用户名: 密码: 验证码:
添加物对高硫褐煤热解过程中硫、氮气相产物生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐煤在我国储量丰富,但因自身所具有的高水分、高挥发分、低热值等特性而使其品质降低、难以利用,对其进行热解提质显得尤为重要,在热解提质过程中煤中硫、氮的迁移变化也必须给予重视。基于此,本文以内蒙古锡盟高硫褐煤为研究对象,首先进行HCl/HF混酸脱除煤中固有的矿物质,然后分别将碱金属、碱土金属和过渡金属负载于原煤和脱矿物质煤中制得实验用脱矿物质和负载添加物的煤样,采用固定床程序升温热解-色谱法考察了煤中固有矿物质及添加物对锡盟褐煤热解过程中硫、氮气相产物的影响,主要实验研究结果如下:
     1)煤中固有矿物质对硫、氮变迁的影响
     酸处理脱矿物质煤样热解形成的含硫气体释放量明显高于原煤,表明煤中固有矿物质具有固硫作用,且该作用主要出现在500-800℃的温区内;脱矿物质煤的H2S和COS最大释放峰值温度不变显示了煤中矿物质的脱除没有改变有机体及硫化物的存在形态。矿物质对含氮气体总释放量的影响与硫一样也具有抑制作用,但改变了HCN和NH3的释放量随温度的变化趋势,固有矿物质在550-750℃范围内具有催化HCN转化为NH3的作用。
     2)负载于原煤及脱矿物质煤中的碱金属对硫、氮变迁的影响
     除负载于原煤的碳酸钾,所有负载的碱金属碳酸盐在煤热解过程中均具有一定的固硫作用,抑制了含硫气体的释放。碳酸钾在200-500℃的温度范围内对原煤热解过程中含硫气体的释放具有显著的促进作用,显示了在此温区存在着碳溶反应的催化作用。碱金属碳酸盐促进了原煤热解过程中含氮气体的释放,特别是碳酸钾的促进作用最明显;脱矿物质煤中负载的碱金属碳酸盐对总的含氮气体的释放存在一定的抑制作用,主要表现在对HCN释放的抑制,碳酸钾和碳酸锂促进了脱矿物质煤中NH3的生成,显示了HCN催化转化为NH3的二次反应的存在。
     3)负载于原煤及脱矿物质煤中的碱土金属对硫、氮变迁的影响
     无论是乙酸钙,还是草酸钙,对锡盟原煤和脱矿物质煤热解过程中含硫气体的释放都具有一定的抑制作用,主要是由于钙基添加物的固硫作用所致。对于含氮气体的释放,原煤中负载钙基添加物促进了NH3的生成,抑制了HCN的生成;脱矿物质煤中负载钙基添加物对含氮气体的释放抑制作用更为明显,显示了添加物与煤中固有矿物质的协同作用促进了煤中含氮基团的裂解和HCN催化转化为NH3的二次反应。
     4)负载于原煤及脱矿物质煤中的过渡金属对硫、氮变迁的影响
     乙酸铁和草酸铁的加入对原煤和脱矿物质煤热解过程中含硫气体的释放具有强于钙基添加物的抑制作用。对于含氮气体的影响,乙酸铁和草酸铁的作用不同,加入乙酸铁的原煤或脱矿物质煤热解过程中生成HCN和NH3的量均明显高于草酸铁,乙酸铁具有较强的促进含氮基团向NH3转化的能力,而草酸铁对HCN和NH3的形成却表现为抑制作用。
     5)煤中固有矿物质和添加物对硫、氮释放的相互作用
     对比原煤负载样和脱矿物质煤负载样热解过程中硫、氮释放的影响,发现原煤负载添加物对含硫气体释放的抑制作用大于脱矿物质煤,主要是由于原煤中固有矿物质与添加物共同作用所致;与含硫气体的影响相反,原煤负载添加物含氮气体的释放量高于脱矿物质煤,这主要是原煤中固有的矿物质和添加物的协同作用引起热稳定性相对较高的含氮官能团继续裂解所致。
Brown coal resource is rich in China, but the features of high moisture, high volatile and low heat-value limit markedly its utilization range. So it is very important to improve the quality of brown coal through pyrolysis technique. Sulfur and nitrogen in the coal will partly release in the form of gasous products during the coal pyrolysis, which will cause environmental pollution. It is necessary to research the release of sulfur and nitrogen during coal pyrolysis. The brown coal from Ximeng mine in Inner Mongolia was used as the experimental sample. The salts of alkali metal, alkaline earth metal and transition metal were evenly mixed with raw coal and demineralized coal (the inherent mineral was removed by acid-washing). The effect of the minerals and additives added in raw coal and demineralized coal on the formation of S-containing gases and N-containing gases during temperature programmed pyrolysis was studied by the fixed-bed experimental setting. The gaseous products from coal pyrolysis were analyzed by gas chromatography and IC chromatography. The main results are shown as following:
     1) The effect of inherent minerals on the release of sulfur and nitrogen during coal pyrolysis
     The S-containing gases from the pyrolysis of demineralized coal are obviously higher than that of raw coal, which shows the inherent minerals in Ximeng brown coal have the desulfurization capacity and can restrain the formation and release of S-containing gases during pyrolysis. This action mainly presents the temperature range of 500-800℃. The same maximum peak temperature of H2S and COS from pyrolysis of demineralized coal and raw coal shows that the removing of minerals does not affect the sulfur and organic matrix in coal. The release amount of total N-containing gases from demineralized coal pyrolysis is also higher than that from raw coal pyrolysis, but the changes of HCN and NH3 release trend with temperature are different. The inherent minerals present the capacity of promoting HCN to NH3 in the temperature range of 550-750℃.
     2) The effect of alkali metal loaded in raw coal and demineralized coal on the release of sulfur and nitrogen during coal pyrolysis
     Except for K2CO3 added in raw coal, the alkali metals added in raw coal and demineralized coal can prohibit the formation of S-containing gases. The additive of potassium carbonate in raw coal significantly promotes the release of S-containing gases at 300-500℃, which shows the catalysis action by potassium and carbon reaction. Alkali metals added in raw coal promote the release of N-containing gases during pyrolysis, and the role of potassium carbonate is also the most obvious. Alkali metals added in demineralized coal prohibit the release of N-containing gases, especially HCN. The results of Li2CO3 and K2CO3 promoting the release of NH3 show the secondary reaction of HCN conversion to NH3.
     3) The effect of alkaline earth metal loaded in raw coal and demineralized coal on the release of sulfur and nitrogen during pyrolysis
     Whether calcium acetate or calcium oxalate added in raw coal and demineralized coal can prohibit the release of S-containing gases during coal pyrolysis because the sulfur from coal pyrolysis can react with calcium in additives and is retained in the char. Calcium added in raw coal promotes the release of NH3 and prohibits the formation of HCN, and it is more apparent when calcium added in demineralized coal. These results show there exists the synergy reaction between inherent mineral and additives, which promotes the cracking of nitrogen group and secondary reaction of HCN conversion to NH3.
     4) The effect of transition metal loaded in raw coal and demineralized coal on the release of sulfur and nitrogen during coal pyrolysis
     Iron acetate and iron oxalate added in raw coal and demineralized coal have the strong desulfurization capacity during coal pyrolysis, and this effect is bigger than that of calcium-based additives. Iron acetate and iron oxalate play a different role in the release of N-containing gases. The release amounts of NH3 and HCN for iron acetate added in raw coal and demineralized coal are higher than that of iron oxalate. Iron acetate has the strong promoting action on the transformation of nitrogen groups to NH3, but iron oxalate has the inhibition action on the formation of NH3 and HCN.
     5) The effect of inherent minerals and additives in coal on the release of sulfur and nitrogen during coal pyrolysis
     Comparing the release amounts of sulfur and nitrogen during pyrolysis of raw coal and demineralized coal with additives, it can be found that the inhibition on the S-containing gases release of additives added in raw is more obvious than that in demineralized coal. This should be due to the interaction between inherent minerals and additives in coals. Contrary to the release of S-containing gases, the release amount of N-containing gases from pyrolysis of the raw coal with additives is higher than that of the demineralized coal with additives, this is mainly due to the synergy effect between minerals and additives promoting the relatively thermal stabile nitrogen groups in coal to be cracked.
引文
[1]倪维斗,陈贞.煤的清洁高效利用是中国低碳经济的关键[J].太原理工大学学报,2010,41(5):454-458.
    [2]谢克昌.煤化工发展与规划[M].北京:化学工业出版社,2005:80-96.
    [3]刘光启,邓蜀平,蒋云峰等.ATP技术用于褐煤热解提质的技术经济分析[J].洁净煤技术,2007,13(6):25-28.
    [4]白向飞.中国褐煤及低阶烟煤利用与提质技术开发[J]煤质技术,2010,(6):9-11.
    [5]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神华科技,2009,7(2):17-22.
    [6]胡军,郑宝山,王明仕等.中国煤中硫的分布特征及成因[J].煤炭转化,2005,28(4):1-6.
    [7]张双全.煤化学[M].徐州:中国矿业大学出版社,2006.
    [8]W.H. Calkins. The chemical forms of sulfur in coal:a review[J]. Fuel,1994,73:475-484.
    [9]Duran J E, Mahasay R, Stock L K. The occurrence of elemental sulfur in coals[J]. Fuel, 1986,65(8):1167-1168.
    [10]Hackley K C, Buchan D H, Coombs K. Solvent extraction of elemental sulfur from coal and a determination of its source using stable sulfur isotopes[J]. Fuel processing technology,1990,24:431-436.
    [11]周强.中国煤中硫氮的赋存状态研究[J].煤质技术,2007
    [12]Hu H, Zhou Q, Zhu S G, etc. Product distribution and sulfur behavior in coal pyrolysis[J]. Fuel Processing Technology,2004,85:849-861.
    [13]Jorg P, Nora T, Karin Eusterhues etc. Anoxic versus oxic sample pretreatment:effects on the speciation of sulfur and iron in well-aerated and wetland soils as assessed by X-ray absorption near-edge spectroscopy (XANES)[J]. Geoderma,2009,153:318-330.
    [14]G'eraldine S, Jacques C, Masoud K, G etc. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K-and L-edge X-ray absorption near-edgestructure spectroscopy [J]. Geochimicaet Cosmochimica Acta,1999, (63):3767-3779.
    [15]Van A J, Yperman J, Franco D V, etc. Study of silica-immobilized sulfur model compounds as calibrants for the AP-TPR study of oxidized coal samples [J]. Energy&Fuels,2000,14(5):1002-1008.
    [16]Lacount R B, Anderson P R, Friedman S, etal. Sulfur in coal by high pressure temperature-programmed reduction[J]. Fuel,1993,72:367-371
    [17]Miura K, Mae K, Shimada M. Analysis of formation rates of sulfur-containing gases during pyrolysis of various coals[J]. Energy&Fuels,2001,15:629-636
    [18]Liu Y, Chen D, Xu T. Catalyti reduction of SO2 during combustion of typical chinese coals[J]. Fuel Processing Technology,2002,79(2):157-169.
    [19]Li C Z. Advances in the Science of vitrorian brown coal [M]. Elsevier,2004.
    [20]Tsubouchi N, Ohshima Y, Xu C B. etc. Enhancement of N2 formation from the nitrogen in carbon and coal by calcium[J]. Energy&Fuels,2001,15:158-162.
    [21]Telfer M, Zhang D K. The influence of water-soluble and acid-soluble inorganic matter on sulphur transformations during pyrolysis of low-rank coals[J]. Fuel,2001,80: 2085-2098.
    [22]Maes Ⅱ, Gryglewicz G, Yperman J, etc. Effect of siderite in coal on reductive pyrolytic analyses[J]. Fuel,2000,79(15):1873-1881.
    [23]Maes Ⅱ, Yperman J. Study of coal-derived pyrite and its conversion products using atmospheric pressure temperature-programmed reduction(AP-TPR)[J]. Energy&Fuels, 1995,9(6):950-955.
    [24]Attar A. Chemistry, Thermodynamics and kinetics of sulfur in coal-gas reactions:a review[J]. Fuel.1978,57(4):201-212.
    [25]卢荣,高新,顾玲.分析化学[M].西安:西北工业出版社,2004.
    [26]Kambara S, Takarada T, Yamamoto Y, etc. Relation between function forms of coal nitrogen and formation of NOx precursors during rapid pyrolysis[J]. Energy&Fuels, 1993,7(6):1013-1020.
    [27]Kambara S, Takarada T, Toyoshima M, etc. Relation between function form of coal nitrogen and NO2 emissions from pulverized coal combustion[J]. Fuel,1995,74(9): 1247-1253.
    [28]Lappalahti L, Koljonan T. Nitrogen evolution from coal, peat and wood during gasification:literature review[J]. Fuel Processing Technology,1995,43(1):1-45
    [29]Tan L L, Li C Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅰ. Eeffet of reactor configuration on the determined yields of HCN and NH3 during pyrolysis[J]. Fuel,2000,79(15):1883-1889.
    [30]Li C Z, Tan L L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part II. Eeffect of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal[J]. Fuel,2000,79(15): 1891-1897.
    [31]Li C Z, Tan L L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part III. Further discussion on the formation of HCN and HN3 during pyrolysis[J]. Fuel,2000,79(15):1899-1906.
    [32]Xie Z L, Feng J, ZhaoW, etc. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. PartVI. Pyrolysis of set of Australian and Chinese coals[J]. Fuel, 2001,80(15):2131-2138.
    [33]常丽萍.煤热解、气化过程中含氮化合物的生成与释放研究[D].山西太原,太原理工大学,2004.
    [34]Kambara S, Takarada T, Yamamoto Y, etc. Relation between function forms of coal nitrogen and formation of NOx preeursors during rpaid pyorlysis[J]. Energy&Fuels, 1993,7(6):1013-1020.
    [35]Kambara S, Takarada T, Toyoshima M, etc. Relation between function forms of coal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel,1995,74(9): 1247-1253.
    [36]Bassilakis R, Zhao Y, Solomon P R, etc. Suluf and nitrogen evolution in the Argonne coals. Experiment and modeling[J]. Enegry&Fuels,1993,7(6):710-720
    [37]Li C Z. Advnaces in the Science of Victorian Brown Coal[M]. Amsterdma:Elsevier, 2004:285-350.
    [38]冯志华,常丽萍,任军.煤热解过程氮的分配及存在形态的研究进展[J].煤炭转化,2000,23(3):6-11.
    [39]虞继瞬.煤化学[M].北京:冶金工业出版社,2009.
    [40]鲍卫仁,常丽萍,谢克昌.酸洗脱灰对原煤样品性能的影响研究[J].太原理工大学学报[J],2000,31(4):354-357.
    [41]Godfried M K, Abotsi K B, Bota, Gautam S. Interfacial phenomena in coal impregnation with catalysts[J]. Energy&Fuels,1992 6:779-782.
    [42]徐秀峰,张蓬洲.用MS/MS研究气煤吡啶抽提残煤热解加氢产物的岩相组成[J].煤炭转化,1995,15(3):76-50.
    [43]刘银河,车得福,徐通模.矿物质SO2释放的影响及钙的固硫机理[J].西安交通大学学报,2005(1):96-99.
    [44]陈皓侃,李保庆,张碧江.矿物质对煤热解和加氢热解含硫气体生成的影响[J].燃料化学学报,1999,27(增刊):5-10.
    [45]刘振学,刘泽常.高硫型煤常压固定床气化炉内固硫效果研究[J].煤炭转化,1997,20(4):75-79.
    [46]闫金定.炭载含硫化合物热解行为的研究[D].太原:中国科学院山西煤化所,2005.
    [47]Chang L P, Bao W. R, Xie K. C. Study on the factors influencing limestone capturing sulfur during coal combustion[J]. Energy Source,2001,23(3):287-293.
    [48]Friebel J, Kopsel R. The fate of nitrogen during pyrolysis of German low rank coals-a parameter study [J]. Fuel,1999,78-923
    [49]徐秀峰,顾永达,陈诵英.铁催化剂对煤热解过程中氮元素迁移的影响[J].燃料化学学报,1998,26(1):18-23.
    [50]Tsubouchi N,Ohshima Y, Xu C, etc. Enhaccement of N2 formation from the nitrogen in carbon and coal by calcium[J]. Enegry&Fuels,2002,15(1):158-162.
    [51]Tsubouchi N, Ohtskua Y. Nitrogen release during high temperature pyrolysis of coals and catalytic role of calcium in N2 formation[J]. Fuel,2002,81(18):2335-2342.
    [52]Ohtsuka Y, Mori H, Nonaka K, etc. Selective conversion of coal nitrogen to N2 with iron[J]. Energy&Fuels,1993,7(6):1095-1096.
    [53]Ohtsuka Y, Xu C, Kong D, etc. Decomposition of ammonia with iorn and calcium catalysts supported on coal chars[J]. Fuel,2004,53(6):655-692.
    [54]牟世芬,刘克纳,丁晓静.离子色谱方法及应用[M].北京:化学工业出版社,2005.
    [55]鲍卫仁,常丽萍,谢克昌.酸洗脱灰对原煤样品性能的影响研究[J].太原理工大学学报[J],2000,31(4):354-357.
    [56]Yasushi S, Miysunori M, Hajime Y, ect. The effect of acid treatment of coal on H2S evolution during pyrolysis in hydrogen[J]. Fuel,1998,77(9/10):907-911.
    [57]尤先锋,刘生玉,吴争鸣.煤热解过程中硫和氮化合物分配及生成机理[J].煤炭转化,2001,24.
    [58]孟辉.煤中不同形态硫对氮析出影响规律的试验研究[D].山东青岛,山东大学,2006.
    [59]樊惠玲.氧化铁高温煤气脱硫行为及助剂影响规律的研究[D].山西太原,太原理工大学,2004.
    [60]庞克亮,向文国,赵长遂等.钾盐对煤焦-C02气化反应特性的影响[J].燃烧科学与技术,2007,13(1):63-66
    [61]王利花.还原性气氛下煤中硫热解迁移规律的研究[D].山西太原,太原理工大学,2009.
    [62]Huettinger K J. Fundamental problems in iron catalysed coal gasification a survey[J]. Fuel,1983,62(2):166-169.
    [63]Wu Z, Sugimoto Y, Kawashima H. Catalysic mitrogen release during a fixed-bed pyrolysis of model coals containing pyrrlic or pyridinic nitrogen[J]. Fuel,2001,80: 251-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700