用户名: 密码: 验证码:
聚乳酸微球载体的结构与控释性能关系及模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可生物降解聚合物微球作为一种新的药物载体系统,在药物的控制释放领域得到了广泛的研究和应用。微球载体能够克服现有药物制剂的一些弊端,利用自身的微小粒径和药物的高度分散,改善难溶性药物的水溶性和溶出速率,提高药物的生物利用率。然而就目前的开发手段来说,微球载体的开发主要还是依赖于重复的实验和尝试的途径。仅从宏观操作条件对微球释放性能影响的表观现象入手,难以从本质上掌握其基本规律。本文从实验和数学模拟两种途径着手,将质量平衡、传质和动力学等化学工程的理论应用到分散的结构体系中,结合微观的作用机理和宏观的传质现象来综合研究微球的结构性质关系,为药物载体的研究和开发提供理论依据。
     首先,以难溶性药物硝苯地平作为模型药物,以不同单体比例的聚乳酸及其共聚物作为载体材料,采用O/W乳化溶剂蒸发法制备了硝苯地平的微球载体。分析了聚合物类型、浓度、药物的初始含量等对微球的粒度分布、结构形态、包载效率等性质的影响趋势,评价了不同结构微球的释放性能。另外,基于相容性的观点,从药物与聚合物的分子间相互作用、药物和聚合物的存在形态以及宏观的释放速率曲线等多个不同层次上综合研究了药物的释放动力学,分析和探讨了影响微球性能的内在的作用机理。
     对描述药物释放的几种常用的理论模型,探讨了其适用性和局限性。根据硝苯地平这类难溶性药物的特点,分析了其在聚合物微球中释放的传质机理。分别针对微球内液相与固相中药物动态质量平衡,综合考虑了药物的扩散、有限溶解速率的限制、固态药物溶解的移动边界以及微球的粒度分布等因素,提出了一种新的溶解扩散模型,并通过线法对偏微分方程组的模型进行了数值求解。根据模型考察了不同的结构性质和模型参数对释放速率曲线的影响,同时计算了不同情况下微球内固、液相中药物浓度的变化规律,描述了影响药物释放速率的传质过程。与基于Fick第二定律的扩散模型和Higuchi模型的对比说明,本文所提出的模型具有很好的通用性,能够完整地描述不同溶解性质的药物的整个释放过程,前两种模型可看作溶解扩散模型在假定无限溶解速率或溶解度下的特例。最后,使用溶解扩散模型对体外实验的释放数据进行分析,研究了微球的结构性质对模型参数的影响趋势,微球的微观结构性质的影响隐含在模型传质系数的变化中。通过对不同结构微球的释放速率和模型参数的比较,并结合微球的性质表征和相容性分析,揭示了微球结构和释放性能关系的基本规律。为探索如何改善和控制药物的释放性能提供了基础。
Biodegradable polymeric microspheres, as a new type of controlled drug delivery system, have advantages of controlled release of active drug molecules over prolonged time to target sites, easiness of administration, favorable biocompatibility, and good degradability. In consideration of hydrophobic nature, some drug composites are encapsulated in polymeric microspheres at highly dispersed amorphous state to improve solubility and bioavailability. Structure-property relationships of the microsphere system are investigated in this work from both of microscopic mechanism and macroscopic mass transfer phenomena with experiments and modeling. Nifedipine, a calcium antagonist for treatment of hypertension, was studied as a model hydrophobic ingredient for drug entrapment and release. An oil-in-water solvent evaporation method was used to prepare polymer microspheres with controlled size. Fundamental mechanism of drug release was investigated from three aspects: interaction between molecules of drugs and polymers, morphology and dispersion of drugs, and in vitro release experimental findings. Taking consideration of effects of diffusion, finite dissolution rate, and moving front of dissolution, a new model is developed for quantitative description of the release patterns. Finally, integrated with pharmacokinetics, the release model was extended to in vivo process to evaluate drug concentration levels in the plasma.Nifedipine loaded microspheres were prepared using biodegradable polymers poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA). Microspheres size, entrapment efficiency, morphology, and release profiles were characterized by DLS, SEM, DSC, FTIR and in vitro release tests. Particle size was controlled with interfacial tension and viscosity of polymer and surfactant (PVA) concentrations. Diameters of microspheres vary from 1μm to 10μm. A broad range of drug release profiles were achieved. Due to large surface area, drug leakage is found in small particles, as a result of diffusion to continuous phase during fabrication. Compromise has to be made between high entrapment efficiency and small size. For all the microspheres, nifedipine was found to be totally amorphous in the polymer, which suggested that the drug is well dispersed in the matrix.
引文
Abdekhodaie, M. J., Cheng, Y. L., Diffusional release of a dispersed solute from planar and spherical matrices into finite exterual volume, Journal of Controlled Release, 1997, 43, 175-182
    Ainaoui, A., Siepmann, J., Bodemeier, R., Vergnaud, J. M., Calculation of the dimensions of dosage forms with release controlled by diffusion for in vivo use, European Journal of Pharmaceutics and Biopharmaceutics, 2001, 51, 17-24
    Ainaoui, A., Vergnaud, J. M., Modeling the plasma drug level with oral controlled release dosage forms with lipidic Gelucire, International Journal of Pharmaceutics, 1998, 169, 155-162
    Aguilera, J. M., Microstructure and food product engineering, Food technology, 2000, 54, 56-65
    Anderson, J. M., Shive, M. S., Biodegradation and Biocompatibility of PLA and PLGA Microspheres, Advanced Drug Delivery Reviews, 1997, 28, 5-24
    Baker, R. W., Lonsdale, H. S., Controlled release: mechanisms and rates. In: Taquary; A.C., Lacey, R.E. (Eds.), Controlled Release of Biologically Active Agents. Plenum Press, New York, 1974, 15-71
    Bakhouya, A., Saidna, M., vergnaud, J. M., Calculation of the blister fluid-time history with ciprofloxacin administered orally or by infusion, International Journal of Pharmaceutics, 1997, 146, 225-232
    Berkland, C., Kim, K., Pack, D. W., Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions, Journal of Controlled Release, 2001, 73, 59-74
    Berkland, C., King, M., Cox, A., Kim, K., Pack D. W., Precise control of PLG microsphere size provides enhanced control of drug release rate, Journal of Controlled Release, 2002, 82, 137-147
    Bodmeier, R., McGinity, J. W., The preparation and evaluation of drug containing poly(dl-lactide) microspheres formed by the solvent evaporation method, Pharm. Res., 1987, (4), 465-471
    Brandau, T., Preparation of monodisperse controlled release microcapsules, International Journal of Pharmaceutics, 2002, 242, 179-184
    Brannon-Peppas, L., Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery, International Journal of Pharmaceutics, 1995, 116, 1-9
    Breton, P., Guillon, X., Roy, D., Lescure, F., Riess, G, Bru, N., Roques-Carmes, C., Physico-chemical characterization, prearation and performance of poly(methylidene malonate 2.1.2) nanoparticles, Biomaterials, 1998, 19, 271-281.
    Castelli, F., B. Conti, D. E. Maccarrone, U. Conte, G. Puglisi, Comparative Study of 'in vitro' Release of Anti-inflammatory Drugs from Polylactide-co-glycolide Microspheres, International Journal of Pharmaceutics, 1998, 176, 85-98
    Charpentier, J. C., Trambouze, R, Process Engineering and Problems Encountered by Chemical and Related Industries in the Near Future. Revolution or Continuity; Chem. Eng. Processing, 1998, 37, 559-565
    Charpentier, J. C., The triplet "molecular processes-product-process" engineering: the future of chemical engineering, Chemical Engineering Science, 2002, 57, 4667-4690
    Chen, Y. X., McCall T. W., Baichwal, A. R., Meyer, M. C., The applications of an artificial neural network and pharmacokinetic simulations in the design of controlled release dosage forms, Journal of Controlled Release, 1999, 59, 33-41
    Chorny, M., Fishbein, I., Danenberg H.D., Golomb G., Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics, Journal of Controlled Release, 2002, 83, 389-400
    Chuo, W. H., Tsai, T. R., Hsu, S. H., Cham, T. M., Preparation and in-vitro evaluation of nifedipine loaded albumin microspheres cross-linked by different glutaraldehyde concentrations, International Journal of Pharmaceutics, 1996, 144, 241-245
    Conigan, O. I., Crean, A. M., Comparative physicochemical properties of hydrocortisone PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying, International Journal of Pharmaceutics, 2002, 245, 75-82
    Crank, J. (1975). The mathematics of diffusion, 2nd Ed. Carendon Press, Oxford, U. K.
    Diefenbacher, A., Turk, M., Phase equilibria of organic solid solutes and supercritical fluids with respect to the RES S process, Journal of Supercritical Fluids, 2002, 22, 175-184
    Dunne, M., Bibby, D. C., Jones, J. C., Cudmore, S., Encapsulation of protamine sulphate compacted DNA in polylactide and polylactide-co-glycolide microparticles, Journal of Controlled Release, 2003, 92, 209-219
    Edwards, M. F., Instone, T., Particle Products-Their Manufacture and Use, Powder Technology, 2001, 119, 9-13
    Faisant, N., Siepmann, J., Benoit, J. R, PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release, European Journal of Pharmaceutics Sciences, 2002, 15, 355-366
    Favre, E., Marchal-heusler, L., Kind, M., Chemical Product Engineering: Research and Educational Challenges, Trans. IChemE, 2002, Part A, (1), 65-74
    Filipovic-Grcic, J., Becirevic-Lacan, M, Skalko, N., Jalsenjak, I., Chitosan microspheres of nifedipine and nifedipine-cyclodextrin inclusion complexes, International Journal of Pharmaceutics, 1996, 135, 183-190
    Fu, Y., Shyu, S., Su, E, Yu, P., Development of biodegradable co-poly(D,L-lactic/glycolic acid) microspheres for the controlled release of 5-FU by the spray drying method, Colloids and Surfaces B: Biointerfaces, 2002, 25, 269-279
    Greenhalgh, D. J., Williams, A. C, Timmins, P., York, P., Solubility parameters as predictors of miscibility in solid dispersions, J. Pharm. Sci., 1999, 88, 1181-1190
    Guyot, M, Fawaz, E, Nifedipine loaded-polymeric microspheres: preparation and physical characteristics, International Journal of Pharmaceutics, 1998, 175, 61-74
    Hancock, B. C, York, P., Rowe, R. C, The use of solubility parameters in pharmaceutical dosage form design, International Journal of Pharmaceutics, 1997, 148, 1-21
    Hansen, C. M., The three dimensional solubility parameter - Key to paint component affinities, 1: Solvents, plasticizers, polymers and resins, J. Paint Tech. 1967, 39, 104-117
    Harland, R. S., Dubernet, C, Benoit, J., Peppas, N. A., A model of dissolution-controlled, diffusional drug release from non-swellable polymeric microspheres, Journal of Controlled Release, 1988,207-215
    Higuchi, T, Rate of release of medicaments from ointment bases containing drugs in suspensions, J. Pharm. Sci., 1961, 50, 874-875
    Higuchi, T, Mechanisms of sustained action mediation, Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci., 1963, 52, 1145-1149
    Hildebrand, J. H., Scott, R. L., The solubility of nonelectrolytes, 3rd Ed., New York: Reinhold, 1950
    Hixson, A. W., Crowell, J. H., Dependence of reaction velocity upon surface and agitation, Ind. Eng. Chem., 1931, 23, 923-931
    Holz, M., Fahr, A., Compartment modeling, Advanced Drug Delivery Review, 2001, 48, 249-264
    Hombeiro-Perez, M., Zinutti, C, Lamprecht, A., Ubrich, N., Astier, A., Hoffman, M., Bodmeier, R., Maincent, P., The Preparation and Evaluation of Poly(s-caprolactone) Microp articles Containing Both a Lipophilic and a Hydrophilic Drug, Journal of Controlled Release, 2000, 65, 429-438
    Hombeiro-Perez, M., Siepmann, J., Zinutti, C, Lamprecht, A., Ubrich, N., Hoffman, M., Bodmeier, R., Maincent, P., Non-degradable Microparticles Containing a Hydrophilic and/or a Lipophilic Drug: Preparation, Characterization and Drug release Modeling, Journal of Controlled Release, 2003, 65, 429-438
    Hopfenberg, H. B., Paul, D. R., Harris, F. W., Controlled release polymeric formulations, ACS Symposium Series 33, American Chemical Society, Washington, DC, 1976, 26-31
    Jiang, G, Woo, B. H., Kang, R, Singh, J., DeLuca, P. P., Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres, Journal of Controlled Release, 2002, 79, 137-145
    John, J., Mani, R., Bhattacharya, M. (2002). Evaluation of compatibility and properties of biodegradable polyester blends. J. Polym. Sci. Polym. Chem., 40, 2003-2014
    Jono, K., Ichikawa, H., Miyamoto, M., Fukumori, Y., A review of particulate design for pharmaceutical powders and their production by spouted bed coating, Powder Technology, 2000, 113,269-277
    Katzhendler, I., Hofman, A., Goldberger, A., Friedman, M., Modeling of drug release from erodible tablets, J. Pharm. Sci. 1997, 86, 110-115
    Kind, M., Product engineering, Chemical Engineering and Processing, 1999, 38, 405-410
    Koizumi, T., Panomusuk, S. P., Release of Medicaments from Spherical Matrices Containing Drug in Suspension: Theoretical Apects, International Journal of Pharmaceutics, 1995, 116,45-49
    Korsmeyer, R. W., Gumy, R., Doelker, E. M., Buri, P., Peppas, N. A., Mechanism of solute release from porous hydrophilic polymers, International Journal of Pharmaceutics, 1983, 15,25-35
    Lamprecht, A., Ubrich, N., Yamamoto, H., Schafer, U., Takeuchi, H., Lehr, C, Maincent, P., Kawashima, Y, Design of rolipram-loaded nanoparticles: comparison of two preparation methods, Journal of Controlled Release, 2001, 71, 297-306
    Langer, R., Transdermal drug delivery: past progress, current status, and future prospects, Advanced Drug Delivery Reviews, 2004, 56, 557-558
    Lee, W., Park, J., Yang, E. H., Suh, H., Kim, S. H., Chung, D. S., Choi, K., Yang, C. W., Park, J., Investigation of the factors influencing the release rates of cyclosporin A-loaded microand nanoparticles prepared by high-pressure homogenizer, Journal of Controlled Release, 2002,84, 115-123
    Lescure, E, Seguin, C, Breton, P., Couvreur, P., Preparation and charecterization of novel poly(methylidene malonoate 2.1.2.)-made nanoparticles, Pharm. Res. 1994, 11, 1270-1277.
    Leroux, J. C, Allemann, E., Doelker, E., Gumay, R., New approach for the preparation of nanoparticles by an emulsification-diffusion method, Eur. J. Pharm. Biopharm, 1995, 41, 14-18.
    Li, W., Anderson, K. W., DeLuca, P. P., Kinetic and thermodynamic modeling of the formation of polymer micrspheres using solvent extraction/evaporation method, Journal of Controlled Release, 1995a, 37, 187-198
    Li, W., Anderson, K. W., Mehta, R. C, DeLuca, P. P., Prediction of solvent removal profile and effect on properties fro peptide-loaded PLGA microspheres prepared by solvent extraction/evaporation method, Journal of Controlled Release, 1995b, 37, 199-214
    Lin, S., Lee, C, Lin, Y., The effect of plasticizers on compatibility, mechanical properties, and adhesion strength of drug Eudragit E film, Pharm. Res., 1991, 8, 1137-1143
    Liu, J., Y. Xiao, C. Allen. Polymer-Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine. Journal of Pharmaceutical Sciences, 2004,93, 132-143
    Marrero, J., Gani, R., Group-contribution based estimation of pure component properties, Fluid Phase Equilibria, 2001, 183-184, 183-208
    Matsumoto, T., Zografi, G., Physical properties of solid molecular dispersions of indomethacine with PVP and PVPVA in relation to indomethacine crystallization, Pharm. Res., 1999, 16, 1722-1728
    Mooter, V., Wuyts, M., Blaton, N., Busson, R., Grobet, P., Augustijns, P., Kinget, R., Physical stabilization of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25, Eur. J. Pharm. Sci., 2001, 12, 261-269
    Mulye, N. V, Turco, S. J., A simple model based on first order kinetics to explain release of highly water soluble drugs from porous dicalcium phosphate dehydrate matrices, Drug Dev. Ind. Pharm., 21,943-953
    Murakami, H., Kobayashi, M., Takeuchi, H., Kawashima, Y, Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method, International Journal of Pharmaceutics, 1999, 187, 143-152
    Murakami, H., Kobayashi, M., Takeuchi, H., Kawashima, Y, Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles, Powder Technology, 2000, 107, 137-143
    Nair, R., N. Nyamweya, S. Gonen, L. J. Martinez-Miranda, S. W. Hoag, Influence of Various Drugs on the Glass Transition Temperature of Poly(vinylpyrrolidone): a Thermodynamic and Spectroscopic Investigation, International Journal of Pharmaceutics, 2001, 225, 83-96
    Nia, B., Ourermchi, E. M., Vergnaud, J. M., Calculation of the blood level of a drug taken orally with diffusion controlled dosage form, International Journal of Pharmaceutics, 1995, 119, 165-171
    O'Donnell, P. B., McGinity, J. W., "Preparation of Microspheres by the Solvent Evaporation Technique", Advanced Drug Delivery Reviews, 1997, 28, 25-42
    O'Haral, P., Hickey, A. J., Respirable PLGA Microspheres Containing Rifampicin for the Treatment of Tuberculosis: Manufacture and Characterization, Pharmaceutical Research, 2000, 17, 955-961
    Okhamafe, A., York, P., Thermal characterization of drug/polymer and excipient/polymer interactions in some films coating formulation, J. Pharm. Pharmacol, 1989, 41, 1-6
    Ourermchi, E. M., Vergnaud, J. M., Calculation of plasma drug level with oral controlled release dosage forms. Effect of dose frequency, International Journal of Pharmaceutics, 1996, 127, 177-184
    Panyam, J., Dali, M. M., Sahoo, S. K., Ma, W., Chakravarthi, S. S., Amidon, G L., Levy, R. J., Labhasetwar, V., Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles, Journal of Controlled Release, 2003, 92, 173-187
    Park, T. G, Lee, H. Y., Nam, Y. S., A new preparation method for protein loaded poly(D,L-lactic-coglycolic acid) microspheres and protein release mechanism study, Journal of Controlled Release, 1998, 181-191
    Paulo, C., Jose, M. S. L., Modeling and Comparison of Dissolution Profiles, European Journal of Pharmaceutical Sciences, 2001, 13, 123-133
    Peh, K. K., Lim, C. P., Quek, S. S., Khoh, K. H., Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor, Pharm. Res. 2000, 17, 1384-1388
    Peppas, N. A., Analysis of Fickian and non-Fickian drug release form polymers, Pharm. Acta Helv., 1985, 60, 110-111
    Pohlmann, A. R., Weiss, V., Mertins, O., Silveira, N. P., Guterres, S. S., S pray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models, European Journal of Pharmaceutical Sciences, 2002, 16, 305-312
    Polakovic, M., Gorner, T., Gref, R., Dellacherie, E., "Lidocaine-loaded Biodegradable Nanospheres, Ⅱ. Modeling of Drug release", Journal of Controlled Release, 1999, 60, 169-177
    Qiu, Y., Cheskin, H. S., Engh, K. R., Poska, R., Once-a-day controlled-release dosage form of divalproex sodium I: Formulation design and in vitro/in vivo investigations, Journal of Pharmaceutical Sciences, 2003a, 92, 1166-1173
    Qiu, Y, Garren, J., Sammara, E., Cao, G, Abraham, C, Cheskin, H. S., Engh, K. R., Once-a-day controlled-release dosage form of divalproex sodium Ⅱ: Development of a predictive in vitro drug release method, Journal of Pharmaceutical Sciences, 2003b, 92, 11, 2317-2325
    Quintanar, G. D., Ganem, Q. A., Allemann, E., Fessi, H. Doelker, E., Influence of the stabilizer coating layer on the purification and freeze drying of poly (DL-lactic acid) nanoparticles prepared by emulsification-diffusion technique, J. Microencapsulation, 1998, 15, 107-119
    Rafati, H., Coombes, A. G A., Adler, J., Holland, J., Davis, S. S., Protein-loaded poly(DL-lactide-co-glycolide) microparticles for oral administration: formulation, structural and release characteristics, Journal of Controlled Release, 1997, 43, 89-102
    Ravindra, R., Krovvidi, K. R., Khan, A. A., Solubility parameter of chitin and chitosan, Carbohydrate Polymers, 1998, 36, 121-127
    Reis, M. A. A., Sinisterra, R. D., Belchior, J. C, An alternative approach based on artifical neural networks to study controlled drug release, Journal of Pharmaceutical Sciences, 2004, 93,418-430
    Reverchon, E., Supercritical antisolvent precipitation of micro- and nano-particles, Journal of Supercritical Fluids, 1999, 15, 1-21
    Reverchon, E., Porta, G D., Pallado, P., Supercritical antisolvent precipitation of salbutamol microparticles, Powder Technology, 2001, 114, 17-22
    Rinaki, E., Valsami, G, Macheras, P., The power law can describe the 'entire' drug release curve from HPMC-based matrix tablets: a hypothesis. International Journal of Pharmaceutics 2003, 255, 199-207
    Ritschel, W. A., Biophannaceutic and Pharmacokinetic Aspects in the Design of Controlled Release Peroral Drug Delivery Systems, Drug Development and Industrial Pharmacy, 1989, 15, 1073-1103
    Roberts, C. J., Debenedetti, P. G, Engineering pharmaceutical stability with amorphous solids, AIChE Journal, 2002, 48, 1140-1144
    Sahoo, S. K., Panyam, J., Prabha, S., Labhasetwar, V., Residual polyvinyl alcohol associated with poly (D,L-lactide-coglycolide) nanoparticles affects their physical properties and cellular uptake, Journal of Controlled Release, 2002, 82, 105-114
    Sakuma, S., Hayashi, M., Akashi, M., Design of nanoparticles composed of graft copolymers for oral peptide delivery, Advanced Drug Delivery Reviews, 2001, 47, 21-37
    Sansdrap, P., Fontaine, J., Moes, A. J., In vitro and in vivo evaluation of nifedipine-loaded PLGA microspheres, Proceedings of the 1st Word Meeting APGI/APV, Budapest, Hungary, 9/11 May 1995
    Shuai, X., He, Y, Asakawa, N., Inoue, Y. (2001). Miscibility and phase structure of binary blends of poly(l-lactide) and poly(vinyl alcohol). J. Appl. Polym. Sci., 81, 762-772
    Sinha, V.R., Trehan, A., Biodegradable microspheres for protein delivery, Journal of Controlled Release, 2003, 90, 261-280
    Siepmann, J., Ainaoui, A., Vergnaud, J. M., Bodmeier, R., Calculation of the Dimensions of Drug-Polymer Devices Based on Diffusion Parameters, Journal of Pharmaceutical Sciences, 1998, 87, 827-832
    Siepmann, J., Faisant, N., Akiki, J., Richard, J., Benoit, J. P., Effect of the size of biodegradable microparticles on drug release: experiment and theory, Journal of Controlled Release, 2004, 96, 123-134
    Siepmann, J., Faisant, N., Benoit2, B., A New Mathematical Model Quantifying Drug Release from Bioerodible Microparticles Using Monte Carlo Simulations, Pharm. Res., 2002, 19, 1885-1893
    Siepmann, J., Kranz, H., Peppas, N. A., Bodmeier, R., Calculation of the Required Size and Shape of Hydroxypropyl Methylcellulose Matrices to Achieve Desired Drug Release Profiles, International Journal of Pharmaceutics, 2000, 201, 151-164
    Siepmann, J., Peppas, N. A., Mathematical modeling of controlled drug delivery, Advance Drug Delivery Reviews, 2001, 48, 137-138
    Six, K., Verreck, G., Peeters, J., Brewster, M., Mooter, G. V. D., Increased Physical Stability and Improved Dissolution Properties of Itraconazole, a Class Ⅱ drug, by Solid Dispersions that Combine Fast- and Slow-Dissolving Polymers, Journal of Pharmaceutical Sciences, 2004,93, 124-131
    Skelly, J. P., Amidon, G L., Barr, W. H., Benet, L. Z., Carter, J. E., Robinson, J. R., Shah, V. P., Yacobi, A., In vitro and in vivo testing and correlation for oral controlled/modified release-dosage forms, Pharm. Res., 1990, 7, 975-982
    Skelly, J. P., Shiu, G. F., In vitro/in vivo correlations in biopharmaceutics: scientific and regulatory implications, Eur. J. DrugMetab. pharmacokinet, 1993, 18, 121-129
    Sood, A., R. Panchagnula, Design of Controlled Release Delivery Systems Using a Modified Pharmacokinetic Approach: a Case Study for Drugs Having a Short Elimination Half-life and a Narrow Therapeutic Index, International Journal of Pharmaceutics, 2003, 261, 27-41
    Soppimath, K. S., Aminabhavi, T. M., Water transport and drug release study from
     cross-linked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application, European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53, 87-98
    Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices, Journal of Controlled Release, 2001, 70, 1-20
    Sun, Y, Peng, Y., Chen, Y, Shukla, A. J., Application of artificial neural networks in the design of controlled release drug delivery systems, Advanced Drug Delivery Reviews, 2003, 55, 1201-1215
    Tateshita, K., Sugawara, S., Imai, T, Otagiri, M., Preparation and evaluation of a controlled-release formulation of nifedipine using alginate gel beads, Bio. Pharm. Bull, 1993, 16, 420-424
    Tse, G, Blankschtein, D., Shefer, A., Shefer, S., Thermodynamic prediction of active ingredient loading in polymeric microparticles, Journal of Controlled Release, 1999, 77-100
    Turk, M., Formation of small organic particles by RESS: experimental and theoretical investigations, Journal of Supercritical Fluids, 1999, 15, 79-89
    Yuksel, N., Turkoglu, M, Baykara, T, Modelling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks, J. Microencapsul. 2000, 17, 541-551
    Veng-Pedersen, P., Noncompartmentally-based pharmacokinetic modeling, Advanced Drug Delivery Reviews, 2001, 48, 265-300
    Verger, M. L., Fluckiger, L., Kim, Y, Hoffmann, M, Maincent, P., Preparation and Characterization of Nanoparticles Containing an Antihypertensive Agent, European Journal of Pharmaceutics and Biopharmaceutics, 1998, 46, 137-143
    Vicente, M.S., Gottifredi, J.C., Estimation of solvent activities in polymers solutions using a group-contribution method, Separation and Purification Technology, 2001, 22-23, 671-679
    Villadsen, J., Putting structure into chemical engineering, Chemical Engineering Science, 1997, 52, 2857-2864
    Wang, R, Wang, C, Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents, Journal of Controlled Release, 2002, 81, 263-280
    Wang, Z., Horikawa, T, Hirayama, F., Uekama, K., Design and in vitro evaluation of a modified-release oral dosage form of nifedipine by hybridation of hydroxypropyl-beta-cyclodextrin and hydroxypropylcellulose, J. Pharm. Pharmacol. 1993, 45, 942-946
    Weert, M., Hoechstetter, J., Hennink, W. E., Crommelin, D. J. A., The effect of a water/organic solvent interface on the structural stability of lysozyme, Journal of Controlled Release, 2000, 68, 351-359
    Wei, J., Product Engineering: The Third Paradigm of Chemical Engineering, Princeton University Report, 2001, http://www.princeton.edu/~seasweb/deanwei.html
    Wei, J., Molecular Structure and Property: Product Engineering, Ind. Eng. Chem. Res., 2002, 41, 1917-1919
    Wintermantel, K., Process and Product Engineering Achievements, Present and Future Challenges, Chem. Eng. Sci., 1999, 54, 1601-1620
    Wong, H. M., Wang, J. J., Wang, C., In Vitro Sustained Release of Human Immunoglobulin G from Biodegradable Microspheres, Ind Eng. Chem. Res., 2001, 40, 933-948
    Yang, Y., Chung, T., Bai, X., Chan, W., Effect of preparation conditions on morphology and release profles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method, Chemical Engineering Science, 2000, 55, 2223-2236
    Zhou, S., Liao, X., Li, X., Deng, X., Li, H., Poly-D,L-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems, Journal of Controlled Release, 2003, 86, 195-205
    Zhou, Y., Wu, X. Y., Modeling and analysis of dispersed-drug release into a finite medium from sphere ensembles with a boundary layer, Journal of Controlled Release, 2003, 90, 23-36
    Zhu, G., Mallery, S. R., Schwendeman, S. P., Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide), Nature, 2000, 18, 52-57
    陈德明,王亭杰,雨山江,金涌,缓释和控释尿素的研究与开发综述,化工进展,2002,21,455-461
    佟明友,方向晨,刘树臣,程国香,L-乳酸和聚乳酸的研究进展,石油化工,2003,32,724-728
    冯文来,赵平,控制释放技术发展及展望,化学工业与工程,1996,13,49-52
    傅崇东,蒋雪涛,胡晋红,吴伟,口服用硝苯地平缓释微球的研究,药物学报,1996,31(9),706~711
    李俊山,孙军,张大龙,估算橡胶助剂溶解度参数用基团贡献值的研究,橡胶工业,1995,42(7),393-395
    李凌冰,徐明瑜,药物控制释放过程中非Fick扩散机理的研究进展,国外医学生物医学工程分册,2000,23,95-99
    李孝红,袁明龙,熊成东,邓先模,聚乳酸及其共聚物的合成和在生物医学上的应用,高分子通报,1999(3),24-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700