用户名: 密码: 验证码:
稀土吸附剂废水深度脱磷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项目为云南省自然科学基金资助项目,项目编号为2000B0023M。
     本文针对造成水体富营养化的磷,采用吸附法进行处理,开发新型高效脱磷吸附剂,以达到工业废水及生活污水中磷的零排放,为废水的深度除磷提供一条切实可行的途径。
     文中主要研究内容为:(1)将稀土氧化物加载在载体沸石(4A)上,通过高温焙烧等方法制备成高效脱磷吸附剂,并从理论上探讨了稀土吸附剂的脱磷机理;(2)研究了制备工艺及制备条件对稀土吸附剂脱磷性能的影响及对载体化学组成和物理结构的影响;(3)考察了浸渍液浓度、溶液pH值、浸渍时间、焙烧温度、焙烧时间对脱磷率及吸附量的影响,并用正交试验法提出了稀土吸附剂的最佳制备条件;(4)采用X衍射、透射电镜、扫描电镜等分析手段观察化学处理及热处理对载体的影响;(5)对研制的稀土吸附剂进行了适宜的脱磷条件实验和解吸实验,测定了吸附等温线和穿透曲线,提出了吸附模型,并对脱磷机理进行了探讨;(6)用吸附剂对磷肥厂的实际水样和生活污水水样进行了处理,并对吸附剂去除氨氮、氟离子、砷离子(Ⅲ)进行了初步研究。
     研究结果表明:稀土吸附剂的最佳制备条件是镧离子浓度为0.35%的溶液pH值调为10,按1:50(固液比)投加沸石,浸渍16h以上,过滤后滤饼烘干,于500℃下焙烧1h。脱磷的适宜条件说明,研制的稀土吸附剂适于处理弱酸性废水,对含磷浓度为50mg/L、pH值为3~6的溶液,吸附剂的投加量在3g/L时,磷的去除率可以达到99%,出水pH值在6~9之间,稀土吸附剂的平衡吸附容量为22.41mg/g,动态吸附容量为4.39mg/g。研制的稀土吸附剂对水中的氨氮、氟离子、砷离子(Ⅲ)均有较好的去除效果。经稀土吸附剂处理后的工业废水和生活污水,磷浓度低于0.5mg/L,pH值在6~9之间,达到《污水综合排放标准》(GB8978-1996)的一级标准。与传统的化学凝聚法除磷和生物法除磷相比,吸附法具有工艺简单、高效、经济等优点。
The project is subsidized by Natural Science Fund of Yunnan province. (No.2000B0023M.)
    In order to remove the phosphorus that causes aquatic eutrophication, a new dephosphorates absorbent was invented to reduce the exhaust of phosphorates and an effective method of advanced wastewater treatment was provided .
    The main content is described as follows:
    (1) By means of addition of rare earth oxide to the carrier zeolite(4A) and roasting it in high temperature, the new dephosphorates absorbent was produced and the dephosphorates mechanism of rare earth absorbent was discussed. (2) The manufacture process and manufacture condition were studied which influence the rare earth absorbent's dephosphorates performance, chemical composition, physical structure. (3) The correlation was observed between the test result of phosphorates removal efficiency(or adsorption capacity) and the influent factors such as maceration extract concentration, the solution pH, the maceration time, the roasting temperature, roasting time. By the optimal test, the optimal absorbent produce conditions were chosen. (4) The effect on the carrier was examined, which was caused by chemical treatment and heat treatment by means of X-ray diffraction, transmittance electrical lens and scanning electrical lens, etc. (5) Under the appropriate condition an experiment on the phosphorus absorption an
    d desorption was made to measure the adsorption isotherm and breakthrough curve. Ard based on the test result, the advance adsorption model was presented and the dephosphorates mechanism was discussed. (6) The absorbent was used to treat the domestic effluent and phosphate industrial effluent. The research on the advanced removal of the NH3-N,F",As(III) by using the absorbent was made.
    The result of research shew that the optimal absorbent manufacture process based on the following conditions: the zeolite carrier should be soaked for 16h in the 0.35% La3+ solution under the pH of 10. The total solid/liquor ratio is 1:50. carrier is toasted at 500 for Ih. The optimal
    
    
    dephosphorates condition indicates that the new rare earth absorbent is suit to treat acidy wastewater. Aimed at the solution with 50mg/L phosphorus and pH within 3-6, the removal efficiency can reach 99% by 3g/L absorbent, the effluent pH varies within 6-9. Under this condition, the balance adsorption capacity of rare earth absorbent is 22.4mg/g, the dynamic adsorption capacity is 4.39mg/g. The rare earth absorbent also have good removal efficiency to NHs-N, F" and As(III). After the treatment of rare earth absorbent, the industrial effluent and domestic effluent can reach the first standard of National Drainage Standard (GB8978-1996). Compared with the chemical coagulation and biological method, the absorption method is more efficient, economical and simpler.
引文
1 金相灿,等.中国湖泊富营养化调查.中国环境科学出版社,1990
    2 谢维民. 污水除磷技术.环境科学,1989,10(5),63~68
    3 K.S.Rajmder, WWE, Vol. 14(8), 1997
    4 水上克一,月刊下水道,Vol.3(11),1980
    5 杜冬云,等,含磷废水的处理.化学工程师,1997,61(4),34-39
    6 北京市环境保护科学研究所编.水污染防治手册.上海科学技术出版社
    7 J. Nomura et al.. Removal of Fluoride Ion from Wastewater by a Hydrous Cerium Oxide Adsorbent. Am. Chem. Soc. Aymp. 1998. 422
    8 S. Tokumage. Removal of Arsenic (Ⅴ) Ion from Aqueous Solution by Lanthanum Compounds. Wat. Sci.Techn. 1997. 35(7). 71
    9 M.J.Haron et al. Preparation of Basic Yttrium Carbonate for Phosphate Removal. Water Environmental Research. 1997. 69(5). 1047
    10 朱文祥 著.漫话国宝—稀土元素.广西教育出版社,1999,10
    11 杨宝林.污水除磷技术的应用.西南给排水,1990,(4),15~19
    12 宗宫 功[日] 编著.污水除磷脱氮技术.中国环境科学出版社,1987,10
    13 郝晓地,等.欧洲水环境控磷策略与污水除磷技术(上).给水排水,1998,24(8),69~73
    14 孙家寿,等.天然沸石复合吸附剂处理含磷废水.离子交换与吸附,1992,8(1),20
    15 猪狩将,等.产业公害,15(6),515(1979)
    16 谢维民,等.水处理技术,28(9),7(1989)
    17 Zoltek, J Jr., Jour. WPCF, 16(11), 2498(1974)
    18 Xie, W.M. et al., Environ. Tech. Lett., 8(11), 589(1987)
    19 Levin, G. V. et al.,J. WPCF, 44(10), 1940(1972)
    20 Marais, G. V. R. et al., IAWPR Post Conference Seminat on Phosphate Removal in Biological Treatmint Process, (1982)
    21 钱易.现代废水处理新技术.中国科学技术出版社,1993,5
    22 唐受印,等.水处理工程师手册.化学工业出版社,2000,4
    23 北京市环境保护科学研究所编.大气污染防治手册.上海科学技术出版社,上海。1987
    
    
    24 顾夏声,等.水处理工程.清华大学出版社,1985
    25 国家环境保护局编.工业污染治理技术丛书(废气卷).中国环境科学出版社,北京,1996
    26 祝自英,等.新型稀土催化剂的研究.稀土,1996,17(6),16~18
    27 赵九生,等.催化剂生产原理.科学出版社,1986,11
    28 潘履让 著.固体催化剂的设计与制备.南开大学出版社,1993,12
    29 中国科学院大连化学物理研究所分子筛组 著.沸石分子筛.科学出版社,1978,11
    30 胡宏杰,等.沸石分子筛的制备及应用.矿产保护与利用,1998,5,10~13.
    31 肖举强.环境保护,1996,(2):28
    32 郑礼胜,等.环境工程,1997,15(3):13
    33 Reyes. O., et al. J. Environ. Sci. Health, A. 1997, 32, 2483
    34 Bswman R. S., Haggerty G. M., Hudleston R. G Sorption of nonpolar organic zeolites. American Chemical Society, Washington, DC.1995, 54~64
    35 Li Zh. H., Roy S. J., Bowman R. S.. Environ. Sci. Technol.. 32, 2628(1998)
    36 Li Zh. H.. J. Environ. Qual., 1998, 27, 240
    37 武汉大学分析化学教研室 编.化学分析(上册).人民教育出版社,1975,
    38 高正中 著.实用催化.化学工业出版社,1996,1
    39 江祖成,等 著.稀土元素分析化学.科学出版社,2000,1
    40 1964,5,785
    41 谈世韶,等.镧对氧化铝载体性能的影响.稀土,1988,(2),19~25
    42 魏复盛 编.水和废水监测分析方法.北京:中国环境科学出版社,1989
    43 天津大学物理化学教研室 编.物理化学.高等教育出版社,1993
    44 赵雷洪,等.稀土氧化物固体碱催化剂的表面性质.催化学报,1996,17(3)
    45 正交试验设计法编写组.正交试验设计法.上海科学技术出版社
    46 北京矿冶研究院分析室.矿石及有色金属分析手册.北京:冶金出版社,1990
    47 Chien. S. H et al. Soil Sce Soc Am J, 1980, 44(2): 265
    48 Barrow N J. J Soil Sci., 1979, 30(2): 259
    49 Kuo S et al. Soil Sci., Soc Am J, 1974, 38(1): 50
    50 Sharpley a Net al. Soil Sci., Soc Am J, 1977, 28:596
    51 Cooke I J. J Soil Sci., 1996, 17:56
    
    
    52 Cooke I J et al. Techm Repts Set Int at Energy Agence, 1966, 65:2-7
    53 黄春辉 著.稀土配位化学.科学出版社,北京,1997
    54 刘建,等.改性分子筛吸附剂从含氟水中除氟研究.离子交换与吸附,1998.14(5),159~164
    55 M.A.安德森 主编.水溶液吸附化学.科学出版社,1989
    56 Gu. T. T., Manes M.. J. Phys. Chem., 1982. 86:4221
    57 马刚平,等.镧氧化膜硅胶吸附除氟性能研究.中国环境科学,1999,19(4):345~348
    58 郝存江,等.云南沱茶自混合水溶液中吸附除砷的特性研究.离子交换与吸附.1998,14(5),434~439
    59 Simons. H. H., Flroride Chimistry [M], New york: Academic press, 1950, p45
    60 卫东冰.环境杂志[J],1985,5(2):42
    61 卢建杭,等.化工环保[J],1999,19(6):341
    62 Parthasatathy N., Buffle J., Can. J. Chim. [J], 1986, 64(1): 24
    63 刘斐文,等.离子交换与吸附[J],1991,7(5):24
    64 化学出版社.三废处理工程技术手册(废水卷).1999
    65 苏明德.遗传[J],1988;10(3):30~32
    66 吴沈春.环境与健康[M].北京:人民卫生出版社,1982
    67 郭万精.含砷废水的治理技术.中国环境科学,983,3(6):43
    68 《环保工作者实用手册》编写组.环保工作者实用手册.冶金出版社,1984,北京
    69 郑志明.化学絮凝法处理含砷、氟酸性废水工艺之研究.沈阳化工,1986,8(6):63
    70 赵宗,等.硫酸生产废水除砷工艺的研究.中国环境科学,1988,8(6):63
    71 Gaspard, M.; Neveu, A.; G.; Wat. Res., 1983, 17, 270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700