用户名: 密码: 验证码:
两种氟利昂替代物的反应机理及动力学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学反应速率常数的研究和测定工作一直是化学领域主要研究课题之一。在理论上实现对不同条件下化学反应速率常数的预测是目前理论化学领域中的前沿课题之一。本文利用双水平直接动力学方法,对两种在大气化学中起重要作用分子的微观反应机理和速率常数进行了理论研究,其中包括: CCl_3CH_2OH +Cl→products CCl_3CH_2OH +OH→products CH3CF_2Cl + F→products
     由于氟利昂(CFCs)对臭氧层以及全球变暖的不利影响,寻找对环境无污染的CFCs替代品已经成为国际研究的热点问题。在过去的十年间,部分氟氯取代的烷烃化合物(HCFCs和HFCs)被认为是氟利昂(CFCs)的第一代替代品。近年来,卤代醇被认为是CFCs和HCFCs的替代物,即氟利昂(CFCs)的第二代替代品。本文研究了氟利昂(CFCs)的第一代和第二代替代品与氟原子、氯原子和羟基自由基的反应。这类物质都含有至少一个CH键,可以与大气中的原子和自由基反应,从而减少它们在大气中的存在时间,因此从理论上深入的研究这些反应的微观机理,计算反应的速率常数,发挥理论计算的前瞻性,为实验研究提供可靠线索是有必要的。
     本文的理论计算主要是利用GAUSSIAN 03和GAUSSIAN 09程序,在B3LYP、MP2或MPW1K水平下计算驻点(反应物,过渡态,产物)的几何构型和频率,进一步利用内禀反应坐标理论获得反应的最小能量路径;在最小能量路径上选取部分点进行单点能量校正(G3(MP2), MCQCISD, CCSD(T)+CF)。根据上述信息,利用Polyrate 9.7程序,使用变分过渡态理论计算反应的速率常数。得到的主要结果如下:
     (1)反应CCl_3CH_2OH + Cl→products和CCl_3CH_2OH + OH→products的理论研究表明:每个反应均有两个氢迁移反应通道,即亚甲基和羟基氢迁移。在每个反应通道的入口处都首先形成一个前期络合物,之后经历过渡态到达产物。通过等化学键反应在多种水平下计算了物质CCl_3CH_2OH,CCl_3CHOH和CCl_3CH_2O的生成焓,其值分别为69.61±1.2,23.09±1和14.89±1 kcal mol~(-1)。在MC–QCISD// B3LYP/6311G(d,p)水平下应用变分过渡态理论(VTST)计算了反应在200 K–2000 K温度区间的速率常数。反应的总速率常数与实验值符合的很好。反应CCl_3CH_2OH + Cl中生成产物CCl_3CHOH + HCl的亚甲基氢迁移通道在低温范围内是主反应通道,而随着温度的升高,对总速率常数的贡献在减少。在反应CCl_3CH_2OH + OH中,亚甲基氢迁移通道在反应的整个温度区间都起主导作用。反应(3.1)和反应(3.2)在200 K–2000 K的温度范围内总反应速率常数的四参数Arrhenius表达式为:(单位cm~3molecule~(-1)s~(-1)) k_1=4.04×10~(-13)(T/300)~(2.44)exp[512.0(T+287.9)/(T~2+287.9~2)] (R3.1) k_2=2.43×10~(-13)(T/300)~(2.71)exp[–126.4(T+418.6)/(T~2+418.6~2)] (R3.2)
     (2)通过对CH3CF_2Cl + F→products反应的研究表明,该反应存在两个反应通道: CH_2H′CF_2Cl + F→CH_2CF_2Cl + H′F (R4a)→CH H′CF_2Cl + HF (R4b)
     在G3(MP2)//MPW1K/6-311+G(d,p)水平下用变分过渡态理论(VTST)计算出的速率常数与实验值符合的很好。在低温区间,反应通道4a是反应的主要通道;然而随着温度的升高,反应通道4b的贡献逐渐增大并且超过4a通道成为反应的主要通道。
The study and determination of reaction rate constants has always been one of the main research fields in chemistry. It is one of the most active subjects to predict the rate constants theoretically. In this thesis, ab initio and density functional theory combined with the direct dynamics methods have been used to study the following chemical reactions: CCl_3CH_2OH + Cl→products CCl_3CH_2OH + OH→products CH3CF_2Cl + F→products
     Concerning the adverse impact of chlorofluorocarbons (CFCs) on ozone and global warming, an international effort has been made to replace CFCs with environmentally friendly alternatives. Hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are considered to be two important classes of CFCs substitutes over the past decade. Recently, halogenated alcohols have been suggested as alternatives to CFCs and HCFCs, therefore their atmospheric concentrations are expected to increase. They contain at least one C–H bond, which makes it readily react with the atmospheric constituents, such as F, Cl atoms and OH radicals to reduce their lifetime in the atmosphere. The main object of the current thesis is to provide accurate results of the reaction mechnism and the temperature dependence of rate constants. The theoretical results may provide useful information for further experimental studies.
     Firstly, the geometries and frequencies of the stationary points (reactants, complexes, products and transition states) are calculated at several levels, such as, B3LYP, MP2 and MPW1K levels; then, the minimum energy path (MEP) is calculated at the same level by intrinsic reaction coordinate (IRC) theory to confirm that the transition state really connects the minimums along the reaction path. The first and second energy derivatives at geometries along the MEP are obtained to calculate the curvature of the reaction path and the generalized vibrational frequencies; thirdly, the potential profile is refined at the levels, such as, G3(MP2), MC-QCISD and CCSD(T)+CF. All of these calculations are performed by Gaussian 03 and Gaussian 09 program. By means of Polyrate 9.7 program, the rate constants are calculated by conventional transition state theory (TST), canonical variational transition state theory (CVT) and canonical variational transition state theory with small–curvature tunneling correction (CVT/SCT). The main results are summarized as follows:
     (1) The theoretical study on the reactions CCl_3CH_2OH + Cl→products (3.1) and CCl_3CH_2OH + OH→products (3.2) indicates that: For each reaction, two abstraction channels, i.e., methylene– and hydroxyl–hydrogen abstraction, are located. Each reaction channel firstly forms a pre–transition complex, then, through a transition state to reach the products. The enthalpies of formation of CCl_3CH_2OH, CCl_3CHOH and CCl_3CH_2O species are -69.61±1.2, -23.09±1 and -14.89±1 kcal mol~(-1), respectively, which are calculated by several levels via isodesmic reactions. The rate constant calculations are carried out by using the variational transition–state theory (VTST) at the MC–QCISD//B3LYP/6–311G(d,p) level over a wide temperature range of 200 K–2000 K. The total rate constants of the title reactions agree well with the available experimental values. It is shown that for the reaction of CCl_3CH_2OH + Cl, methylene–H–abstraction channel giving CCl_3CHOH + HCl as products prevails at lower temperatures, while product CCl_3CH_2O + HCl occupies a small part at high temperatures. In case of the reaction of CCl_3CH_2OH + OH, methylene–H–abstraction pathway dominates the reaction over a whole temperature range. The four–parameter expressions (in cm~3molecule~(-1)s~(-1)) for the title reactions within 200 K–2000 K are k_1=4.04×10~(-13)(T/300)~(2.44)exp[512.0(T+287.9)/(T~2+287.92)] (R3.1) and k_2=2.43×10~(-13)(T/300)~(2.71)exp[–126.4(T+418.6)/(T~2+418.62)] (R3.2).
     (2) The theoretical study on the reaction CH3CF_2Cl + F→products (4) indicates that: From the mechanistic point of view, two reaction pathways are available: CH_2H′CF_2Cl + F→CH_2CF_2Cl + H′F (R4a)→CH H′CF_2Cl + HF (R4b)
     The rate constants calculated by the variational transition–state theory (VTST) at the G3(MP2)//MPW1K/ 6-311+G(d,p) level are observed to agree well with the available experimental value. In the lower temperatures, channel R4a will be the major reaction channel. With the temperature increasing, the contribution of channel R4b will increase and exceed that of channel R4a. In the higher temperatures, channel R4b will become the major reaction channel.
引文
[1]唐有祺.化学动力学和化学反应器原理,北京,科学出版社,1974.
    [2]吉林大学等.物理化学(下册),人民教育出版社,1979.
    [3] Warnatz J., Combustion Chemistry, Springer-Verlag, New York, 1984.
    [4] Hucknall D. J., Chemistry of Hydrocarbons, Chapman and Hall, London, 1985.
    [5] Rowland F. S., Molina M. J., Reviews of Geophysics and Space Physics, 1975, 13, 1.
    [6] Smith W. M., Kinetics and Dynamics of Elementary Gas Reactions; Butterworths: Boston, 1980.
    [7]江年.西伯利亚和部分欧洲上空臭氧大量减少:中国环境科学,1995, 15(3), 198
    [8] Cogan D.G.,Investor Responaibility Etesearrh Center (USA), 1988, 68
    [9] Zhang D. H., Zhang Z. H., J. Chem. Phys., 1994, 101, 1146.
    [10] Echave J., Clary D. C., J. Chem. Phys., 1994, 100, 402.
    [11] Neuhauser D., J. Chem. Phys., 1994, 100, 9272.
    [12] Manthe U., Seideman T., Miller W. H., J. Chem. Phys., 1993, 99, 10078.
    [13] Szichman H., Last I., Baram A., et al., J. Phys. Chem., 1993, 97, 6436.
    [14] Hase W. L., J. Chem. Phys., 1976, 64, 2442.
    [15] Quack M., Troe Ber J., Bunsenges. Phys. Chem., 1977, 81, 329.
    [16] Truhlar D. G., Gordon M. S., Science, 1990, 249, 491.
    [17] Truhlar D.G., Isaacson A.D., Garrett B.C., Theory of Chemical Reaction Dynamics, Baer M., ed., Boca Raton, CRC Press, 1985, p.65.
    [18] Truhlar D. G., Gordon M. S., Steckler R., Chem. Rev., 1987, 87, 217.
    [19] Corchado J. C., Espinosa-Garcia J., Hu W. P., et al., J. Phys. Chem., 1995, 99, 687.
    [20] Truong T. N., J. Chem. Phys., 1994, 100, 8014.
    [21] Truong T. N., Duncan W., J. Phys. Chem., 1994, 101, 7408.
    [22] Truhlar D.G., The Reaction Path in Chemistry, Current Approaches and Perspectives, Kluwer Academic, The Netherlands, 1995.
    [23] Wang I. S., Karplus M., J. Am. Chem. Soc., 1973, 95, 8160.
    [24] Leforestier C., J. Chem. Phys., 1978, 68, 4406.
    [25] Tucker S. C., Truhlar D. G., in New Theoretical Concepts for Understanding Organic Reactions, Bertran J., Csizmadia I.G., (Eds.), Advanced Study Institute, Kluwer: Dordrecht, Netherlands, 1989, pp. 291-346.
    [26] Lu D. H., Truong T. N., Melissas V. S., et al., Computer Phys. Comm., 1992, 71, 235.
    [27] Garrett B. C., Truhlar D. G., J. Phys. Chem., 1991, 95, 374.
    [28] Senkan S. M., Environ. Sci. Technol., 1988, 22, 368.
    [29] Thomas P. J., Current Topic in Mass Spectrometry and Chemical Kinetics; Heydon and Sons: London, U.K., 1982, p. 115.
    [30] Tuck R., Plumb A., Condon E., Geophys. Res. Lett., 1990, 17, 313.
    [31] Rosswall T., Environ. Sci. Technol., 1991, 25, 567.
    [32] Atkinson R., Chem. Rev., 1986, 86, 69.
    [33] Atkinson R., J. Phys. Chem. Ref. Data., 1994, Monograph 2.
    [34] Brasseur G. P., Orlando J. J., Tyndall G. S., Atmospheric Chemistry and Global Change. Eds, Oxford Univ Press, Oxford, U. K. 1999.
    [35] Finlayson-Pitts B. J., Pitts J. N., Chemistry of the Upper and Lower Atmosphere: Theory, Experiments and Applications, Academic Press, San Diego, CA, 2000.
    [36] Molina M.J., Rowland F.S., Nature (London). 1974, 249, 810.
    [37] Hammitt J.K., Camm F., Connell P.S. et al, Nature (London). 1987, 330, 711.
    [38] Rebbert R.E., Ausloos, P.J., J. Photochem, 1975, 4, 419. Rebbert R.E., Ausloos P.J., J. Photochem. 1976/1977, 6, 265.
    [39] Hanel R.A., J. Geophys. Res. 1972, 77, 2629.
    [40] Houghton J.T., et al., Eds. WMO/UNEP, Climate Change 1995, The IPCC Scientific Assessment; Cambridge University Press: Cambridge, 1996.
    [41] Fisher D.A., Hales C.H., Wang W.C., et al., Nature (London). 1990, 344, 513.
    [42] WMO/UNEP, Atmospheric Ozone: World Meterological Organization Global Ozone Research and Monitoring Project-Report. 1985, No.16. World Meteorological Organization: Geneva, Switzerland,1986.
    [43] Sehested J., Int. J. Chem. Kinet. 1994, 26, 1023.
    [44] Kaiser E.W., Int. J. Chem. Kinet. 1993, 25, 667.
    [45] Platz J., Nielsen O.J., Sehested J., et al., J. Phys. Chem. 1995, 99, 570.
    [46] Wallington T.J., Dagaut P., Kurylo M.J., J. Phys. Chem. 1988, 92, 5024.
    [47] Scientific Assessment of Stratospheric Ozone: 1989, World Meteorological Organization Global Ozone Research and Monitoring Project-Report No. 20, Vol. 11, Appendix: AFEAS Report,Geneva, Switzerland.
    [48] Scientific Assessment of Stratospheric Ozone Depletion: 1991, World Meteorological Organization Global Ozone Research and Monitoring Project-Report No. 25.
    [49] Wallington T.J., Hurley M.D., Shi J.C., et al., International Journal of Chemical Kinetics, 1993,25:651.
    [50] Truhlar D.G., in: Heidrich D (Ed.), The Reaction Path in Chemistry: Current Approaches and Perspectives, Kluwer, Dordrecht, The Netherlands, 1995, p. 229.
    [51] Truhlar D.G., Garrent B.C., Klippenstein S.J., J Phys Chem 1996, 100:12771.
    [52] Hu W.P., Truhlar D.G., J Am Chem Soc, 1996, 118:860.
    [53] Truhlar D.G., Garrett B.C., Acc Chem Res, 1980, 13:440.
    [54] Truhlar D.G., Isaacson A.D., Garrett B.C., in: Baer M. (Ed.), The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton, FL, 1985,p. 65.
    [55] Truhlar D.G., Garrett B.C., Annu Rev Phys Chem, 1984, 35:159.
    [1] Smith I. W, M. Kinetics and Dynamics of Elementary Gas Reactions; Butterworths: Boston, 1980.
    [2] Truhlar D. G., Gordon, M. S., Science, 1990, 249, 491.
    [3] Truhlar D.G., Isaacson A.D., Garrett B.C., Theory of Chemical Reaction Dynamics, M. Baer, ed., Boca Raton, CRC Press, 1985, p.65.
    [4] Truhlar D. G., Gordon M. S., Steckler R., Chem. Rev., 1987, 87, 217.
    [5] Corchado J. C., Espinosa-Garcia J., Hu W. P., et al., J. Phys. Chem., 1995, 99, 687.
    [6] Truong T. N., J. Chem. Phys., 1994, 100, 8014.
    [7] Truong T. N., Duncan W., J. Phys. Chem., 1994, 101, 7408.
    [8] Truhlar D.G. The Reaction Path in Chemistry, Current Approaches and Perspectives, Kluwer Academic, The Netherlands, 1995.
    [9] Wang I. S., Karplus M., J. Am. Chem. Soc., 1973, 95, 8160.
    [10] Leforestier C., J. Chem. Phys., 1978, 68, 4406.
    [11] Born M., Oppenheimer, R., Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum Theory of the Molecules Ann. Phys.) 1927, 84, 457.
    [12]唐敖庆,杨忠志,李前树.量子化学,北京,科学出版社,1982.
    [13]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法,北京,科学出版社,1985.
    [14]赵学庄,罗渝然,臧雅茹等.《化学反应动力学原理》下册,高等教育出版社,1990.
    [15] Parr R. G., Yang W., Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press: Oxford, 1989.
    [16] Pople J. A., Head-Gordon M., Raghavachari K., Quadratic Configuration Interaction. A General Technique for Determining Electron Correlation Energies, J. Chem. Phys., 1987, 87, 5968.
    [17]黄仲涛,基本有机化工理论基础,北京,化学工业出版社,1980.
    [18]吉林大学等,物理化学(下册),人民教育出版社,1979.
    [19] Hucknall D. J., Chemistry of Hydrocarbons, Chapman and Hall, London, 1985.
    [20] Szabo A., Ostlund N. S., Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory. Dover, New York, 1996.
    [21] M-ller C., Plesset M. S., Note on an Approximation Treatment for Many-Electron Systems, Phys. Rev., 1934, 46, 618.
    [22] Pople J. A., Binkley J. S., Seeger R., Theoretical Models Incorporating Electron Correlation, Int. J. Quant. Chem. Symp., 1976, 10, 1.
    [23] Head-Gordon M., Pople J. A., Frisch M. J., A Direct MP2 Gradient Method, Chem. Phys. Lett., 1988, 153, 503.
    [24] Pople J. A., Krishnan R., Schlegel H. B., et al., Electron Correlation Theories and Their Application tothe Study of Simple Reaction Potential Surfaces, Int. J. Quant. Chem. XIV, 1978, 545-560.
    [25] Bartlett R. J., Purvis G. D., General Application of a Big Molecule Gaussian SCF/CI Program for Calculations of Excited Metastables and of Negative Ion Bound States and Resonances, Int. J. Quant. Chem., 1978, 14, 516.
    [26] Purvis G. D., Bartlett R. J., A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples, J. Chem. Phys., 1982, 76, 1910.
    [27] a) Scuseria G. E., Janssen C. L., Schaefer H. F., III, An Efficient Reformulation of the Closed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equation, J. Chem. Phys., 1988, 89, 7382. b) Scuseria G. E., Schaefer H. F., III, Is Coupled Cluster Singlets and Doubles (CCSD) more Computationally Intensive Than Quadratic Configuration Interaction, J. Chem. Phys., 1989, 90, 3700.
    [28] Hohenberg P., Kohn W., Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, B864.
    [29] Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, A1133.
    [30] Salahub D. R., Zerner M. C. eds, The Challenge of d and f Electrons, ACS: Washington D.C., 1989.
    [31] Labanowski J. K., Andzelm J. W. eds, Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991.
    [32] Lynch B. J., Fast P. L., Harris M., et al., J. Phys. Chem. A, 2000, 104, 4811.
    [33] Lynch B. J., Truhlar D. G., J. Phys. Chem. A, 2001, 105, 2936.
    [34] Fukui K. Variational Principles in a Chemical Reaction, Int. J. Quantum. Chem., 1981, 15, 633.
    [35] Fukui K., Tachibana A., Yamashita K., Toward Chemodynamics, Int. J. Quantum. Chem., 1981, 15, 621.
    [36] Curtiss L. A., Redfern P. C., Raghavachari K., et al., Gaussian-3 theory using reduced M-ller-Plesset order, J. Chem. Phys., 1999, 110, 4703.
    [37] Fast P. L., Truhlar D. G., J. Phys. Chem. A, 2000, 104, 6111.
    [38] Winn J. S., Physical Chemistry, Harper Collins College Publishers, 1995.
    [39] Atkins P. W., Physical Chemistry, W.H. Freeman and Company, New York, 1990.
    [40] Billing G. D., Mikkelsen K.V., Introduction to Molecular Dynamics and Chemical Kinetics, John Wiley & Sons, Inc., New York, 1996.
    [41] Johnston H. S., Gas Phase Reaction Rate Theory, Ronald Press Company, New York, 1966.
    [42] Glasstone S., Laidler K., Erying H., Theory of Rate Processes, McGraw Hill, New York, 1941.
    [43] Thuhlar D. G., Isaacson A. D., Garreett B. C., Generalized Transition State Theory, in The theory of Chemical Reaction Dynamics, edited by M. Baer, CRC Press, Boca Raton, FL, 1985, Vol. 4, pp.65-137.
    [44] Hase W. L., J. Chem. Phys., 1976, 64, 2442.
    [45] Quack M., Troe J. Ber. Bunsenges., Phys. Chem., 1977, 81, 329.
    [46] Garrett B. C., Truhlar D. G., J. Phys. Chem., 1979, 83, 1052.
    [47] Garrett B. C., Truhlar D.G., Criterion of minimum state density in the transition state theory of bimolecular reactions J. Chem. Phys., 1979, 70,1593.
    [48] Hill T. I. An Instruction to Statistical Thermodynamics, Addison-Wesley, Reading Mass. 1960, Chap 6.
    [49] Mayer J. E., Mayer M. G., Statistical Mechanics, 2nd Ed, John Wiley & Sons. N. Y. 1977, Chap 7.
    [50] Miller W. H., Handy N. C., Adams J. E., J. Chem. Phys. 1980, 72, 2008.
    [1] Molina M.J., Rowland F.S., Nature (London), 1974, 249, 810.
    [2] Hammitt J.K., Camm F., Connell P.S., Mooz W.E., Wolf K.A., Wuebbles D. J., Bamezoi A., Nature (London), 1987, 330, 711.
    [3] Rebbert R.E., Ausloos P.J., J. Photochem. 4, 419, 1975. Rebbert R.E., Ausloos P.J., J. Photochem, 1976/1977, 6, 265.
    [4] Hanel R.A., J. Geophys. Res. 1972, 77, 2629.
    [5] Houghton J.T., et al., Eds. WMO/UNEP, Climate Change 1995, The IPCC Scientific Assessment; Cambridge University Press: Cambridge, 1996.
    [6] Fisher D.A., Hales C.H., Wang W.C., et al., Nature (London), 1990, 344, 513,
    [7] WMO/UNEP, Atmospheric Ozone: World Meterological Organization Global Ozone Research and Monitoring Project-Report 1985, No.16. World Meteorological Organization: Geneva, Switzerland, 1986.
    [8] Sehested J., Int. J. Chem. Kinet, 1994, 26, 1023.
    [9] Kaiser E.W., Int. J. Chem. Kinet, 1993, 25, 667.
    [10] Platz J., Nielsen O.J., Sehested J., et al., J. Phys. Chem, 1995, 99, 570.
    [11] Wallington T.J., Dagaut P., Kurylo M.J., J. Phys. Chem, 1988, 92, 5024.
    [12] Truhlar D.G., in: D. Heidrich (Ed.), The Reaction Path in Chemistry: Current Approaches and Perspectives, Kluwer, Dordrecht, The Netherlands, 1995, p. 229.
    [13] Truhlar D.G. , Garrent B.C., Klippenstein S.J., J. Phys. Chem, 1996,100, 12771.
    [14] Hu W.P., Truhlar D.G., J. Am. Chem. Soc, 1996, 118, 860.
    [15] Becke A.D., J. Chem. Phys, 1993, 98, 1372.
    [16] Lee C., Yang W., Parr R.G., Phys. Rev. B, 1998, 37, 785.
    [17] Truhlar D.G., Garrett B.C., Acc. Chem. Res, 1980, 13, 440.
    [18] Truhlar D.G. , Garrett B.C., Annu. Rev. Phys. Chem, 1984, 35, 159.
    [19] Truhlar D.G., Isaacson A.D., Garrett B.C., In The Theory of Chemical Reaction Dynamics, M. Baer, Ed.; CRC Press: Boca Raton, FL, 1985, p. 65.
    [20] Gaussian 09, Revision A.1, Frisch M.J., Trucks G. W., Schlegel H. B., et. al., Gaussian, Inc., Wallingford C. T., 2009.
    [21] Fast P. L., Truhlar D. G., J. Phys. Chem, 2000, 104, 6111.
    [22] Curtiss L. A., Redfem P. C., Raghavachari K., et al., J. Chem.
    [23] Lei W. F., Zhang R. Y., McGivern W. S., et al., Chem. Phys. Lett, 2000, 326, 109.
    [24] Suh I., Lei W. F., Zhang R. Y., J. Phys. Chem, 2001, 105, 6471.
    [25] Zhang D., Zhang R. Y., Park J., et al,, J. Am. Chem. Soc. 2002, 124, 9600.
    [26] Gonzalez C., Schlegel H. B., J. Phys. Chem, 1990, 94, 5523.
    [27] Chuang Y. Y., Corchado J. C., Truhlar D. G., J. Phys. Chem, 1999, 103, 1140.
    [28] Corchado J. C., Chuang Y. Y., Fast P. L., et al., POLYRATE, version 9.7, University of Minnesota, Minneapolis, 2007.
    [29] Garrett B. C., Truhlar D. G., J. Chem. Phys, 1982, 76, 1853.
    [30] Lu D. H., Truong T. N., Melissas V. S., et al., Comput. Phys. Commun, 1992, 71, 235.
    [31] Liu Y. P., Lynch G. C., Truong Y. N., et al., J. Am. Chem. Soc, 1993, 115, 2408.
    [32] Garrett B. C., Truhlar D. G., J. Chem. Phys, 1979, 70, 1593, a.
    [33] Garrett B. C., Truhlar D. G., J. Am. Chem. Soc, 1979, 101, 4534, b.
    [34] Garrett B. C., Truhlar D. G., Grev R. S., Magnuson A. W., J. Phys. Chem, 1980, 84, 1730.
    [35] Kuchitsu K., Structure of Free Polyatomic Molecules Basic Data, 1998, 1, 35.
    [36] Distelrath V., Boesl U., Faraday Disc. Chem. Soc, 2000, 115, 161.
    [37] Chase M. W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, 1998, Monograph 9, 1-1951.
    [38] Shimanouchi T., Tables of molecular vibrational frequencies consolidated volume I, National Bureau of Standards, 1972, 1–160.
    [39] DeMore W.B., Sander S.P., Golden S.P., et al., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, 1997.
    [40] Wadso I., Acta Chem. Scand, 1966, 20, 544.
    [41] Fernández-Ramos A., Ellingson B. A., Meana-Pa-eda R., Marques J.M. C., Truhlar D. G., Theor. Chem. Acc, 2007, 118, 813.
    [1] Scientific Assessment of Stratospheric Ozone, 1989, World Meteorological Organization Global Ozone Research and Monitoring Project-Report No. 20, Vol. 11, Appendix: AFEAS Report, Geneva, Switzerland.
    [2] Scientific Assessment of Stratospheric Ozone Depletion, 1991, World Meteorological Organization Global Ozone Research and Monitoring Project-Report No. 25.
    [3] Wallington T. J., Hurley M. D., Shi J. C., et al., International Journal of Chemical Kinetics, 1993, 25, 651.
    [4] Truhlar D. G., in: Heidrich D. (Ed.), The Reaction Path in Chemistry: Current Approaches and Perspectives, Kluwer, Dordrecht, The Netherlands, 1995, p. 229.
    [5] Truhlar D. G., Garrent B. C., Klippenstein S. J., J Phys Chem, 1996, 100, 12771.
    [6] Hu W. P., Truhlar D. G., J Am Chem Soc, 1996, 118, 860.
    [7] Truhlar D. G., Garrett B. C., Acc Chem Res, 1980, 13, 440.
    [8] Truhlar D. G., Isaacson A. D., Garrett B. C., in: Baer M. (Ed.), The Theory of Chemical Reaction Dynamics, CRC Press, Boca Raton F. L., 1985, p. 65.
    [9] Truhlar D. G., Garrett B. C., Annu Rev Phys Chem, 1984, 35, 159.
    [10] Gaussian 03, Revision B 04, Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian Inc:Pittsburgh, PA, 2003.
    [11] Lynch B. J., Truhlar D. G., J Phys Chem A, 2001, 105,2936
    [12] Larry A., Curtissa, Redfern P. C., et al., J Chem Phys, March 1999, 110,10, 8
    [13] Corchado J. C., Chuang Y. Y., Fast P. L., et al., POLYRATE version 9.7, University of Minnesota, Minneapolis, MN, 2007.
    [14] Garrett B. C., Truhlar D. G., J Chem Phys, 1979, 70, 1593.
    [15] Garrett B. C., Truhlar D. G.,J Am Chem Soc, 1979, 101, 4534.
    [16] Garrett B. C., Truhlar D. G., Grev RS, Magnuson AW, J Phys Chem, 1980, 84, 1730.
    [17] Lu D. H., Truong T. N., Melissas V. S., et al., Comput Phys Commun, 1992, 71, 235.
    [18] Liu Y. P., Lynch G. C., Truong T. N., et al., J Am Chem Soc, 1993, 115, 2408.
    [19] Mason M. G., Vonholle W. G., Robinson D. W., J Chem Phys, 1971, 54, 3491.
    [20] Webb D. U., Rao K. N., J Mol Spectrosc, 1968, 28, 129.
    [21] DeMore W. B., Sander S. P., Golden S. P., et al., Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 9;JPL Publication 97-4, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700