用户名: 密码: 验证码:
多孔介质失稳特性研究与化学—水力—力学耦合流形元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,多相多孔介质的材料失稳和物理-化学耦合非线性分析成为固体力学和工程力学界研究的热点问题之一。与单相材料的力学分析不同,多相多孔介质材料失稳问题和化学-力学耦合非线性分析属于耦合问题。相关研究工作具有广阔的工程应用背景,如与边坡失稳相联的饱和土壤面的破坏和石油开采中油层破裂、诱发地质沉降等问题以及工程土障的设计等。
     本论文致力于以下三个方面的工作:1)引入各向异性本构关系,对多相多孔介质在拟静态和动力荷载条件下的失稳特性进行理论研究;2)提出饱和多孔介质动力非线性分析的数值流形元求解方法;3)提出非饱和多孔介质化学-水力-力学耦合本构模型并建立该模型的隐式积分一致性算法及其流形元模拟。
     岩土材料作为在细观上由固、液两相(饱和的)或固、液、气三相(非饱和的)组成的多相多孔介质,具有非均匀的结构。而在宏观上一个基本和重要的假定是认为多相多孔介质是均匀连续介质且每相材料均充满全域。这样就可以在连续介质力学理论框架内对多相多孔介质的每点上建立两相或三相耦合模型。
     大量对于岩土材料的实验研究结果表明岩土材料的破坏方式与其各向异性特性有关。实际上,这种各向异性行为与岩土材料的特殊的构造相关,比如节理面等,或者是由于应力的增长引起的。因此,在对多相多孔介质进行材料失稳研究中有必要考虑各向异性的材料本构。本文使用各向异性本构关系描述岩土材料的固体骨架的力学行为,基于不连续分叉方法研究了各向异性多孔介质在准静态以及动力荷载下的材料失稳(驻波间断与颤振失稳)问题,并考察了材料参数变化对材料失稳的影响。
     饱和多孔介质动力问题的有限元求解存在一个困难,即u-p形式的有限元公式要求位移(或速度)和压力的有限元插值函数满足Babuska-Brezzi稳定性准则或者它的简单表达形式Zienkiewicz-Taylor分片试验条件。否则,计算所得的孔隙压力场会呈现不合理的空间振荡性分布。这些条件判定了使用u-p等阶插值单元(例如T3p3平面单元,即u-p均采用三节点线性插值)是不可靠的。基于数值流形方法的思想,本文提出了适合饱和多孔介质动力非线性分析的流形单元法。数值算例表明该单元能有效地解决孔隙压力场的数值振荡问题且可以被应用到饱和多孔介质非线性破坏的数值模拟中。
     人们已经在实验中发现粘质土壤孔隙溶液中的某些化学污染物会对土壤的水力-力学性质产生不利的影响。实际上,环境化学荷载因素可以使土壤产生弹性和不可恢复的塑性变形。深入研究化学荷载对土壤的影响是工程土障、隧道开挖等岩土工程分析和设计中必须考虑的因素。本文在非饱和多孔介质水力-力学本构模型以及饱和多孔介质化学-塑性本构模型的基础上,提出了一个非饱和多孔介质的化学-水力-力学耦合本构模型。根据经典率无关弹塑性模型的Euler向后完全隐式积分算法提出了非饱和多孔介质化学-水力-力学耦合本构模型的隐式积分算法并推导了一致性切线刚度阵。该算法考虑了化学软化效应和非饱和吸力的影响。由于非饱和吸力的变化会产生应力的变化,所以在推导一致性切线刚度阵时考虑了由于吸力的变化所产生的在总体流形单元分析中的非平衡力。数值算例表明该算法在局部水平具有较好的精度和收敛性,并能应用到有化学荷载的岩土工程问题中。
In the recent years, material instabilities and coupled physico-chemical nonlinear analysis of multiphase porous media has been one of research focuses in solid mechanics and engineering mechanics. Unlike simple mechanical analysis for single phase materials, this subject is a coupled problem and has comprehensive engineering applications, such as landslide related to the failure of saturated soils, fracture of the reservoir and land subsidence in petroleum extraction and design of engineering clay barrier etc.
     The emphases of this thesis focus on the following three aspects. Firstly, an anisotropic constitutive relation is introduced to the theoretical research of material instabilities for multiphase porous media under quasi-static and dynamic loading conditions. Secondly, numerical manifold element is presented for dynamic nonlinear analysis of saturated porous media. Thirdly, a chemo-hydro-mechanical constitutive model and the corresponding implicit integration algorithm are presented for numerical simulation of partially saturated porous media.
     Modelled as the solid-liquid or solid-liquid-gas mixture, saturated or partially saturated geomaterials have non-homogeneous structures in space. A fundamental assumption is to model the non-homogeneous multiphase system as a porous-continuum in the macroscopic level, in which each phase is assumed to fill up the whole domain. Based on this assumption, the theory frame of continuum can be applied to porous media as two-phase or three-phase mixtures.
     A great number of experiment investigations on geomaterials indicate that the failure mode of geomaterials is related to the anisotropic behavior. As a matter of fact, the anisotropic behavior is caused by the special structures of geomaterials, such as layering etc, or by stress growth. It is necessary to introduce anisotropic constitutive relations to material instability analysis of porous media. An anisotropic constitutive model developed for geomaterials is used to model the anisotropic mechanical behavior of the solid skeleton of saturated porous media. Conditions for static instability and dynamic instability (stationary discontinuity and flutter instability) of saturated porous media are derived based on strain rate discontinuous bifurcation analysis method. The effects of material parameters on material instability are investigated in detail by numerical computations.
     There is a difficulty in finite element analysis for u-p mixed formulation of saturated porous media. Lots of previous works showed that the interpolation function for the displacement and the pore pressure must fulfill the so-called Babuska-Brezzi stability criteria or the Zienkiewicz-Taylor patch test. Otherwise, oscillations will appear in pore pressure field. These criteria preclude the use of finite elements with the same order of interpolation, such as T3p3 triangles (3-noded linear triangle for displacement and 3-noded linear triangle for pressure). Based on the idea of the numerical manifold method, the manifold elements for dynamic nonlinear analysis of saturated porous media are developed. Numerical examples indicate that the proposed manifold elements achieve the goal of avoiding oscillations in pressure field and can be applied in nonlinear failure analysis of saturated porous media.
     It has been recognized from experiments that chemical concentration in pore fluid may have negative effect on the hydro-mechanical qualities of clayed soils. Chemical loading may cause elastic and elastoplastic deformation. Understanding of the chemical effect is essential for the design and analysis of civil engineering such as clay barriers and tunnels etc. A coupled chemo-hydro-mechanical constitutive model of partially porous media is developed on the basis of the existing hydro-mechanical constitutive model and chemo-plastic constitutive model. Based on the definition of implicit Euler backward integration scheme for standard plasticity, an implicit integration algorithm and the consistent tangent moduli are presented for the chemo-hydro-mechanical constitutive model. The chemical softening effect and variation of suction are taken into account in the present algorithm. The nonlinear terms arose by suction are also taken into account at global level of manifold element analysis. Numerical examples are presented to demonstrate accuracy and convergence property of the algorithm proposed at local level and the application to geotechnical engineering with chemical loading.
引文
[1]. Terzaghi K. Die berechnung der durchleessigkeitszifter des tones aus dem verlauf der hydrody]namishen spannungeserscheinungen. Sitsber . Akad. Wiss. Vienna, Abt. II132 1923.
    
    [2]. Terzaghi K. Principles of soil mechanics. Eng. Naws Record, 1925, 17.
    
    [3]. Coulomb CAL. Application des regies maximis et minimis a quelques problems de statique, Relatifs a l' architecture.Mem.de 1' Acad. des, Sc., Paris:1773.
    
    [4]. Wood DM. Soil behaviour and critical state critical soil mechanics. Cambridge University Press,1990.
    
    [5]. Rankine WJM. On the stability of loose earth. Tran. Royal Soc. London, 1857.
    
    [6]. Biot MA. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12:155-164.
    
    [7]. Biot MA. Theory of propagation of elastic waves in fluid saturated porous solid. J. Acoust. Soc. America, 1956,28:168-191.
    
    [8]. Roscoe KH, Schofield AN, Wroth CP. On the yielding of soils. Geotechnique,1958,8.
    
    [9]. Roscoe KH, Schofield AN, Thrruijah. Yielding of clays in states wetter than critical. Geotechnique, 1963, 13:211-240.
    
    [10]. Roscoe KH, Burland JB. On the generalized stress strain behaviour of wet clay. Engineering Plasticity. Ed. by Hoyman and FA Leekie. Cambridge University Press, 1968.
    
    [11]. Bishop AW The principle of effective stress. Teknisk Ukeblad, 1959, 39:859-863.
    
    [12]. Bishop AW, Blight GE. Some aspects of effective stress in saturated and unsaturated soils. Geotechnique, 1963, 13:177-197.
    
    [13]. Zienkiewicz OC, Humpheson, Lewis RW. A unified approach to soil mechanics probless (including plasticity and viscoplasticity) finite elements in Geomechanics, Wiley, 1977.
    
    [14]. Zienkiewicz OC. Basic formulation of static and dynamic behaviour of soil and other porous media. Numerical Methods in Geomechanics, 1982.
    
    [15]. Zienkiewicz OC, Bettess P. Soil and other porous media under transient dynamic conditions. Scientific papers of Inst. Getechnical Engineering, 1980, 32:243-254.
    
    [16]. Prevost JH. Mechanics of continuous porous media. International Journal of Engineering Science, 1980, 18:787-800.
    
    [17]. Zienkiewicz OC, Shomi T. Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8:71-96.
    
    [18]. Li XK, Zienkiewicz 0C. Xie YM. A numerical model for immiscible two-phase fluid flow in a porous medium and its time domain solution, International Journal for Numerical Methods in Engineering, 1990, 30(6):1195-1212.
    
    [19]. Alonao EE, Gens A, Josa A. A constitutive model for partially saturated soils. Geotechnique, 1990,40:405-430.
    [20]. Thomas HR, King SD. Coupled temperature/capillary potential variations in unsaturated soil. Engneering Mechanics, ASCE, 1991,11:2475-2491.
    [21]. Thomas HR, He Y, Sansom MR, Li CLW. On the development ofa model of the thermo-mechanical-hydraulic behaviour of unsaturated soils. Engineering Geology, 1996,41:197-218.
    [22]. Thomas HR, Li CLW. Modeling transient heat and moisture transfer in unsaturated soils using a parallel computing approach. International Journal for Numerical and analytical Methods in Geomechanics, 1995,19:345-366.
    [23]. Thomas HR, He Y, Onofrei C. An examination of the validation of a model of the hydro/thermo/mechanical behaviour of engineered clay barriers. International Journal for Numerical and Analytical Methods in Geomechanics, 1998,22:49-71.
    [24]. Thomas HR, Ferguson WJ. A fully coupled heat and mass transfer model incorporating contaminant gas transfer in an unsaturated porous medium. Computers and Geotechinics, 1999,24:65-87.
    [25]. Dakshanamurthy V, Fredlund D.G. A mathematical model for predicting moisture flow in an unsaturated soil under hydraulic and temperature gradients. Water Resources Research, 1981,17:714-722.
    [26]. Schrefler BA, Zhan X. A fully coupled model for water flow and air flow in deformable porous media. Water Resources Research, 1993,29(1):155-167.
    [27]. Schrefler BA, Zhan X, Simoni L. A coupled model for water flow, airflow and heat flow in deformable porous media. International Journal of Numerical Methods for Heat and Fluid Flow, 1995,5:531-47.
    [28]. Simoni L, Schrefler BA. A staggered finite element solutions for water and gas flow in deforming porous media, Communications in Applied Numerical Methods, 1991,7:213-223.
    [29]. Meroi EA, Schrefler BA. Large strain static and dynamic semisaturated soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 1996,19:81-106.
    [30]. Schrefler BA. F.E. in environmental engineering: Coupled thermo-hydro-mechanical processes in porous media including pollutant transport, Archives of Computational Methods in Engineering, 1995,2&3:1-54.
    [31]. Schrefler BA, Scotta R. A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Computer Methods in Applied Mechanics and Engineering, 2001,190:3223-3246.
    [32].沈珠江.土体应力应变分析的一种新模型。第五届土力学及基础工程学术会议论文选集.北京建筑工业出版社,1990,101-105.
    [33].沈珠江.广义吸力和非饱和土的统一变形理论.岩土工程学报,1996,18:1-8.
    [34].沈珠江.理论土力学.中国水力水电出版社.2000.
    [35].陈正汉,王永胜,谢定义.非饱和土的有效应力探讨.岩土工程学报,1994,16:63—69.
    [36].陈正汉,谢定义.非饱和土固结的混和理论(Ⅰ),(Ⅱ).应用数学与力学,1993,2:127-136.
    [37].刘占芳,李德源,严波.饱和多孔介质的非均匀平面波.岩土力学,1999,20(4):31-35.
    [38].刘占芳,黄民战,李德源.液饱和多孔介质中瑞利型波的弥散和衰减.重庆大学学报(自然科学版),2000,23:6-10.
    [39].徐曾和,徐小荷,沈连山.可变形多孔介质中的一维非定常耦合渗流.应用力学学报,1999,16(4):46-52.
    [40].宋颖韬,徐曾和,姜元勇.一维多孔介质中气体渗流与多相气固反应分析,水动力研究与进展,2004,19(6):766-773.
    [41].赵成刚,李伟华,王进廷,李亮.三种介质耦联系统动力反应分析的显示有限元及其应用.地震学报,2003,25(3):262-271.
    [42].赵成刚,闫华林,李伟华,李亮.考虑耦合质量影响的饱和多孔介质动力影响分析的显示有限元,计算力学学报,2005,22(5):555-561.
    [43].黄茂松,魏星.循环荷载饱和土动力学问题稳定有限元解.岩土工程学报,2005,27(2):173-177.
    [44]. Hueckel T, Borsetto M. Thermoplasticity of saturated soils and shals: constitutive equations. Jonrnal of the Geotechnical Engineering, ASCE, 1990,116(12):1765-1777.
    [45]. Mueckel T, Baldi G. Thermoplasticity of saturated clays: experimental constitutive study. Jonrnal of the Geotechnical Engineering, ASCE, 1990,116(12):1778-1796.
    [46]. Baldi G, Hueckel T, Pellegrini R. Thermal volume changes of the mineral-water system in low porosity clay soils. Canadian Geotechnical Journal, 1988,25:807-825.
    [47]. Chenmin M. Hueckel T. Stress and pore pressure in saturated clay subjected to heat from radioactive waste: a numerical simulation. Canadian Geotechnical Journal, 1992,29:1087-1094.
    [48]. Hueckel T, Pellegrini R. Effective stress and water pressure in saturated clays during heating-cooling circles. Canadian Geotechnical Journal, 1992,29:1095-1101.
    [49]. Wu WH., Li XK, Charlier R, Collin F. A thermo-hydro-mechanical constitutive model for unsaturated soils. Computers and Geotechnique, 2004,31:155-167.
    [50]. Liu Z, Boukpeti N, Li X, Collin F, Radu J-P, Hueckel T, Charlier R. Modelling chemo-dydro-mechanical behaviour of unsaturated clays: a feasibility study. International Journal for Numerical and Analytical Methods in Geomechanics, 2005,29:919-940.
    [51]. Hamamard J. Lecons sur la Propagation desOndes et les Equations de Hydrodynamique, Librairie Scientifique A. Hermann, Paris, France(in French),1903.
    [52]. Hill R. Acceleration waves in solids. Journal of the Mechanics and Physics of Solids, 1962,10:1-16.
    [53]. Thomas TY. Plastic Flows and Fracture of Solids. Academic Press, New York. 1961.
    [54]. Rice JR. On the stability of dilatant hardening for saturated rock mass. Journal of Geophysical Research, 1975,80:1531-1536.
    
    [55]. Rice JR. The localization of plastic deformation. In: Koiter, W. (Ed.), Theoretical and Applied Mechanics. 14th IUTAM Congress. North-Holland, Amsterdam, 1976:207-220.
    
    [56]. Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of Mechanics and Physics of Solids, 1975,23:371-394.
    
    [57]. Vardoulakis I. Dynamic stability analysis of undrained simple shear on water-saturated granular solids. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10:177-190.
    
    [58]. Vardoulakis I. Deformation of water-saturated sand: I. Uniform undrained deformation and shear band. Geotechni(?)ue, 1996, 46:441-456.
    
    [59]. Schrefler BA, Sanavia L, Majorana, CE. A multiphase medium model for localization and post localization simulation in geomaterials. Mechanics of cohesive-Frictional Materials and Structures, 1996, 1:95-114.
    
    [60]. Loret B, Harireche 0. Acceleration wave, flutter instabilities and stationary discontinuities in inelastic porous media. Journal of the Mechanics and Physics of Solids, 1991, 39:569-606.
    
    [61]. Loret B, Simoes FME, Martins JAC. Growth and decay of acceleration waves in non-associative elastic-plastic fluid-saturated porous media. International Journal of Solids and Structures, 1997, 34:1583-1608.
    
    [62]. Loret B, Rizzi E. On the effects of inertial coupling on the wave-speeds of elasto-plastic fluid-saturated porous media. Material Instabilities in Solids, de Borst, R, van der Giessen, E(eds). New York, Wiley, 1998.
    
    [63]. Simoes FEM, Martin JAC, Loret B. Instabilities in elastic-plastic fluid-saturated porous media: harmonic wave versus acceleration wave analyses. International Journal of Solids and Structures, 1999, 36:1227-1295.
    
    [64]. Benallal A, Comi C. Material instabilities in inelastic staturated porous media under dynamic loadings. International Journal of Solids and Structures, 2002, 39:3693-3716.
    
    [65]. Li XK, Zhang JB, Zhang HW. Instability of wave propagation in saturated poroelastoplastic media. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26:563-578.
    
    [66]. Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and structures. New York, John Wiley & Sons,2001.
    
    [67]. Needleman A. Material rate dependence and mesh sensitivity on localization problems. Computer Methods in Applied Mechanics and Engineering, 1988, 67:69-86.
    
    [68]. Loret B, Prevost JH. Dynamic strain localization in elasto (visco-) plastic solids, Part 1. General formulation and one-dimensional examples. Computer Methods in Applied Mechanics and Engineering, 1990, 83:247-273.
    
    [69]. Sluys LJ. Wave propagation, localization and dispersion in softening solids. Ph.D. Thesis, Civil Engineering Department of Delf University of Technology, 1992.
    
    [70]. Asaro RJ. Mechanics of crystals and polycrystals. Advances in Applied Mechanics, 1983,23:2-115.
    
    [71]. Mühlhaus HB, Vardoulakis I. The thickness of shear band in granular materials. Geotechnique, 1987,37:271-283.
    
    [72]. Mühlhaus HB, Aifantis EC. A variational principle for gradient plasticity. International Journal of Solids and Structures, 1991, 28:845-858.
    
    [73]. De Borst R, Mühlhaus HB. Gradient-dependent plasticity: formulation and algorithmic aspects. International Journal for Numerical Methods in Engineering, 1992, 35:521-539.
    
    [74]. Sluys LJ, De Borst R, Mühlhaus HB. Wave propagation, localization and dispersion in. a gradient-dependent medium. International Journal of Solids and Structures, 1993,30:1153-1171.
    
    [75]. Zhang HW, Sanavia L, Schrefler BA. An internal length scale in dynamic strain localisation of multiphase porous media. Mechanics of Cohesive-Frictional Materials and Structures, 1999, 4:443-460.
    
    [76]. Zhang HW, Schrefler BA. Gradient-dependent plasticity model and dynamic strain localisation analysis of saturated and partially saturated porous media: one dimensional model. European Journal of Solid Mechanics, A/Solids, 2000, 19(3):503-524.
    
    [77]. Zhang HW, Schrefler BA. Uniqueness and localisation analysis of elastic-plastic saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25:29-48.
    
    [78]. Zhang HW, Sanavia L, Schrefler BA. Numerical analysis of dynamic strain localisation in initially water saturated dense sand with a modified generalised plasticity model. Computers & Structures, 2001, 79:441-459.
    
    [79]. Zhang HW, Schrefler BA. Analytical and numerical investigation of uniqueness and localization in saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(14):1429-1448.
    
    [80]. Zhang HW, Schrefler BA, Wriggers P. Interaction between different internal length scales for strain localisation analysis of single phase materials. Computational Mechanics, 2003, 30:212-219.
    
    [81]. Zhang HW, Schrefler BA. Particular aspects of internal length scales in strain localization analysis of multiphase porous materials. Computer Methods in Applied Mechanics and Engneering, 2004, 193:2867-2884.
    
    [82]. Zhang HW, Zhou L, Schrefler BA. Material instabilities of anisotropic saturated multiphase porous media. European Journal of Mechanics-A/Solids, 2005,24(5):713-727.
    [83]. Zhang HW, Qin JM, Schrefler BA, Sanavia L. Some aspects on basic theories of strain localization analysis of multiphase porous media with regularized constitutive model. Mechanics of Advanced Materials and Structures, 2007,14:107-130.
    [84].赵纪生,陶夏新,师黎静,欧进萍.饱和多孔介质材料的应变局部化萌生条件.岩土力学,2004,25(5):749-754.
    [85].李锡夔,刘泽佳,严颖.饱和多孔介质的混合有限元法和有限应变下的应变局部化分析.力学学报,2003,35(6):668-676.
    [86].陈刚,潘一山.单轴压缩下岩石应变局部化的应变梯度塑性解.岩土力学,2004,25(5):694-699.
    [87].王学滨.考虑应变梯度和刚度劣化的剪切带局部变形分析.工程力学,2006,23(10):102-106.
    [88].曾亚武,杨建,刘继国.轴对称压缩条件下岩石局部化剪切带数值模拟.岩石力学与工程学报,2006,25(Supp2):3954—3958.
    [89].文洁,黄克智,黄永刚.多孔材料剪切局部化中的尺寸效应.工程力学,2005,22(5),1-6.
    [90].黄茂松,钱建国,吴世明.饱和土体应变局部化的复合体理论.岩土工程学报,2002,24(1):21-25.
    [91]. Haied A, Kondo D, Henry JP. Strain localization in Fontainebleau sandstone. Mechanics of Cohesive-frictional Materials, 2000,5:239-253.
    [92]. Roscoe KH. The influence of strains in soil mechanics. Geotechnique, 1970,20(2):129-170.
    [93]. Arthur JFR, Dunstan T, Al-Ani QAJ, issadi A. Plastic deformation and failure in granular media. Geotechnique, 1977, 27(1):53-74.
    [94]. Vardoulakis I, Goldscheider M. Biaxial apparatus for testing shear bands in soils. Proceedings, 10th ICSMFE, Stockholm. Balkema: Rotterdam, 1981,4/61:819-824.
    [95]. Vardoulakis I, Graf B. Calibration of constitutive models for granular materials using data from biaxial experiments. Geotechnique, 1985,35(3):299-317.
    [96]. Vardoulakis I. Theoretical and experimental bounds for shear-band bifurcation strain in biaxial tests on dry sand. Research Mechanica, 1988,23:239-259.
    [97]. Desrues J, Viggiani G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. International Journal for Numerical and Analytical Methods in Geomechanics, 2004,28:279-321.
    [98]. Louis L, Wong TF, Baud P. Imaging strain localization by X-ray radiography and digital image correlation: Deformation bands in Rothbach sandstone. Journal of Structural Geology, 2007,29:129-140.
    [99]. Niandou H, Shao JF, Henry JP, Fourmaintraux D. Laboratory investigation of the mechanical behaviour of Tournemire shale. Interntional Journal of Rock Mechanics Mining Science and Geomechanics Abstract, 1997,34(1):3-16.
    [100]. Hamade A, Morel E, Henry JP. Etude d' un modele de comportement simplifie. Rapport ANDRA 623 R.P.L.M.L.,University of lille, 1990.
    [101]. Homand F, Morel E, Henry JP, Cuxac P, Hammade A. Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods. International Journal of Rock Mechanics Mining Science and Geomchanics, 1993,30:527.
    [102]. Duvaeu D, Shao JF, Henry JP. Assessment of some fairlure criteria for strongly anisotropic geomaterials. Mechanics of Cohesive-frictional Materials, 1998,3:1-26.
    [103]. Hill R. The Mathematical Theory of Plasticity. Oxford: Oxford University Press, 1950.
    [104]. Pariseau WG. Plasticity theory for anisotropic rocks and soils. Proceeding of the 10th symposium on Rock Mechanics, AIME, 1972,1:267-295.
    [105]. Godenblat Ⅱ, Kopnov VA. Strength of glass-reinforced plastics in complex stress state. Polymer Mechanics, 1966,1:54.
    [106]. Boehler JP, Sawczuk A. On yielding of orientated solids. Acta Mechanica, 1977,27:185-206.
    [107]. Cazacu O, Cristescu ND, Shao JF, Henry JP. A new anisotropic failure criterion for transversely isotropic solids. Mechanics of Cohesive-Frictional Materials, 1998,3:89-103.
    [108]. Pietruszczak S, Mroz Z. On failure criteria for anisotropic cohesive-frictional materials. International. Jouanal of. Numerical and Analytical Methods in Geomechanics, 2001,25:509-524.
    [109]. Dafalias YF. Mechanics Research Communications, 1986,13:341-347.
    [110]. Dafalias YF. An anisotropic critical state clay plasticity model. In: Desai, C.S. et al. (Eds.), Proceedings of the Constitutive Laws for Engineering Materials: Theory and Applications, vol. Ⅰ. Elsevier, 1987.
    [111]. Dafalias YF, Manzari MT. Papadimitriou AG. SANICLAY: simple anisotropic clay plasticity model. International Journal of. Numerical and Analytical Methods in Geomechanics, 2006,30:1231-1257.
    [112]. Rudnicki JW. The effect of stress-induced anisotropy on a model of brittle rock failure as localization of deformation. In: Wang, F.-D., Clark, G.B. (Eds.), Energy Resources and Excavation Technology. Proceedings of the 18th US Symposium on Rock Mechanics, Keystone, Colorado, 1977,22-24 June, 3B4-1-3B4-8.
    [113].姜洪伟,张保良,袁聚云,赵锡宏.上海软土屈服函数.同济大学学报,1996,24(4):422-426.
    [114].袁聚云,赵锡宏,董建国.上海粘性土各向异性弹塑性模型的研究.同济大学学报,1999,27(4):402—406.
    [115]. Jaeger JC. Friction of rocks and stability of rock slope. Geotechnique, 1971,21(2):97-134.
    [116]. McLamore R, Gray KE. The mechanical behavior of anisotropic sedimentary rocks. Journal of Engineering for Industry, Transactions of the ASME, 1967,89:62-72.
    [117]. Ramamurthy T, RaG GV, Singh GA. A strengh criterion for anistropic rocks. Proceeding of the 5th Austrlia-new Zealand conference on geomechanics, Sydney, 1988,1:253-257.
    [118]. Singh JA, Ramamurthy T, RaG GV. Strength anisotrophies in rocks. Indian Geotechnique Journal, 1988,19:147-166.
    [119]. Jaeger JC. Shear failure of anisotropic rocks. Geological Magazine, 1960,97:65-72.
    [120]. McClintock MA, Walsh JB. Friction on Griffith's cracks in rocks under pressure. Proceeding of the 4th U.S. National Congress of Applied Mechanics, 1962,2:1015-1021.
    [121]. Walsh JB, Brace JF. A fracture criterion for brittle anisotropic rock. Journal of Geophysical Research, 1964,69(16):3449-3456.
    [122]. Hoek E. Fracture of anisotropic rock. Journal of the South African Institute of Mining and Metallurgy, 1964,64:501-518.
    [123]. Hoek E. Brittle failure of rock. Rock Mechanics in Engineering Practice. Wiley, London, 1968.
    [124]. Hoek E. Strengh of jointed rock masses. Geotechnique, 1983,33(3):187-223.
    [125]. Barron K. Brittle failure initiation in and ultimate failure of rocks. Journal of Rock Mechanics Mining Science and Geomechanics Abstract, 1971,8(6):553-563.
    [126]. Dunning JD, Miller ME. Effect of pore fluid Chemistry on stable sliding of Berea sandstone. Pageoph, 1984/1985,122:447-462.
    [127]. Atkinson BK, Meredith PG. Stress corrosion cracking of quartz: A note on the influence of chemical environment. Tectonophysics, 1981,77:T1-T11.
    [128]. Freiman SW. Effects of chemical environments on slow crack growth in Glasses and Ceramics. Journal of Geophysical Research, 1984,89(B6):4072-4076.
    [129]. Liste JR, Kerr RC. Fluid mechanical models of crack propagation and their application to magma transport in Dykes. Journal of Geophysical Research, 1991,96(B6):10049-10077.
    [130].汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的实验研究.岩石力学与工程学报,2002,21(4):526-531.
    [131].冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特,第一部分:实验研究.岩石力学与工程学报,2001,19(4):403-407.
    [132].冯夏庭,丁梧秀.应力-水流-化学耦合下岩石破裂全过程的细观力学试验.岩石力学与工程学报,2005,24(9):1465-1473.
    [133]. Fernandez F, Quigley RM. Viscosity and dielectric constant controls on hydraulic conductivity of clayey soils permeated with water soluble organics. Canadian Geotechnical Journal, 1988,25:582-589.
    [134]. Fernandez F, Quigley NM. Controlling the destructive effect of clay-organic liquid interactions by application of effective stresses. Canadian Geotechnical Journal, 1991,28:388-398.
    [135].赵宇,何椒芬,崔鹏.用固体力学化学理论研究岩土力学化学行为-以成都龙泉紫色土为例.自然灾害学报,2002,11(2):70-74.
    [136].吴恒,张信贵,易念平等.水土作用与土体细观结构研究.岩石力学与工程学报,2000,19(2):199—204.
    [137]. Hueckel T. Chemo-plasticity of clays subjected to stress and flow of a single contaminant. International Journal for Numerical and Analytical Methods in Geomechanics, 1997,21:43-72.
    [138]. Boukpeti N, Charlier R, Hueckel T. Modelling contamination of clays. Ⅶ International Conference on Computational Plasticity, Owen DRJ, Onate E, Suarez B (eds), Barcelona, 2003.
    [139]. Loret B, Hueckel T, Gajo A. Chemo-mechanical coupling in saturated porous media: elastic- plastic behaviour of homoionic expansive clays. International Journal of Solids and Structures, 2002,39:2773-2806.
    [140]. Nova R, Castellanza R, Tamagnini C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. International Journal for Numerical and Analytical Methods in Geomechanics, 2003,27:705-732.
    [141]. Seetharam SC, Thomas HR, Cleall PJ. Coupled thermo/dydro-chemical/mechanical model for unsaturated soils-numerical algorithm, International Journal for Numerical Methods in Engineering, in press.
    [142]. Shi GH. Manifold method of material analysis. Transactions of the 9th Army Conference on Applied Mathematics and Computing. U.S. Army Research Office, Minneapolis, MN, 1991,57-76.
    [143]. Shi GH. Numerical manifold method. Proceedings of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, 1997, 1-35.
    [144]. Tsay RJ, Chiou YJ, Chuang WL. Crack growth prediction by manifold method. Journal of Engineering Mechanics, 1999,125:884-890.
    [145]. Lin JS, Ku CY. Simulation of slope failure using a meshed based partition of unity method. 15th ASCE Engineering Mechanics Conference, New York, 2002.
    [146]. Terada K, Asai M, Yamagishi M. Finite cover method for linear and non-linear analyses of heterogeneous solids. International Journal for Numerical Methods in Engineering, 2003,58:1321-1346.
    [147]. Chen GQ, Ohnishi Y, Ito T. Development of high order manifold method. International Journal of Numerical Methods in Engineering, 1998,43:685-712.
    [148]. Cheng YM, Zhang YH, then WS. Wilson non-conforming element in numerical manifold method. Communications in Numerical Methods in Engineering, 2002,18:877-884.
    [149].王水林,葛修润.流形元方法在模拟裂纹扩展中的应用.岩石力学与工程学报,1997,16(50):405-410.
    [150].朱以文,曾又林,陈明祥.岩石大变形分析的增量流形方法.岩石力学与工程学 报,1999,18(1):1-5.
    [151].张国新,王光伦,裴觉民.基于流形方法的结构体破坏分析.岩石力学与工程学报,2001,20(3):281-287.
    [1]. Hough BK, Basic soils engineering. Ronald Press, New York, 1969.
    [2]. Brooks RN, Corey AT. Properties of Porous Media Affecting Fluid Flow. J. Irrig. Drain Div. Am. Soc. Cir. Eng.,1966,92(IR2):61-68.
    [3]. Safai NM, Pinder GF. Vertical and Horizontal land Deformation in a Desaturing Porous Medium. Advances in Water Resources, 1979,2:19-25.
    [4]. Liakopoulos AC, Transient flow through unsaturated porous media, Ph.D. Thesis, University of California, Berkeley, 1965.
    [5]. Pollock DW. Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium. Water Resource Research, 1986,2:765-775.
    [6]. Bear J, Verruiji A. Modelling groundwater flow and pollution. Reidel, Dordrecht, Netherlands, 1987.
    [7]. Barden L, Sides GR, The diffusion of air through the pore water of soils. Proceedings of the 3~(rd) Asian Regional Conference on Soil Mechanics and Foundation Engineering, Israel, 1967,1:135-138.
    [8]. Terzaghi K. Die berechnung der durchleessigkeitszifter des tones aus dem verlauf der hydrody]namishen spannungeserscheinungen. Sitsber. Akad. Wiss. Vienna, Abt. Ⅱ132,1923.
    [9]. Terzaghi K. Principles of soil mechanics. Eng. Naws Record, 1925,17.
    [10]. Bishop AW, Blight GE. Some aspects of effective stress in saturated and unsaturated soils. Geotechnique, 1963,13:177-197.
    [11].陈正汉,王永胜,谢定义.非饱和土的有效应力探讨.岩土工程学报,1994,16:63-69.
    [12].沈珠江.关于固结理论和有效应力的讨论.岩土工程学报,1995,17(6):118-119.
    [13]. Skempton AW. Effective Stress in Soils, Concrete and Rock , in Pore Pressure and Suction inSoils .London:Butterworths, 1961.
    [14]. Li XK, Cescotto S, Thomas HR. Finite element method for contaminant transport in unsaturated soils. ASCE Journal of Hydrologic Engineering, 1999,4(3):265-274.
    [15]. Millington RJ, Gas diffusion in porous media. Science, 1959,130:100-102.
    [16]. Brusseau ML, Jessup RE, Rao PSC. Modeling the transport of solutes influenced by multiprocess nonequilibrium. Water Resource Research, 1989,25:1971-1988.
    [17]. Radu JP, Biver P, Charlier R, Cescotto S. 2D and 3D finite element modelling of miscible pollutant transport in groundwater, below the unsaturated zone. Proc., Int. Conf. of Hydrodyn., ICHD' 94, China Ocean Press, Beijing, 1994.
    [18]. Fernandez F, Quigley RM. Viscosity and dielectric constant controls on hydraulic conductivity of clayey soils permeated with water soluble organics. Canadian Geotechnical Journal, 1988,25:582-589.
    [19]. Fernandez F, Quigley RM. Controlling the destructive effect of clay-organic liquid interactions by application of effective stresses. Canadian Geotechnical Journal, 1991, 28: 388-398.
    
    [20].Mesri G, Olson RE. Mechanisms controlling permeability of clays, Clays and Clay Minerals, 1971,19:151-158.
    
    [21]. Daniel DE, Anderson DC, Boyton SS. Fixed wall versus fexible wall permeameter, in Hydraulic Barriers in Soils and Rocks, ASTM, 1985, 874:107-126.
    
    [22]. Anderson DC, Brown KW, Thomas JC. Conductivity of compacted clay soils to water and organic liquids. Waste Management Research, 1985, 3:339-349.
    
    [23]. Fernandez F, Quigley RM. Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Canadian Geotechnical Journal, 1985, 22:205-214.
    [1]. Lewis RW, Schrefler BA, The finite element method in the satic and dynamic deformation and consolidation of porous media, John Wiley & Sons, Chinchester, 1998.
    
    [2]. Chen WF, Tsui Y. Limitations to the large strain theory. International Journal of Numerical Methods in Engneering, 1992, 33:101-114.
    
    [3]. Molenkamp F. Limits to the Jaumann stress rate. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10:151-176.
    
    [4]. Schrefler BA. F. E. in environmental engineering: Coupled thermo-dydro-mechanical process in porous media including pollutant transport. Archives of computational Methods in Engineering, 1995, 2:1-54.
    
    [5]. Hassanizadeh M, Gray WG. General conservation equations for multiphase system:1. Averaging technique. Advances in Water Resources, 1979, 2:131-144.
    
    [6]. Hassanizadeh M, Gray WG. General conservation equations for multiphase system:2. Mass, momenta, energy and entropy equations. Advances in Water Resources, 1979, 2:191-201.
    
    [7]. Hassanizadeh M, Gray WG. General conservation equations for multiphase system:3. Constitutive theory for porous media flow. Advances in Water Resources, 1980, 3:25-40.
    
    [8]. Gray WG, Hassanizadeh M. Paradoxes and realities in unsaturated flow theory. Water Resource Research, 1991, 27(8):1847-1854.
    
    [9]. Gray WG, Hassanizadeh M. Unsaturated flow theory including interfacial phenomena. Water Resource Research, 1991, 27(8) :1855-1863.
    
    [10]. Hassanizadeh SM. Derivation of basic equations of mass transport in porous media, Part I. Macroscopic balance laws. Advances in Water Resources, 1986, 9:196-206.
    
    [11]. Hassanizadeh SM. Derivation of basic equations of mass transport in porous media, Part II. Generalized Darcy' s law and Fick' s law. Advances in Water Resources, 1986, 9:207-222.
    
    [12]. Eringen AC, Suhubi ES. Nonlinear theory of simple microelastic solids. International Journal of Engneering Science, 1964, 2:189-203.
    
    [13]. Williams WO. Constitutive equations for flow of an incompressible viscous fluid through a porous medium. Quarterly of Applied Mathematics,1978, Oct. :255-267.
    
    [14]. Noll W. Theory of interpenetrating continuous bodies. In Proceedings of Euromech colloquium 290 on Mechanics of Swelling, Rhodes, Greece, August, 1993.
    
    [15]. Sampaio R, Williams WO. Themodynamics of diffusing mixtures. J. de Mechanique, 1979, 18:19-45.
    
    [16]. de Borst R, Ehlers W, Kowalski S, Plischka J. Porous media: a survey of different approaches. Forschungsbericht aus dem Fachbereoch Bauwesen, 54, University Gesamthochschule Essen. 1991.
    [17]. Moran MJ, Shapiro HN. Fundamentals of Engineering thermodynamics. 2'"' edn., Wiley, New York, 1993.
    
    [18]. Hyland, Wexler. ASHRAR Handbook: Fundamentals volume. ASHRAE, Alanta, 1993.
    
    [19]. Bomberg M, Shirtliffe CJ. Influence of moisture gradients on heat transfer through porous building materials in Thermal Transmission Measurements of Insulation (ASTM STP 660), R. P. Tye(ed.), ASTM, Materials Park, 1978, OH:211-233.
    
    [20]. Van der Kooi F. Moisture transport in cellular concrete roof. PhD thesis, Delft University, 1991.
    
    [21]. Fernandez RT. Natural convection from cylinders buried in porous media. PhD thesis, California University, 1972.
    
    [22]. Corey AT. Measurement of water and air permeability in unsaturated soil. Soil Science Society of America Proceeding, 1957, 21:7-10.
    
    [23]. Brooks RN, Corey AT. Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. Amer. Soc. Civ. Engng., 1966,92:61-68.
    
    [24]. Hassanizadeh M, Gray WG. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in Water Resources, 1990, 13:169-186.
    
    [25]. Bishop AW, Blight GE. Some aspects of effective stress in saturated and partially saturated soils. Geotechnique, 1963, 13:177-197.
    
    [26]. Schrefler BA, Simoni L, Li XK, Zienkiewicz OC. Mechanics of partially saturated porous media. In Numerical Methods and Constitutive Modelling in Geomechanics, C. S. Deiai and G. Gioda (eds), Springer-Verlag, Wien, 1990:169-209.
    
    [27]. Boit MA, Willis PG. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957,24:594-601.
    
    [28]. Whitaker S. Simultaneous heat mass and momentum transfer in porous media: a theory of drying. Advances in Heat Transfer, 13, Academic press, New York,1977.
    
    [29]. Nozad I, Carbonell RG, Whitaker S. Heat conduction in multiphase system 1: theory and experiment for two phase system. Chemical Engineering Science, 1985,40:843-855.
    
    [30]. Schrefler BA, Zhan X, Simoni L. A coupled model for water flow, air flow and hear flow in deformable porous media. International Journal of Heat and Fluid Flow,1995,5:531-547.
    
    [31]. Schrefler BA, D' Alpaos L, Zhan X, Simoni L. Pollutant transport in deforming porous media. European Journal of Mechanics/A, 1994,13:175-194.
    
    [32]. Baggio P, Bonacina C, Strada M. Trasporto di calore e di massa nel calcestruzzo cellullare. La Termotecnica, 1993, 45:53-60.
    
    [33]. Gawin D, Baggio P, Schrefler BA. Coupled heat, water and gas flow in deformable porous media. International Journal for Numerical Methods in Fluids, 1995, 20, 969-987.
    [34]. Bear J, Bachemat Y. Introduction to modeling of transport phenomena in porous media. Kluwer, Dordrecht Netherlands, 1991.
    
    [35]. Biot MA. General theory three-dimensional consolidation. Journal of Applied Physics, 1941, 12:15-164.
    
    [36]. Biot MA. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 1955, 26:182-185.
    
    [37]. Boit MA. Theory of propagation of elastic waves in a fluid saturated porouse solid. I. Low-frequency range, II. Higher frequency range. Journal of the Acoustical Society of America, 1956, 28:168-178, 2:179-191.
    
    [38]. Biot MA Theory of deformation of a porous viscoelastic anisotropic soil. Journal of Applied Mechanics, 1956,27:459-467.
    
    [39]. Schrefler BA, Zhan X. A fully coupled model for water flow and air flow in deformable porous media. Water Resources Research, 1993, 29:155-167.
    
    [40]. Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I-Fully saturated problems. Proc. R. Soc. Lond., 1990,A429:285-309.
    
    [41]. Boit MA, Willis PG. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 1957,24:594-601.
    
    [42]. Bishop AW. The principle of effective stress. Teknisk Ukeblad, 1959,39:859-863.
    
    [43]. Skempton AW. Effective stress in soil, concrete and rocks. In pore pressure and suction in soils, Skemton AW., ed. Butterworth, Lonton, 4-16,1961.
    
    [44]. Morland LW. A simple constitutive theory for a fluid saturated porous solid. Journal of Geophysical Research, 1972, 77:890-900..
    
    [45]. Gudehus G. A compressive concept for non-saturated granular bodies. in proceeding of the 1st International confenerce on unsaturated soils, Paris, Balkema, Rotterdam. 1995.
    
    [46]. Li XK, Zienkiewicz OC, Multiphase flow in deforming porous media and finite element solutions. Computers and Stractures, 1992,45,211-227.
    
    [47]. Lade PV, de Bore R. The concept of effective stress stress for soil, concrete and rock. Geotechnique, 1977,41:61-78.
    
    [48]. Zienkiewicz OC, Shiomi T. Dynamic behaviour of saturated porous media: the general Biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 8:71-96.
    
    [49]. Bird RB, Stewart EW, Lightfoot EN. Transport phenomena, Wiley, Chichester. 1966.
    [1]. Hamamard J. Lecons sur la Propagation des Ondes et les Equations de Hydrodynamique, Librairie Scientifique A. Hermann, Paris, France, 1903.
    
    [2]. Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids, 1975,23:371-394.
    
    [3]. Mandel J. Conditions de stabilite et postulat de Drucker. In Proc. IUTAM Symposium on Rheology and Soil Mechanis, Springer-Verlag, Berlin, 1964:58-68.
    
    [4]. Rice JR. On the stability of dilatant hardening for saturated rock mass. Journal of Geophysical Research, 1975,80:1531-1536.
    
    [5]. Rice JR. The localization of plastic deformation. In: Koiter, W. (Ed.), Theoretical and Applied Mechanics. 14th IUTAM Congress. North-Holland, Amsterdam, 1976:207-220.
    
    [6]. Vardoulakis I. Equilibrium theory of shear bands in plastic bodies. Mechanics Research Communications, 1976, 3(3):209-214.
    
    [7]. Rice JR, Rudnicki JW. A note on some features of theory of localization of deformation. International Journal of Solids and Structures, 1980,16:597-605.
    
    [8]. Hill R. Acceleration waves in solids. Journal of the Mechanics and Physics of Solids,1962,10:1-16.
    
    [9]. Loret B, Harireche 0. Acceleration wave, flutter instabilities and stationary discontinuities in inelastic porous media. Journal of the Mechanics and Physics of Solids, 1991,39:569-606.
    
    [10]. Loret B, Rizzi E. On the effects of inertial coupling on the wave-speeds of elasto-plastic fluid-saturated porous media. Material Instabilities in Solids, de Borst, R, van der Giessen, E(eds). Wiley, New York, 1998:41-53.
    
    [11]. Benallal A, Comi C. Material instabilities in inelastic staturated porous media under dynamic loadings. International Journal of Solids and Structures, 2002, 39:3693-3716.
    
    [12]. Li XK, Zhang JB, Zhang HW. Instability of wave propagation in saturated poroelastoplastic media. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26:563-578.
    
    [13]. Rudnicki JW. The effect of stress-induced anisotropy on a model of brittle rock failure as localization of deformation. In: Wang, F.-D., Clark, G. B. (Eds.), Energy Resources and Excavation Technology. Proceedings of the 18th US Symposium on Rock Mechanics, Keystone, Colorado, 22-24 June, 3B4-1-3B4-8,1977.
    
    [14]. Miles JP, Nuwayhid UA. Bifurcation in compressible elastic/plastic cylinders under uniaxial tension. Applied Scientific Research, 1985,42:33-54.
    [15]. Hutchinson JW, Miles JP. Bifurcation analysis of the onset of necking in an. elastic/plastic cylinder under uniaxial tension. Journal of the Mechanics and Physics of Solids, 1974,22:67-71.
    [16]. Chau KT. Non-normality and bifurcation in a compressible pressure-sensitive circular cylinder under axisymmetric tension and compression. International Journal of Solids and Structures, 1992, 29(7):801-824.
    [17]. Chau KT. Antisymmetric bifurcations in a compressible pressure-sensitive circular cylinder under axisymmetric tension and compression. Journal of Applied Mechanics, 1993, 60:282-289.
    [18]. Rudnicki JW. Conditions for compaction and shear bands in a transversely isotropic material. International Journal of Solids and Structures, 2002, 39:3741-3756.
    [19]. Issen KA, Rudnicki JW. Conditions for compaction bands in porous rocks. Journal of Geophysical Research, 2000, 105:21529-21536.
    [20]. Olssen WA. Theoretical and experimental investigation of compaction bands. Journal of Geophysical Research, 1999,104:7219-7228.
    [21]. Hoenig A. Elastic moduli of a non-randomly cracked body. International Journal of solids and structures, 1979, 15:137-154.
    [22]. Vardoulakis I, Graf B. Calibration of constitutive models for granular materials using data from biaxial experiments. Geotechnique, 1985,35:299-317.
    [23]. Desrues J, Chambon R. Shear band analysis and shear moduli calibration. Internation Journal of solids and structure, 2002, 39:3757-3776.
    [24]. Thomas TY. Plastic flows and frature of solids. Academic Press, New York. 1961.
    [25]. Prager W. Introduction to the mechanics of continua. Ginn and Company, Boston, 1961.
    [26]. Zhang HW, Schrefler BA. Uniqueness and localisation analysis of elastic-plastic saturated porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25:29-48.
    [1]. Zienkiewicz OC, Chan AHC, Pastor M, Paul DK, Shiomi T. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I - Fully saturated problems, Proc. Royal Soc. London, 1990, A429:285-309.
    
    [2]. Ehlers W, Volk W. On shear band localisation phenomena of fluid-saturated granular elasto-plastic porous solid materials accounting for fluid viscosity and micropolar solid rotation. Mechanics of Cohesive-Frictional Materials Structures, 1997, 2(4):301-320.
    
    [3]. Biot MA. General theory of three-dimensional consolidation Journal of Applied Physics, 1941, 12:155-164.
    
    [4]. Biot MA. Theory of propagation of elastic waves in fluid saturated porous media. Journal of Acoustical of Society of America, 1956, 28:168-191.
    
    [5]. Babuska I. Error bounds for finite element methods. Numerische Mathematik, 1971, 16:322-333.
    
    [6]. Babuska I. The finite element method with Lagrange multipliers. Numerische Mathematik, 1973, 20:179-192.
    
    [7]. Brezzi F. On the existence, uniqueness and approximation of saddle point problem from Lagrange multipliers. RAIRD, 1974, 8:129-151.
    
    [8]. Taylor RL, Simo JC, Zienkiewicz OC, Chan AHC. The patch test—a condition for assessing FEM convergence. International Journal for Numerical Methods in Engineering, 1986, 22:39-62.
    
    [9]. Zienkiewicz OC, Qu S, Taylor RL, Nakazawa S. The patch test for mixed formulation. International Journal for Numerical Methods in Engineering, 1986, 23:1873-1883.
    
    [10]. Pastor M, Li T, Liu X, Zienkiewicz OC. Stabilized low-order finite elements for failure and localization problems in undrained soils and foundations. Computer Methods in Applied Mechanics and Engineering, 1999, 174:219-234.
    
    [11]. Pastor M, Li T, Liu X, Zienkiewicz OC, Quecedo M. A frictional step algorithm allowing equal order of interpolation for coupling analysis of saturated soil problems. Mechanics of Cohesive-Frictional Materials,2000,5:511-534.
    
    [12]. Li XK, Han XH, Pastor M. An iterative frictional step algorithm for finite element analysis in saturated soil dynamics. Computer Methods in Applied Mechanics and Engineering, 2003, 192:3845-3859.
    
    [13]. Huang MS, Wu SM, Zienkiewicz OC. Incompressible or nearly incompressible soil dynamic behaviour—a new staggered algorithm to circumvent restrictions of mixed formulation. Soil Dynamics and Earthquake Engineering, 2001, 21:169-179.
    
    [14]. Simo JC, Rifai MS. A class of assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 1990, 29:1595-1638.
    [15]. Simo JC, Armero F. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 1992,33:1413-1449.
    [16]. Belytschko T, Ong J, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineeing, 1984,43:251-276.
    [17]. Liu WK, Belyschko T, Chen JS. Nonlinear versions of flexurally superconvergent elements. Computer methods in Applied Mechanics and Engineeing, 1988,71:241-258.
    [18]. Papastavrou A, Steinmann P, Stein E. Enhanced finite element formulation for geometrically linear fluid-saturated porous media. Mechanics of Cohesive-Frictional materials, 1997,2:185-203.
    [19]. Li XK, Cescotto S, Duxbury PG. A mixed strain element method for pressure dependent elastoplasticity at moderate finite strain. International Journal for Numerical Methods in Engineering, 1998,43:111-129.
    [20]. Shi GH. Manifold method of material analysis. Transactions of the 9th Army Conference on Applied Mathematics and Computing. U.S. Army Research Office, Minneapolis, MN, 1991,57-76.
    [21]. Shi GH. Numerical manifold method. Proceedings of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, 1997,1-35.
    [22].梁国平,何江衡.广义有限元方法——类新的逼近空间.力学进展,1995,25:562—565.
    [23]. Huang MS, Yue ZQ, Tham LG, Zienkiewicz OC. On the stable finite element procedures for dynamic problems of saturated porous media. International Journal for Numerical Methods in Engineering, 2004,61:1421-1450.
    [24]. Chen WF. Limit Analysis and Soil Plasticity. Elsevier, Amsterdam, 1975.
    [1]. Fernandez F, Quigley RM. Viscosity and dielectric constant controls on hydraulic conductivity of clayey soils permeated with water soluble organics. Canadian Geotechnical Journal, 1988, 25:582-589.
    
    [2]. Fernandez F, Quigley RM. Controlling the destructive effect of clay-organic liquid interactions by application of effective stresses. Canadian Geotechnical Journal, 1991,28:388-398.
    
    [3]. Hueckel T. Chemo-plasticity of clays subjected to stress and flow of a single contaminant. International Journal for Numerical and Analytical Methods in Geomechanics, 1997,21:43-72.
    
    [4]. Boukpeti N, Charlier R, Hueckel T. Modelling contamination of clays. VII International Conference on Computational Plasticity, Owen DRJ, Onate E, Suarez B (eds), Barcelona, 2003.
    
    [5]. Loret B, Hueckel T, Gajo A. Chemo-mechanical coupling in saturated porous media: elastic - plastic behaviour of homoionic expansive clays. International Journal of Solids and Structures, 2002, 39:2773 - 2806.
    
    [6]. Nova R, Castellanza R, Tamagnini C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27:705 - 732.
    
    [7]. Liu Z, Boukpeti N, Li X, Collin F, Radu J-P, Hueckel T, Charlier R. Modelling chemo-dydro-mechanical behaviour of unsaturated clays: a feasibility study. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29:919-940.
    
    [8]. Alonao EE, Gens A, Josa A. A constitutive model for partially saturated soils. Geotechnique, 1990,40:405-430.
    
    [9]. Simo JC, Hughes TJR. Computational Inelasticity. Springle, New York,1998.
    
    [10].Borja R. Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Computer Methods in Applied Mechanics and Engineering, 2004,193:5301-5338.
    
    [11]. Tamagnini C, Castellanza R, Nova R. A Generalized Backward Euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials. International Journal for Numerical and Analytical Methods in Geomechanics, 2002,26:963-1004.
    
    [12]. Wang X, Wang L B, Xu L M. Formulation of the return mapping algorithm for elastoplastic soil models. Computers and Geotechnics, 2004, 31:315-338.
    
    [13]. Zhang HW, Heeres OM, de Borst R, Schrefler BA. Implicit integration of a generalized plasticity constitutive model for partially saturated soil. Engineering Computations, 2001, 11:314-336.
    [14]. Zhang HW, Sanavia L, Schrefler BA. Numerical analysis of dynamic localization in initial water saturated dense sand with a modified generalised plasticity model. Computers and Structures, 2001, 79:441-459.
    
    [15].Bolzon G, Schrefler BA, Zienkiewicz OC. Elastoplastic soil constitutive laws generalised to partially saturated states. Geotechnique, 1996, 46:279-289.
    
    [16]. Gallipoli D, Gens A, Sharma R, Vaunat J. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behavior. Geotechnique, 2003, 53:123-135.
    
    [17].Hueckel T. On effective stress concepts and deformation in clays subjected to environmental loads. Canadian Geotechnical Journal, 1992, 29:1120-1125.
    
    [18]. Brooks RN, Corey AT. Properties of porous media affecting fluid flow. J. Irrig. Drain Div. Am. Soc. Civ. Engrg. 1992,92:61-68.
    
    [19]. Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and structures. John Wiley & Sons, New York,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700