用户名: 密码: 验证码:
利用酵母菌处理高浓度味精废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业生产的发展,我国生态环境逐渐恶化,尤其水域环境污染严重,有机废水特别是高浓度有机废水的污染问题迫在眉睫,它一直是废水处理行业的热点和难点。
     味精废水主要含有菌体蛋白、残糖、氨基酸、铵盐、有机酸及硫酸根等污染物,废水COD负荷高达20000~70000mg/L,pH3.2,属于亟待解决的高浓度酸性有机废水。由于其BODs/COD比值为0.86,可生化性高,适合采用生物处理法。
     酵母菌是一种真菌。据其分布情况表明,经过长期的自然选择,酵母菌对高糖环境、高碳环境、高渗透压环境等具有较强的适应性,这使其有可能应用于高浓度有机废水的处理;并由于其利用的碳源种类非常广泛,使其可应用于不同有机废物的治理。酵母菌对有机废水的处理主要表现为不仅可以在一定程度上降低有机物的污染,还可同时利用有机废水生产单细胞蛋白(SCP),从而实现废水的资源化。
     本研究主要是利用酵母菌对味精废水进行了连续小试处理。通过批量实验对从高浓度味精废水中筛选出的一组酵母菌混合菌群进行了脱氢酶活性(DHA)测试,结果表明用该菌群对COD、硫酸根和氨氮均接近20000mg/L的味精离交尾液进行处理时,其DHA值在前36h高于对离交尾液稀释液的处理,说明高浓度氨氮和硫酸盐对酵母菌活性的影响不显著。利用接种了该酵母菌群的生物接触氧化反应器对味精废水进行的连续小试处理结果表明,在恒温28℃,DO为4mga,条件下,COD容积负荷为2.0~14.3kg/(m~3·d)范围内,COD去除率稳定在80%以上;适当地补充磷源有利于维持稳定的处理效果。对出水pH值和COD去除率的关系进行了探索,发现pH值对COD的去除影响并不大,而酵母菌生长的最佳pH值为3.5~5.0。处理后的出水SS升高,其中含有大量的酵母菌体,成分分析结果表明菌体蛋白含量为57.9%,氨基酸分布均衡,可以回收为饲料添加剂。将酵母菌反应器后出水再经活性污泥反应器进行二级后续处理,废水在生物处理后的出水COD去除率达到93%以上。
     同时,对味精废水氨氮的去除、酸化(水解)对废水的处理、混凝批量试验的净化研究进行了一系列的探索性试验,结果表明,酸化工艺的效果不大;若以聚铁为混凝剂,可以使出水的COD最终降至360mg/L左右。
With the development of industry and agriculture, our environment deteriorates gradually, especially water area pollution. The treatment of high concentration organic wastewater is always a hotspot and a difficulty in wastewater treatment.
    Monosodium glutamate wastewater contain much contamination, such as thalli albumen, remnant sugar, amino acid, ammonium salt, organic acid, SO42". The COD of the water is 20000~70000mg/L, pH3.2, belonging to the high concentration organic wastewater to solve urgently.
    Yeast is a kind of fungi. Distributing of yeasts indicates that after the natural selection for a long time, yeasts fit on the surroundings of containing high concentration sugar, high concentration carbon, or high infiltration pressure, which makes it possible to apply to the treatment of the high concentration organic wastewater. The carbon fountain categories of yeasts using are very wide, which makes it possible to apply to the treatment of the different organic waste. The manifest of the treatment of the organic wastewater using yeast is not only reducing the pollution degree of the organic waste, but also gaining the SCP as well by using the waste as a resource.
    The laboratory-scale continuous treatment of monosodium Glutamate manufacturing wastewater used yeast in the study. DHA (dehydrogenation activity) test indicated that mixed yeast strains isolated from high strength monosodium glutamate wastewater could endure the high concentrations of COD, S042", and NH}"1" containing in glutamate wastewater. The mixed yeast strains were inoculated to a biological contact oxidation reactor, and the reactor was used to treat the glutamate wastewater. Under a COD load ranging from 2.0 to 14.3kg/(m3 ?d), the COD removal rate was over 80%. On the other hand, supplementation of phosphorus was necessary to maintain a stable COD removal performance. Variation of effluent pH seemed to have no apparent influence on COD removal rate. The optimum pH for the growth of yeast, however, was found to be in the range of 3.5~5.0. The effluent wastewater contained high concentration of yeast bodies, which could be utilized as a forage additive because of its high protein content (57.9%) and well-balanced amino acid distribution. The effluent wastewater using yeast was treated by activated sludge, and the COD removal rate was 93% finally.
    Moreover, a series of exploring experiments of the NH4+-N removal, hydrolyzation of wastewater, coagulation purify study showed that the effect of the acidification is small, and the COD was about 360mg/L by polymerizing FeCla.
引文
[1] 王焕校主编,污染生态学,北京:高等教育出版社,2000
    [2] 水荒困扰世界,水污染防治工作会议报告,
    [3] 姜文来,中国21世纪水资源安全对策研究,http://www,sohu.com/shuianquan.htm
    [4] 焦辉东,中国环境危机报告:水荒正困扰中国
    [5] 黄玉瑶编著,环境生物学,北京:中国环境科学出版社,2001:19~20
    [6] 姜文来著.水资源价值论.北京:科学出版社,1998
    [7] 沈振荣、苏人琼编,中国农业水危机对策研究,北京:中国农业科技出版社,1998:1~38
    [8] 姜文来,农业水资源管理机制研究,农业现代化研究,2000(2)
    [9] http://www.yongjie-zy.com/everpure/catalog
    [10] 王凯军,秦人伟,发酵工业废水处理,北京:化学工业出版社,2000:4
    [11] 吴德生等,环境与健康.,北京:中国环境科学出版社,2001:102~103
    [12] 何强等,屠宰废水治理技术评价,重庆环境科学,1997,17(3):41-44
    [13] 严煦世,水和废水技术研究,北京:中国建筑工业出版社,1995
    [14] 王凯军,秦人伟,发酵工业废水处理,北京:化学工业出版社,2000:383
    [15] 王凯军,秦人伟,发酵工业废水处理,北京:化学工业出版社,2000:384~387
    [16] 陈卓贤,沈春明,陈国良编,味精生产工艺学,北京:中国轻工业出版社,1990
    [17] 湖北农学院等,农业环境保护,长沙:湖南大学出版社,1998
    [18] 程树培等,味精废水中重金属及金属污染对处理利用的影响,环境化学,1995,14(5):444~459
    [19] 张长泉,味精废水治理与利用技术进展,化工环保,1999,(1):43~45
    [20] 金新梅,味精废水的微生物转化与效益,环境污染与防治,1997,19(2):13~16
    [21] 杨琦,味精废水处理方法,污染防治技术,1996,9(3);171~173
    [22] 黄翔峰,章非娟,味精生产废水治理技术发展,中国沼气,2000,18(3):3~8
    [23] 鲍启均等,味精废水治理的技术路线探讨,中国给水排水,1998,14(6):23~25
    [24] 王永杰等,高效絮凝剂壳聚糖对味精废水的絮凝效果研究,中国沼气,1998,16(4):12~14
    [25] 张芝兰,稻麦草类碱木素混凝剂的性质及其应用,环境科学学报,1997,17(4):450~454
    [26] 黄民生,味精废水的絮凝——吸附法预处理试验研究,水处理技术,1998,24(5):299~302
    [27] 江龙法,从谷氨酸发酵液中提取单细胞蛋白的研究,食品与饲料工业,1998,(6):22~23
    [28] 吴水胜等,味精废水治理方案的探索,轻工环保,1994,16(1):1~5
    [29] 徐雪莹,味精废水与造纸黑液混和液的厌氧处理,环境科学与技术,1992,57(2):37~40
    [30] 许汉祥,味精行业的污水治理,轻工环保,1996,18(1):33~37
    [31] 黄国林等,活性炭动态吸附处理味精废水的研究,环境导报,1999,(3):16~18.
    [32] 王周胜,味精废水治理的新经验——全浓缩于燥法治理味精废水探讨,轻工环保,1992,14(2):38~40
    [33] 冯东勋,味精废水浓缩液发酵生产菌体蛋白饲料研究——精废水“零排放”治理方案,食品与发酵工业,1997,24(5):72~76
    [34] 惠平,硫酸法味精废水的厌氧处理试验,环境污染与防治,1995,17(5):10~13
    [35] 郝晓刚等,味精—卡那霉素混合废水的厌氧生物处理,化工环保,1999,19:168~171
    [36] 杨琦,UBF厌氧反应处理味精浓废水的研究,给水排水,1996,22(9):33~35
    
    
    [37]杨琦,填充盾式纤维填料和无填料的厌氧反应器处理味精废水的对比试验研究,中国沼气,1996,14(4):8~11
    [38]沈振寰,接触式(罐式)厌氧发酵法处理味精废液,轻工环保,1992,14(2):1~7
    [39]罗楠,味精稀废水水解—接触氧化—混凝处理,环境与开发,1998,13(3):31~32
    [40]郭晨等,假丝酵母处理味精废水,化工冶金,1998,19(2):150~153
    [41]程树培,光合细菌与酵母跨界融合子降解味精废水性能测定,环境科学,1996,17(3):5~8
    [42]敬一兵,固定化微生物治理味精废液.环境工程,1996,14(3):52~53
    [43]林剑等,苏云金杆菌在味精废水中的培养与发酵特性,生物技术,1998,8(5):32~35
    [44]章汝平,用后道味精母液提取谷氨酸后的废水生产r—氨基丁酸,长沙电力学院学报,1998,13(4):433~435
    [45]陈亮,SBR活性污泥法处理味精废水的工艺研究,中国纺织大学学报,1996,22(4):79~85
    [46]王菲凤,应用光合细菌处理味精废水,福建环境,1996,16(2):17~20
    [47]程树培,外循环气升式反应器中光合细菌处理味精废水的研究,环境科学,1994,15(2):6~10
    [48]岑沛霖,蔡谨编著,工业微生物学,北京:化学工业出版社,2000,6
    [49]无锡轻工业学院编,微生物学(第二版),北京:中国轻工业出版社,1994
    [50]张纪忠,微生物分类学,上海:复旦大学出版社,1990
    [51](英)J.A.巴尼特等著,胡瑞卿译,酵母菌的特征与鉴定手册,青岛:青岛海洋大学出版社,1991
    [52]李明霞,酵母菌的研究,工业微生物学成就——庆祝方心芳先生八十诞辰,北京:科学出版社,1988
    [53]中国科学院微生物所《菌种保藏手册》编写组,菌种保藏手册,北京:科学出版社,1980
    [54]H.J.法夫等,酵母菌的生活,贵阳:《酿酒科技》编辑部,1985
    [55]中国科学院微生物所《常用与常见真菌》编写组,常用与常见真菌,北京:科学出版社,1973
    [56]李明霞等,我国各类基物上的酵母菌分布及其尿素酶活性,真菌学报,1983,2(4):228~236
    [57]施庆珊等,固定化酵母细胞工业性生产糖蜜酒精的研究,工业微生物,1995,25(4):20~24
    [58]王大珍等,石油油脂酵母及其应用研究Ⅰ,利用油脂酵母发酵正烷烃生产脂肪酸的研究,微生物学报,1981,21(4):482-488
    [59]田静等,液体石蜡发酵生产琥珀酸的研究Ⅰ,菌种的筛选和诱变,微生物学报,1981,21(2):229~233
    [60]中国科学院林业土壤研究所,沈阳市有机化工厂,解脂假丝酵母利用正癸烷产生癸二酸的研究,微生物学报,1979,19(1):64~70
    [61][美]M.L.Speck,食品微生物学检验方法提要,北京:人民卫生出版社,1982
    [62]俞俊堂等,生物工艺学,上海:华东理工大学出版社,1992
    [63]李镜莲,1981年国际单细胞蛋白会议,巴黎,微生物学通报,1981,8(4):198
    [64]方风山等,内循环空气提升式发酵罐的研制生物工程学报,1985,1(1):59~69
    [65]牟川静等,毕赤氏酵母新种——嗜石油毕赤氏酵母D3,微生物学报,1979,19(3):259~264
    [66]高鸿图等,一株新的石油脱蜡酵母——脱蜡球拟酵母及其发酵性能,微生物学报,1979,19(4):370~374
    
    
    [67]凌代文等,棒杆菌属的两个新种,微生物学报,1982,22(3):197~206
    [68]李祥鹏等,高核糖核酸含酵母菌的诱变选育,工业微生物,1986,16(1):17~20
    [69]朱丕基,提高石油酵母收率的一种方法,微生物学通报,1979,6(5):17~18
    [70][美]R.M.阿特拉斯,石油微生物学,北京:石油工业出版社,1991
    [71]长谷川真一,Technical details of the yeast cycle system,全国第一期水处理新技术研讨班论文集,北京,1999
    [72]翁稣颖,环境微生物学,北京:科学出版社,1985,159~283
    [73]石振清,王静荣等,味精废水处理技术综述,环境污染技术与设备,2001,2(2):81~90
    [74]杨清香,杨敏等,酵母菌对味精生产中离交尾液的处理初探,环境科学,2001,22(6):44~48
    [75]俞毓馨,吴国庆,孟宪庭主编,环境工程微生物检验手册,中国环境科学出版社,1990
    [76]国家环保局,水和废水监测分析方法(第三版),北京:中国环境科学出版社,1998,252~286
    [77]赵庆良,李湘中,垃圾渗滤液中的氨氮对微生物活性的抑制作用,环境污染与防治,1998,20(6):1~4
    [78]谭铁鹏,万增强,生物流化床—化学絮凝法处理土霉素生产废水,水处理技术,1986,12(4):225~229
    [79]周得庆,微生物学教程,北京:高等教育出版社,1993,120
    [80]王家玲,环境微生物学,北京:高等教育出版社,1988,76~77
    [81]夏玉宇,朱丹,饲料质量分析检验,北京:化学工业出版社,1994,52
    [82]王家玲,环境微生物学,北京:高等教育出版社,1988,211~212
    [83]秦裕,麦玉筠等译,废水工程、处理、处置及回用(第二版),北京:化学工业出版社,1986,503
    [84]牛樱,陈季华,兼氧—好氧工艺处理高浓度化工废水,工业处理,2000,20(8):8~10
    [85]严煦世,范瑾初主编,给水工程(第四版),北京:中国建筑工业出版社,1999,254~271
    [86]张自杰编,排水工程(第四版),北京:中国建筑工业出版社,2000,241~242
    [87]秦人伟,沈振寰,味精行业综合利用和废水治理,全国第一期水处理新技术研讨班专家报告文集,1999
    [88]徐达伍,王定昌,石瑞样,利用味精废液生产单细胞蛋白实现无污染排放,轻工环保1993,15(2):1~4
    [89]张希衡等编,废水厌氧生物处理工程,北京:中国环境科学出版社,1996,379~381
    [90]Abbott, B.J., and A. Clamen. The relationship of substrate Growth Rate and Maintenance Coefficient to SCP Production. Biotechnol. Bioeng. 1973, 15:117~121.
    [91]Andersen, R.F..Production of food yeast from spent sulfite liquor. Pulp Paper Can.1979,80(4):43~45.
    [92]Bamett,J.A Fungal wall and Hyphal growth:Principles of Classification. Cambridge University Press,Cambridge.1979,1~15
    [93]Banno,I.And Mikata,K.Isolation of Yeasts by Enrichment Method,IFO Res. Comm. 1977,8,7~17.(in Japanese)
    [94]Chen,J.,Ishi,T.,Kirimura,K.and Usami,S.(1990),Isolation of a Deuteromycotinous Yeast Producing Lipase. Report of waseda Univ. 130,33~38.(in Japanese)
    [95]Chigusa, K., et al. High rate performance and characteristics of food processing wastewater
    
    treatment using yeast. Proc. of environmental engineering research. 1995,32: 89-97 (In Japanese)
    [96] Chigusa, K., Nishi, N., Matsumaru, M. and Minegishi, Y., Treatment of food manufacturing wastewater by yeast. J. Environ. Pollut. Cont., 1989,25, 1557-1563. (In Japanese).
    [97] Dempsey,B.A.,et.al.,Polyaluminum chloride and Alumcoagulation of Clayfulvic acid suspensions,J.AWWA,77(3) :74, 1 985
    [98] Dyck, A.W.J. How Charmin Makes Torula Yeast. Paper Ind 1957, 26: 26-28.
    [99] Espinosa,R.,O.Maldonado,J.F.Menchu and C.Rolz. "Aerobic Nonaseptic Growth of Verticillum on Coffee Waste Waters and Blackstrap Molasses at a pilot Plant Scale,"in Single Cell Protein from Renewable and Nonrenewable Sources, G.Gaden and A.Humphrey,Eds.,Biotechnology and Bioengineering Symposium No.7(New York: John Wiley &Sons,Inc.), 1977, 35-44.
    [100] Hatch, R.T. Fermenter Design,"in Single cell protein, Vol.2, S.R. Tannenbaum and D.I.C.Wang, Eds. (Cambridge, MA: The M.I.T. Press): 1975, pp46-68.
    [101] Humphrey, A.E. Product Outlook and Technical Feasibility of Single Cell Protein, in Single Cell-protein, Vol.2. S.R. Tannenbaum and D.I.C. Wang, Eds. (Cambridge, MA: The M.I.T.Press), 1975,pp,1-24.
    [102] J.H.Litchfield, "Adv.Appl.Microbiol."Vol.22,ed.By D.Perlman, Academic Press Inc., New york,N.Y.,1977,p.227
    [103] K . Chigusa, et al. Treatment of wastewater from oil manufacturing plant by yeast, Wat.Sci.Tech. ,1996,34(11) :51-58.
    [104] Kihlberg, R. The Microbe as a Source of Food. Ann.rev.Microbiol. 1972,26: 427-466.
    [105] Koh J.S., et al. Screening of yeasts and cultural conditions for cell production from palm oil,Agric.Biol.Chem. 1983,47(6) : 1207-1212 .
    [106] 7. Kreger-van Rij, N.I.W.(1984) . The yeasts, a taxonomic study (3rd revised and enlarged edition).Elsevier Science Publisher B.V.. Amsterdam.
    [107] Kure, A.R.. Ethyl alcohol form sulfite waste liquor. Can. J. Chem. Eng. 1957, 35: 85-90.
    [108] Lepinsky, E.S. Conversion of sugar cane products into fuels and chemicals feedstock. Sugar J. (August). 1976,271.
    [109] Maclennan, D.G. Single Cell Protein from Starch, in continuous Culture, Vol.6: Aplllications and New Fields, Dean, Ellwood, Evans and Mailing, Eds. (Chichester, England: Ellis Horwood Publishers), 1976, pp.68-84.
    [110] Moo-Young, M..A.J., Daugulis,D.S., Chalel and D.G.MacDonald. The Waterloo Process for SCP Production from Waste Biomass. Process Biochem. 1979,14(10) : 38-40.
    [111] Moo-Young, M., D.G.MacDonald and A. Ling. Sensitivity Analysis of the Waterloo Process in Agricultural waste Treatment. Can.Agric.Eng. 1980a,22(2) : 119-124.
    [112] Moo-Young, M., D.G.MacDonald and A. Ling. New Process Changes Pulpmill Waste to Animal Food. Pulp Paper Can. 1980b,81(6) : 125-128.
    [113] Mueller, J.E. Fermentative Utilization of Spent Sulfite Liquor:A Review and Proposal. Pulp Paper Mag. 1970,71(22) : 72-76.
    [114] Nawamura, Y, Nishi, T. and Chigusa, K., Process for high load treatment of wastewater containing fish meal by yeast. J. Operation and Installation. 1992,11, 99-104. (In Japanese)
    [115] Ratledge, C. Degradation of aliphatic hydrocarbons. In: Developments in biodegradation of hydrocarbons (R.J.Watkinson, ed.). pp: 1-145. Applied Science Publishers, London. 1978
    [116] Romantshuk, H. The Pekilo Process Protein from spent Sulfite Liquor, in Single Cell Protein,
    
    Vol.2, S.R.Tannenbaum and D.I.C. Wang, Eds. (Cambridge, MA:The M.I.T.Press), 1975,pp.344-356.
    [117] Saeman, J.F. Aerobic Fermentor with Good Foam-Control Properties. Ind.Eng.Chem. 1947,19: 913-915.
    [118] Scioli, C. and Vollaro, L. The use of Yarrowia lipolytica to reduce pollution in olive mill wastewater. Wat. Res. 1997,31(10) : 2520-2524
    [119] Scrimshaw, N.S. Single Cell Protein for Human Consumption-An Overview, in Single Cell Protein, Vol.2, S.R.. Tannenbaum and D.I.C. Wang, Eds. (Cambridge, MA: The M.I.T.Press), 1975,pp.24-26.
    [120] Simard, R.E., and A. Cameron. Fermentation of spent Sulfite Liquor by Candida utilis. Pulp Paper Mag. 1974,75: 107-110.
    [121] Skogman, H. Production of Symba Yeast from Potato Wastes, in Food from Waste, C.G. Birch, K.J. Parker and J.T. Worgan, Eds. (London: Applied Science Publishers), 1976,pp.167-179.
    [122] Stanier,R.Y.,ingraham.J.:L.Wheelis,M.L,andPainter,P.R..Methodfor Microbiology. In: The Microbial World, Sth edition. Baifukan Co.,Tokyo, 1989,189-191
    [123] Stanier,R.Y.,ingraham,J.:L.Wheelis,M.L,andPainter,P.R..Methodfor Microbiology. In: The Microbial World, Sth edition. Baifukan Co.,Tokyo, 1989,167-168
    [124] Watson, C.A. Alcohol production from spent sulfite liquor. Forest Product J. 1959, 3: 25A-28A.
    [125] English6 Y-C Chung, J.B.Neethling. Microbial activity measurements for anaerobic sludge digestion. Jourmal.WPCF,61(3) : 343-355.
    [126] Young, V.R., and N.S. Scrimshaw. Clininal Studies on the Nutritional Value of Single Cell Proteins. in Single Cell Protein, Vol.2, S.R. Tannenbaum and D.I.C.Wang, Eds. (Cambridge, MA: The M.I.T. Press), 1975,pp.564-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700