanism of gold resources were discussed in this study.
     1. According to the petrological observations of the mineralized veinlets and ore samples, the gold mineralization process could be divided into four stages:lean-ore quartz veins stage (Ⅰ), quartz-sulfides stage (Ⅱ), quartz-stibnite stage (Ⅲ), and quartz-calcite veins stage (Ⅳ).
     2. The results of the microthermometry and composition analysis of the fluid inclusions show that the ore-forming fluid is characterized by medium-low temperature (120~320℃), low salinity (<10.0wt.%NaCl eqv) and CO2-rich. Ore-forming fluids of stage Ⅰ is H2O-NaCl-CO2system, with a lot of CO2-rich inclusions, whose homogenization temperatures vary from260℃to320℃, and salinity between0.62%and4.87%NaCl eqv. The fluid inclusions of stage Ⅱ are CO2-bearing and H2O-solution inclusions, with the homogenization temperatures clustering around220℃~280℃, and the salinity clustering around6%~10%NaCl eqv. The CO2/H2O ratio in stage Ⅱ is obviously lower than that in stage Ⅰ, which probably indicates that the volatile components (CO2) escaped from the ore-forming fluids. All the fluid inclusions of stage Ⅲ and Ⅳ are H2O-solution, with homogenization temperatures clustering around160℃~240℃and120℃~180℃respectively, and salinities clustering around5%~7%NaCl eqv and2%~7%NaCl eqv, respectively.
     3. The C-H-O isotopes suggest that the ore-forming fluids in the stage Ⅰ and Ⅱ are mainly metamorphic fluids (δD values between-78‰and-56‰; δ18OW-sMOW values between5.94‰and13.11‰). Meanwhile the ore-forming fluids in the stage Ⅲ and Ⅳ are metamorphic fluids which were mixed with meteoric water (δD values between-82‰and-61‰; δ18OW-SMOW values between4.484‰and6.45‰). There is almost no variation of the δ13CCO2values from stage Ⅰ to Ⅳ (range between-2.5‰and-4.1‰), which also shows the characteristics of mixed origin of the ore-forming fluids.
     4. Based on the results of the microthermometry and composition analysis of the fluid inclusions and the C-H-O isotopes, the migration of gold is mainly in the form of sulfur complexes, and there may be a sudden drop in pressure during the migration-mineralization process, which leads to the escape of CO2and other volatile gases, accompanying by the increase of pH value, causing the decomposition of the sulfur complexes and finally the precipitation with arsenopyrite and pyrite. During the late ore stage, with the addition of meteoric water, the fluid mixing causes the precipitation of sulfur complexes, which may also be the main reason for the present of visible gold.
引文
Audetat A, Gunther D, Heinrich C A. Formation of a magmatic-hydrothermal ore deposit: Insightswith LA-ICP-MS analysis of fluid inclusions.Science,1998,279:2091~2094
    Baker T. Emplace depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits.Economic Geology,2002,97:1111~1117
    Banks D A, Yardley B W D, Campbell A R. REE composition of an aqueous magmatic fluids: afluid inclusions study from the Capitan Pluton, New Mexico, USA. Chem Geol,1994,113:259~272
    Bodnar RJ. Revised equation and table for determining the freezing point depression of H2O-NaClsolutions. Geochimica Cosmochimica Acta,1993,57(3):683~684
    Bozzo AT, Chen JR and Barduhn AJ. The properties of hydrates of chlorine and carbon dioxide. InDelyannis A and Delyannis E(eds). Fourth International Synposium on Fresh Water the Sea,1973,3:437~451
    Clayton R N, O’Neil J R and Mayada T K. Oxygen isotope exchange between quartz and water.Journal of Geophysics Research,1972,77:3057~3067
    Deng Jun, Yang Liqiang, Gao Bangfei, et al. Fluid Evolution and Metal longenic Dynamics duringTectonic Regime Tramsition: An Example from the Jiapigou Gold Belt in Northeast China.Resource Geology,2009,59(2):140~153
    Fan HR, Zhai MG, Xie YH, et al. Ore-forming fluids associated with granite~hosted goldmineralization at the Sanshandao deposit, Jiaodong gold province, China. MineraliumDeposita,2003,38:739~750
    Faure G. Principles of Isotope Geology (Second Edition). New York: John Wiley&Sons,1986,589
    Ghazi A M, Vanko D A, Roedder E. Determination of rare earth elements in fluid inclusions byinductively coupled plasma-mass spectrometry (ICP-MS).Geochim Cosmochim Acta,1993,57:4513~4516
    Goldfrab R J, Baker, Dub B, et al. Distribution, character and genesis of deposits in metamorphicterranes. Economic Geology100th Anniversary Volume,2005:407~450
    Goldfrab R J, Groves D I, Gardoll S. Orogenic gold and geologic time: a global synthesis. OreGeology Reviews,2001,18:1~75
    Graney J R, Kesler S E. Factors affecting gas analysis of inclusion fluid by quadrupole massspectrometry. Geochim Cosmochim Acta,1995,59:3977~3986
    Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: A proposedclassification in the context of their crustal distribution and relationship to other gold deposittypes. Ore Gelogy Reviews,1998,13:7~27
    Gunther D, Audetat A, Frischknecht R,et al. Quantitative analysis of major, minor and traceelements in fluid inclusions using laser ablation indusctibely coupled plasma massspectrometry. Journal of Analytical Atomic Spectrometry,1998,13:263~270
    Hagemann SG and Cassidy KF. Archean orogenic lode Au deposits. Reviews in EconomicGeology,2000,13:9~68
    Hagemann SG and Luders V. P-T-X conditions of hydrothermal fluids and precipitationmechanism of stibnite~gold mineralization at the Wiluna lode~gold deposits, WesternAustralia: conventional and infrared microthermometric constraints. Mineralium Deposita,2003,38:936~952
    Henley R W, McNabb A. Magmatic vapor plumes and ground water interaction in porphyrycopper emplacement. Economic Geology,1973,73:1~20
    Hoefs J. Stable Isotope Geochemistry (Forth Edition). Berlin:Springer~Verlag,1997:201
    Huang YY, Li KF, He W et al. Single fluids inclusion study by SRXRF microprobe. NuclearInstuments and Methods in Physics Research A,2001,467~468:1315~1317
    Kalin Kouzmanov, Thomas Pettke, Christoph A. Heinrich. Direct analysis of ore-precipitatingfluids: combined IR microscopy and LA-ICP-MS study of fluid inclusions in opaque oreminerals. Economic Geology,2010,105:351~373
    Kerrich R,Goldfarb RJ,Groves DI,et al. The characteristics,origins and geodynamic settingsof supergiant gold metallogenic provinces. Science in China Series D,2000,43(Supp.):1~68
    Kesler S E, Pluijim B A. Timing of Mississippi Valley-type mineralization: relation to Appalachianorogenic events. Geology,1990,18:1115~1118
    Lders V, Reutel C. Possibilities and limits of in frared microscopy applied to studied of fluidinclusions in sulfides and other opaque minerals. American Conference on Research on FluidInclusions VI Madison, Wisconsin, Ptogram and Abstracts,1996:78~80
    Li Z and Peters SG. Comparative geology and geochemistry of sedimentary-rock-hosted(Carlin-type) gold deposits in the People’s Republic of China and in Nevada, USA. U.S.Geological Survey Open-file Report,1998,98:1~460
    Mancano D P, Campbell A R. Microthermometry of enargitehos ted fluid inclusions from theLepanto, Philippines, high sulfidation Cu-Au deposit. Geochimica et Comochimica Acta,1995,59:3909~3916
    Mao J W, Qiu Y M, Goldfarb R J, et al. Geology, distribution of gold deposits in the westernQinling belt, central China. Mineralium Deposits,2002,37(1):352~377
    Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, centralChina. Tectonophysics,2000,323:183~196
    Mernagh TP, Bastrakov EN, Zaw K, et al. Comparison of fluid inclusion data and mineralizationprocesses for Australian orogenic gold and intrusion-related gold systems.Acta PetrologicaSinica,2007,23(1):21~32
    Morriz R, Kouznanov K, Retrunov R. Late Cretaceous Cu-Au epithermal deposits of thePanagyurishte district, Srednogorie zone, Bulgaria. Swiss Bulletin of Mineralogy andPetrology,2004,84:79~99
    Philips G.N and Evans KA. The role of CO2in the formation of gold deposits. Nature,2004,429:860~863
    Potter RW and Clynne MA. Freezing point depression of aqueous sodium chloride solution. Econ.Geol,1978,73:284~285
    Roedder E. Fluid Inclusions. Reviews in Mineralogy,1984,12:1~644
    Schidlowski M. Beginning of terrestrial life: Problems of the early record and implication forextraterrestrial scenarios. Instruments, Methods, and Missions for Astrobiology, SPIE,1998,3441:149~157
    Taylor B E. Magmatic volatiles: Isotope variation of C, H and S reviews in mineralogy.Mineralogical Society of America,1986,16:185~226
    Tayor H P. The application of oxygen and hydrogen isotope studies to problem of hydrothermalalteration and ore deposition. Economic Geology,1974,69:843~883
    Touret JLR and Bottinga Y. Equation of state for carbon dioxide: Application to carbonicinclusions. Bull Mineral,1979,102:577~583
    Ulrich T, Gunther D and Heinrich CA. The Evolution of a Porphyry Cu-Au Deposit, Based onLA~ICP~MS Analysis of Fluid Inclusions: Bajo de la Alubrera, Argentina. EconomicGeology,2002,97:1889~1920
    Ulrich T, Gunther Dand Heinrich CA. Gold concentrations of magmatic brines and the metalbudget of porphyry copper deposits. Nature,1999,399:676~679
    Yang Liqiang, Deng Jun, Guo Chunying, et al. Ore-forming fluid characteristics of theDayingezhuang gold deposit, Jiaodong gold province, China. Resource Geology,2009,59(2):182~195
    Yang Liqiang, Deng Jun, Zhang Jing, et al. Preliminary studies of fluid inclusions in Damoqujiagold deposit along Zhaopong Fault Zone, Shandong province, China. Acta Petrologica Sinica,2007,23(1):153~160
    陈柏林,董法先,李中坚.韧性剪切带金矿成矿模式.地质论评,1999,45(2):186~192
    陈衍景,张静,张复新,等.西秦岭地区卡林-类卡林型金矿床及其成矿时间,构造背景和模式.地质论评,2004,50:134~152
    陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征.岩石学报,2007,023(09):2085~2108
    陈毓川,李兆鼎,母瑞身,等.中国金矿床及其成矿规律.北京:地质出版社,2001:2~11
    陈毓川,毛景文.桂北地区矿床成矿系列和成矿历史演化轨迹.南宁:广西科学技术出版社,1995
    陈毓川,王平安,等.秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨,矿床地质,1994,13(4):289~298
    陈毓川,王平安,裴荣富.秦岭造山带矿床成矿系列与演化.矿床地质,1998,17(增刊):93~98
    程斌,张复新,贺国芬等.甘肃文县地区阳山超大微细浸染型金矿床的成因与类型.地质通报,2006,25(11):1354~1360
    池国祥,赖健清.流体包裹体在矿床研究中的作用.矿床地质,2009,28(6):850~855
    池国祥,周义明,卢焕章.当前流体包裹体研究和应用概括.岩石学报,2003,019(02):0201~0212
    邓军,方云,杨立强,等.剪切蚀变与物质迁移及金的富集—以胶东矿集区为例.地球科学,2000a,25(4):428~432
    邓军,高帮飞,王庆飞,等.成矿流体系统的形成与演化.地质科技情报,2005,24(1):49~54
    邓军,孙忠实,杨立强,等.成矿流体运动系统与金质来源和富集机制讨论.地质科技情报,2000b,19(1):41~45
    邓军,王庆飞,黄定华,等.铜陵矿集区构造-流体-成矿系统演化格架.地学前缘,2004a,11(1):121~129
    邓军,王庆飞,黄定华.成矿流体运输物理机制研究的关键难题与方法体系.地球科学进展,2004b,19(3):393~398
    邓军,杨立强,刘伟,等.胶东招掖矿集区巨量金质来源和流体成矿效应.地质科学,2001,36(3):257~268
    邓军,杨立强,孙忠实,等.构造体制转换与流体多层循环成矿动力学.地球科学,2000d,25(4):397~403
    邓军,杨立强,翟裕生,等.构造-流体-成矿系统及其动力学的理论格架与方法体系.地球科学,2000c,25(1):71~78
    邓军,翟裕生,杨立强,等.剪切带构造-流体-成矿系统动力学模拟.地学前缘,1999,6(1):115~129
    邓军,翟裕生,杨立强,等.论剪切带构造成矿系统.现代地质,1998,12(4):493~500
    丁振举,刘从强,姚书振,等.碧口群铜矿床的成矿时限及其意义.大地构造与成矿学,1999,12(3):368~372
    杜乐天.地壳流体与地幔流体间的关系.地学前缘,1996,3(4):172~180
    杜子图,吴淦国.西秦岭地区构造体系及金成矿构造动力学.地质出版社,1998:1~145
    樊硕诚,金勤海.陕西双王金矿床.见:刘东升等主编.中国卡林型(微细浸染型)金矿.南京:南京大学出版社,1994,254~285
    樊文苓,王声远,田戈夫.金在碱性富硅热液中溶解和迁移的实验研究.矿物学报,1995,15(02)176~184
    方维营,卢纪英,张国伟.南秦岭及邻区大陆动力成矿系统及成矿系列特征与找矿方向.西北地质科学,1999,20(2):1~16
    耿树方,严克明.秦巴金属矿产成矿概论.北京:地质出版社,1994
    郭俊华,齐金忠,孙彬等.甘肃阳山特大型金矿床地质特征及成因.黄金地质,2002,8(2):15~19
    何知礼.矿物包体分类问题及其意义(一种新的包体分类方案).矿床地质,1982,2:80~91
    华仁民.成矿过程中由流体混合而导致金属沉淀的研究.地球科学进展,1994,9(4):15~22
    贾润幸,限合明,郭健.秦岭凤太矿田金属成矿系列初探.西北地质科学,1999,20(2):42~50
    贾跃明.流体成矿系统与成矿作用研究.地学前缘,1996,3(4):42~50
    李春昱.秦岭及祁连山的构造发展史.国际交流地质学术论文集(一).北京:地质出版社,1978.
    李晶,陈衍景,李强之,等.甘肃阳山金矿流体包裹体地球化学和矿床成因类型.岩石学报,2007:23:2144~2154
    李晶,陈衍景,李强之,等.甘肃阳山金矿碳氢氧同位素与成矿流体来源.岩石学报,2008,26:817~826
    李实.西秦岭金矿床成因类型及地质特征.甘肃地质学报,1998,7(2):72~80
    李通国,司国强,盖艾鸿.西秦岭金矿类型及成矿区带划分.甘肃地质学报,2000,9(1):51~58
    李永飞,赖少聪,秦江峰,等.碧口火山岩系地球化学特征及Sr-Nd-Pb同位素组成—晋宁期扬子北缘裂解的证据.中国科学D辑:地球科学,2007,37:295~306
    李志宏,杨印,彭省临,等.甘肃阳山超大型热液金矿床的成矿特征.大地构造与成矿学,2007,31(1):63~76
    刘斌,段光贤.NaCl~H2O溶液包裹体的密度式和等容式及其应用.矿物学报,1987,7(4):345~352
    刘桂阁,王恩德,常春郊等.川陕甘地区阳山金矿矿床成因及成矿背景.黄金地质,2010,32(5):10~15
    刘家军,郑明华,刘建明,等.西秦岭大地构造演化与金成矿带分布.大地构造与成矿学,1997,21(4):307~314
    刘家军,郑明华,刘建明,等.西秦岭寒武系硅岩建造中金矿床成矿物质来源研究.矿床地质,1997,16(4):330~339
    刘铁庚,叶霖.碧口群形成的地质构造环境探讨.矿物学报,1999,19(4):446~451
    刘伟,范永香,齐金忠,等.甘肃省文县阳山金矿床流体包裹体的地球化学特征.现代地质,2003a,17(4):444~452
    刘伟,范永香,余金元,等.陇南阳山金矿床流体包裹体研究.华东地质学院学报,2003b,26(4):328~336
    刘英俊,马东升,季峻峰.论江南型金矿床的成矿作用地球化学.贵了冶金地质学院学报,1991,11(2):130~138
    卢焕章,GuyArcambault,李院生.山东玲珑-焦家地区形变类型与金矿的关系.地质学报,1999,73(2):174~188
    卢焕章,范宏瑞,倪培等.流体包裹体.北京:科学出版社,2004
    卢焕章,郭迪江.流体包裹体研究的进展和方向.地质论评,2000,46(4):385~392
    卢纪英,李作华,张复新.秦岭板块金矿床.西安:陕西科学技术出版社,2001:205~217
    罗锡明,齐金忠,袁士松,等.甘肃阳山金矿床微量元素及稳定同位素的地球化学研究.2004,18(2):203~209
    毛景文.西秦岭地区造山型与卡林型金矿.矿物岩石地球化学通报,2001,20(1):11~13
    毛景文.中国造山带内生金属矿床类型、特点和成矿过程探讨.地质学报,2005,79(3):342~372
    毛世东,杨荣生,秦艳等.甘肃阳山金矿田载金矿物特征及金赋存状态研究.岩石学报,2009,025(11):2776~2790
    倪师军,曹志敏,张成江,等.成矿流体活动信息的三个示踪标志研究.地球学报,1998,19(2):166~169
    裴先治,张国伟,赖少聪等.2002.西秦岭勉略构造带主要地质特征.地质通报,21(8~9):486~494
    祁思敬,李厚民,李英.秦岭地区若干重要成矿系列.西安工程学院学报,1999,21(4):29~35
    祁思敬,李英.秦岭泥盆系铅锌成矿带.北京:地质出版社,1993,1~120
    齐金忠,李莉,杨贵才.甘肃省阳山金矿床成因及成矿模式.矿床地质,2008,27(1):81~87
    齐金忠,李莉,袁士松等.甘肃省阳山金矿床石英脉中锆石SHRIMP U-Pb年代学研究.矿床地质,2005,24(2):141~150
    齐金忠,杨贵才,罗锡明.甘肃阳山金矿带构造岩浆演化与金矿成矿.现代地质,2006,20(4):564~572
    齐金忠,袁士松,陈祥,等.甘肃省文县阳山金矿带成矿规律与找矿方向研究.中国人民武装警察部队黄金地质研究所,2001,12
    齐金忠,袁士松,李莉,等.甘肃省文县阳山金矿床地质地球化学研究.矿床地质,2003b,22(1):24~31
    齐金忠,袁士松,李莉等.甘肃省文县阳山特大型金矿床地质特征及控矿因素分析.地质评论,2003a,49(1):85~92
    王集磊,何伯牌,李建中,等.中国秦岭型铅锌矿床.北京:地质出版社,1996
    王驹.碳硅泥岩型金铀矿床成矿富集地球化学,北京:原子能出版社,1994:136
    王平安,陈毓川,裴荣富.秦岭造山带矿床成矿系列,构造-成矿旋回与演化.北京:地质出版社,1998
    王尚文.中国石油地质,北京:石油工业出版社,1983:111~155
    王涛,王晓霞,田伟,等.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学(D辑),2004,39(7):949~971
    王相,刘平.秦岭造山带金矿控矿条件及资源前景,有色金属矿产与勘查,1995,4(5):264~271
    王湘,吴泽源.陕西南部勉略宁地区地质背景及成矿特点探讨.西北金属矿产地质,1988,8(4):220~226
    王小春.中国微细浸染型金矿矿质迁移沉淀机制.地质找矿论丛,1998,13(2):47~55
    韦龙明,曹远贵,王民良.陕西八卦庙金矿床地质特征及其成因分析.见:刘东升主编.中国卡林型(微细浸染型)金矿,南京:南京大学出版社,1994,286~305
    文成敏.甘肃省阳山金矿带成矿特征及矿床成因研究.四川地质学报,2006,26(4):223~227
    吴春俊,王金荣,喻光明,等.甘肃省阳山金矿田金的赋存状态和金矿物特征.矿产与地质,2008,22(4):353~356
    谢广东.Au的迁移形式及沉淀机制研究的某些进展.现代地质,1994,8(3):357~363
    徐学纯.变质流体研究新进展.地学前缘,19963(4):200~208
    许志琴,杨经绥,姜枚.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999,6(3):139~151
    阎凤增,齐金忠,郭俊华,等.甘肃省阳山金矿地质与勘查.北京,地质出版社,2010,4
    杨贵才,齐金忠,董华芳,等.甘肃省文县阳山金矿床地质及同位素特征.地质与勘探,2007,43(3):37~41
    杨经绥,刘福来,吴才来,等.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据.地质学报,2003,77(4):463~477
    杨立强,邓军,翟裕生.构造-流体-成矿系统及其动力学.地学前缘,2000,7(1):178
    杨荣生,陈衍景,张复新,等.甘肃阳山金矿独居石Th-U-Pb化学年龄及其地质和成矿意义.岩石学报,2006:2603~2610
    杨志华,姜常义,赵太平.论秦岭造山带的成矿作用.西安工程学院学报,1999,21(4):36~45
    杨志华,苏生瑞,李勇,等.秦岭一巴山地区成矿背景和成矿作用的新进展.陕西地质,2001,19(1):1~23
    袁士松,张继武,齐金忠,等.甘肃阳山金矿构造控矿模式.黄金地质,2004,10(4):23~27
    翟裕生,王建平,邓军,彭润民.成矿系统与矿化网络研究.矿床地质,2002,21(2):106~11
    张本仁,高山,张宏飞,等.秦岭造山带地球化学.北京:科学出版社,2002,47~72
    张复新,季军良,龙灵利,范春花.南秦岭卡林型-似卡林型金矿床综合地质地球化学特征.地质论评,2001b,47:492~499
    张复新.秦岭卡林型金矿床及相关问题探讨.矿床地质,1998,(2):181~182
    张复新.秦岭造山带金矿类型与地质构造背景.见:陈衍景,张静,赖勇(主编),大陆动力学与成矿作用.北京:地震出版社,2001a:90~99
    张国伟,董云鹏,赖少聪,等.秦岭-大别造山带南缘勉略构造带与勉略缝合带.中国科学(D辑),2003,33(12):1121~1135
    张国伟,董云鹏,姚安平.关于中国大陆动力学与造山带研究的几点思考,中国地质,2002,29(1):7~13
    张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化.陕西地质,1997,15(2):1~14
    张国伟,孟庆任,于在平,等.秦岭造山带的选山过程及其动力学特征,中国科学(D),1996,26(3):193~200
    张国伟,孟任庆,赖少聪.秦岭造山带的结构构造,中国科学(B),1995,25(9):994~1003
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学,北京:科学出版社,2001:1~855
    张哲儒.流体热力学前缘研究.地学前缘,1996,3(3):80~88
    赵百胜,刘伟.甘肃省阳山金矿床流体包裹体特征及其地质意义.地质找矿论丛,2004,29(2):105~109
    赵祥生,马少龙,邹湘华,等.秦巴地区碧口群的时代、层序、火山作用及含矿性研究.中国地质科学院县地质矿产研究所所刊,1990,29:1~128
    赵志忠,邱亮斌.流体地质作用的构造效应.大地构造与成矿学,1997,21(1):62~69
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000
    朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报,2003,19(2):314~318
    朱俊亭.秦巴地区区域矿产特征与成矿规律.西北地质,1988(4):1~10
    朱松彬.陕西秦巴地区金矿主要类型及其地质特征.西北地质,1986(2):7~14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700