用户名: 密码: 验证码:
石家庄循环经济化工示范基地水循环优化研究与对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石家庄循环经济化工示范基地(以下简称“石家庄化工基地”)是河北省重点产业示范区,以800万t炼油项目为龙头形成了石油化工、煤化工与氯碱化工等“三化合一”的产品链,具有较强的市场竞争力。由于石家庄化工基地所在地区严重缺水,企业发展面临的水资源供求矛盾问题较为突出。目前石家庄化工基地整体水循环利用水平不高,同时还在水资源管理方面缺乏统一的规划和技术支持。因此,有必要针对石家庄化工基地的用排水现状对水资源进行优化配置,提出政策和技术保障措施,进一步提升市场竞争能力,促进可持续发展。
     本研究通过对石家庄化工基地水资源利用现状的调查,分析了制约石家庄化工基地水资源循环利用的主要问题;从水循环优化配置的角度,提出了石家庄化工基地水资源利用“三循环一体化”的优化对策;通过技术经济可行性分析,筛选出了提高水循环利用率的最佳可用技术,提出了石家庄化工基地水循环整体优化方案;并对整体优化方案实施后的预期效果,以及经济效益、环境效益和社会效益等进行了评价。
     取得的研究成果如下:
     (1)通过对石家庄化工基地水资源现状进行分析,企业总体需水量将达10.8万m_3/d,排水量达到2.6万m_3/d;新鲜水缺口2.0万m_3/d,尚需增加1.2万m_3/d污水处理负荷。缺水成为制约基地经济发展的主要因素,必须寻找替代的水源或提高水循环利用率。
     (2)针对石家庄化工基地水资源状况,从企业层面、基地层面和区域层面提出了“三循环一体化”的水循环优化对策,即企业内部水循环使用、基地排水的再生回用、区域内水资源开发方案和废水资源化利用,以及水资源的一体化配置和管理。
     (3)针对企业内部水资源,提出过程用水减量,实施循环水节水、水夹点等技术手段可节水2.2万m_3/d;针对石家庄化工基地内企业间用水状况,提出污水再生回用于循环冷却水的工艺路线,实施污水再生、循环水水质稳定等技术,可回用实现水再生1.1万m_3/d;针对区域内新的水资源状况,提出城市污水再生回用到工业循环冷却水或锅炉水的技术路线,可节约新鲜水5.0万m_3/d。
     (4)石家庄化工基地水循环优化方案实施后,新鲜水取水量从10.8万m_3/d下降到2.5万m_3/d,削减率达到76.9%;污水可全部回用,实现零排放。同时,石家庄化工基地水资源产出率可从实施前1320元/m_3提高到1848元/m_3,单位生产总值取水量可从实施前的7.56m_3 /万元降至5.4m_3 /万元,重点产品中的吨油水耗可从0.57m_3降到0.39m_3,吨油排污从0.11m_3降到0.05m_3。项目的实施可取得较好的经济效益、社会效益和环境效益。
Shijiazhuang Circular Economy Chemical Demonstration Base (“Shijiazhuang Chemical Base”for short)is a Key Industries Demonstration Zone of Hebei province. 8,000,000 ton refinery project as a leader, forming the“combination of the three chemical”product chain of petrochemical, coal chemical and chlor-alkali chemical and so on, is possessed of very strong market competitiveness. However, the location of Shijiazhuang Chemical Base is of severe water shortage, so the Base’s development is facing the contradiction problem of water resources supply and demand that is more prominent. At present, the level of water recycling across the region is not high, simultaneously there is a lack of unified planning and technical support in water resources regulation. As a result, for the water and drainage situation of Shijiazhuang Chemical Base, it is necessary to optimize the allocation of water resources, to propose policies and technical safeguards, to enhance the Base market competitiveness, and to promote the Base sustainable development.
     This study analyzes the major constraint problem about the utilization of water recycling, which was focusing on the investigation of current water resource situation in Shijiazhuang chemical base. From the perspective of water recycle optimal allocation, the optimization strategy named“three-circulation integration”is proposed in terms of efficient use of water resources. Through the technical and economic feasibility analysis, the best available technology is selected to improve the utilization rate of water recycle, Also the overall optimization plan of Shijiazhuang chemical base water recycle is proposed. At the same time, after the implementation of the overall optimization program, this paper evaluated the expected result, economic benefit, environmental benefit and social benefits and so on.
     The research results were as follows:
     (1) By analyzing the current water resources situation of Shijiazhuang Chemical Base, the overall water requirement of enterprises would reach to 108,000 m_3/d and the water discharge of enterprises would reach to 26,000 m_3/d. The shortage of fresh water would be 20,000 m_3/d, so the requirement of sewage treatment load still would be up to 12,000 m_3/d. The main factor of constraint the Base’s economical development is water shortage, so it is extremely urgent to find alternative water resources or to increase the utilization rate of water recycle.
     (2) As for the water resources of Shijiazhuang Chemical Base, this paper proposed the water circulation optimization strategy of“three-circulation integration”from the level of enterprises, base and regional,that is, water recycling of enterprises internal, water reuse of Base water discharge, the water resources development plan in the region and made use of wastewater resources, as well as integrated configuration and management of water resources.
     (3) As for the water resources of enterprises themselves, it proposed to reduce process water, implemented recycling water conservation and water networks, which would achieve 22,000m_3/d in water conservation. For water situation of enterprises, it proposed technical route that wastewater reuse in cooling water, implemented wastewater reclamation and water quality stability of recycled water and so on,These technologies would achieve 11,000m_3/d in water reclamation and reusing. For the new water situation in the base,it proposed technical route that municipal sewage reuse in industrial cooling water or boiler water,which can conserve consumption of fresh water up to 50,000 m_3/d.
     (4)After the implementation of recycling water optimization program in Shijiazhuang Chemical Base, it hoped that fresh water consumption would be reduced from 108,000 m_3/d to 25,000 m_3/d, reduction rate up to 76.9%, and wastewater would be reused totally and realize zero discharge. Meanwhile, comparing with prior to implementation, the water resource production rate of Shijiazhuang Chemical Base would raise from 1,320 Yuan/m_3 to 1,848 Yuan/m_3, the quantity of water demand per GDP would reduce from 7.56 m_3 /ten thousands Yuan to 5.4 m_3 /ten thousands Yuan, water consumption of per ton fuel would reduce from 0.57 m_3 to 0.39 m_3 and sewage discharge of per ton fuel would reduce from 0.11 m_3 to 0.05 m_3 in the key products. The implementation of project would bring much more economic, social and environmental benefits.
引文
[1] Y. P. WANG, R. SMITH. Wastewater Minimization. Chemical Engineering Science. 1994, 49(7): 981-1006
    [2]杨凤林,李波,金燮.水循环经济及其在化工与石化工业中的应用.化工进展,2010, 29(7):1175-1180
    [3]邓南圣,吴峰.工业生态学—理论与应用.北京:化学工业出版社,2002:18-27
    [4]张耀伦.落实科学发展观努力建设循环经济示范基地.2008年中国化工园区发展论坛,2008: 15 -21
    [5]孙会芳.南水北调中线邯郸-石家庄段日前开工.http://sjz.yzdsb.com.cn/system/2010/05/18/ 010493587.shtml, 2010-5-18
    [6]冯霄,刘永忠,沈人杰,等.水系统集成优化—节水减排的系统综合方法.北京:化学工业出版社.2008:10-11
    [7] V. R. DHOLE, N. RAMCHANDI, R. A. TAINSH. Make Your Process Water Pay for Itself. Chemical Engineering. 1996, 103(1):100-103
    [8] G. M. JAMES,刘裔安.工业用水节约与废水减量.北京:中国石油化工出版社,2001:22-25
    [9] M. GUNARATNAM, A. ALVA-ARGAEZ, A. KOKOSSIS, et al. Automated Design of Total Water Systems. Industrial & Engineering Chemistry Research, 2005, 44(3):588-599
    [10] H. MA, X. FENG, K. CAO. A Rule-Based Design Methodology for Water Networks with Internal Water Mains. Chemical Engineering Research & Design, 2007, 85(4):431-444
    [11] P. RAVI, V. S. UDAY. Targeting and Design of Water Networks for Fixed Flowrate and Fixed Contaminant Load Operations. Chemical Engineering Science, 2005, 60(1):255-268
    [12]冯霄,王斌,刘永忠.基于中间水道杂质浓度确定的方法及水网络.中国专利,02114597, 2002-05-29
    [13]冯霄,沈人杰,王斌.具有两级水道的循环冷却水网络结构及设计方法.中国专利,200410026101, 2004-05-10
    [14]冯霄,王斌.节水减污过程水系统集成技术.中国能源,2002, (1): 22-24
    [15]钱效南,朱羽中.水夹点技术在化肥生产企业的应用.给水排水,2006, 32(7): 49-52
    [16]汤小乐,戴友芝.水夹点技术在节水减排中的应用.炼油技术与工程,2004, 34(10):56-58
    [17]曹殿良.水夹点技术在石油化工企业的应用.金山油化纤,2005, 24(1):22-26
    [18]杨友麒.大型炼油化工企业水网络系统的优化.第三届工业节水减排和污水回用技术国际研讨会论文集.上海: 2008:70-82
    [19]梁伟,苗磊,赵国铮,等.水夹点设计与优化在工业节水中的应用.节能技术,2006, 25(05): 390-393
    [20]陆柱,陈中兴,蔡兰坤,等.水处理技术.上海:华东理工大学出版社,2002:161-172
    [21]姜琳,郦和生,王岽.高硬度浓缩倍数循环水处理技术研究及应用.石化技术,2008, 15(1):8-9
    [22]管炳伟,李本高.高pH法处理循环冷却水.工业水处理,2008, 28(6):20-22
    [23] S. M. KESSLER. Analyses the Performance of a Next Generation Phosphata Inhibitor for Industrial Water Application. Hydrocarbon Engineering, 2003(6):66-68
    [24]陈爱民,李光海,杨清华,等.循环冷却水零排污运行方案的研究.工业水处理,2002, 24(4):16-18
    [25] D. CISZEWSKI.零排放联合循环电厂水/废水的综合处理方案.水处理信息导刊,2005(4):12 -16
    [26]齐冬子.敞开式循环冷却水系统的化学处理.北京:化学工业出版社,2006:38
    [27]鲍其鼐.冷却水零排放的新进展.中国水处理技术研讨会论文集.2009:10-15
    [28] D. DUKE, L. YANG. ZLD:New Silica Based Inhibitor Chemistry Permits Cost Effective Water Conservation for HVAC and Industrial Cooling Towers. IWC2007, Report 07-11
    [29] D. DUKE, L.YANG. Localized and General Corrosion of Copper in Azoles and Silica Inhibited Zero Blowdown Cooling Water in an Automotive Plant.Corrosion 2009, NACE Paper No.09444
    [30]郑书忠.我国工业循环冷却水处理发展现状与展望.中国水处理技术研讨会论文集.2009: 1-8
    [31] O. OLIVARES-XOMETL, N. V. LIKHANOVA, M. A. DOMINGUEZ-AGUILAR. Synthesis and Corrosion Inhibition of A-Amino Acids Alkylamides for Mild Steel in Acidic Environment. Meterials Chemistry and Physics, 2008, 110(2-3):344-351
    [32] M. SCENDO. Inhibition of Copper Corrosion in Sodium Nitrate Solutions with Nontoxic Inhibitors. Corrosion Science, 2008, 50(6):1584-1592
    [33] G. SCHMITT, A. O. SCALE. Evaluation of Environmentally Friendly Corrosion Inhibitor for Sour Service. Materials Enformance, 2000, 39(8):62-65
    [34]王作有,张岩,何继兴.贝迪AEC循环水处理技术优化运行.乙烯工业,2002, 14(4):47-50
    [35]杨双春,杨兰英.2008年美国总统绿色化学品挑战奖项目介绍.精细化工,2008, 25(8):729-732
    [36]陈洪斌,庞小东,李建忠.悬浮填料生物接触氧化法处理炼油废水.中国给水排水,2002,18(9):42-44
    [37] X. G. MENG, S. BANG, G. P. KORFIATIS. Removal of Selenocyanate from Water Using Elemental Iron. Water Research, 2002, 36(15):3867-3873
    [38] K. JITTMER, U. GALH, H. SCHMIEDER. Electrochemical Approaches to Environmental Problems in the Processindustry. Electrochimica Acta, 2000, 45(15-16):2575-2594
    [39]安兴才,赵柱,杨惠琳,等.膜集成技术深度处理石化行业排放水回用于生产的研究.膜科学与技术,2005, 825(4):66-70
    [40]徐红,刘德佳,姜梅,等.电化学氧化-超滤组合工艺在炼油厂水处理中的应用.石油炼制与化工,2006, 37(7):62-66
    [41] S. OGNIER, C. WISNIEWSKI, A. GRASMICK. Influence of Macromolecule Adsorption during Filtration of a Membrane Bioreactor Mixed Liquor Suspension. Journal of Membrane Science,2002, 209(1):27-37
    [42] W. YANG, N. CICEK, J. ILG. State-of-the-Art of Membrane Bioreactors Worldwide Research and Commercial Applications in North America. Journal of Membrane Science, 2006, 270 (1-2) :201-211
    [43]陈洪斌,李建忠,周光霞,等.悬浮载体生物氧化工艺深度处理炼油厂废水.中国给水排水,2002, 18(9):42-44
    [44]李本高,汪燮卿.污水回用技术进展与发展趋势.工业用水与废水,2006, 37(4):2
    [45]吴潮汉,徐军,潘宏南,等.炼油厂外排污水直接回用于循环水工业运行.工业水处理, 2002, 22(8):60-62
    [46]赵秀云,王永杰,赵宏庆,等.工业污水回用于循环冷却水.工业用水与废水,2000, 22(1):32-34
    [47]于文云,王红,李本高,等.污水回用技术在乙烯循环水系统的工业应用.工业水处理,2004, 24(2):67-69
    [48]李本高,汪燮卿.污水回用技术进展与发展趋势.工业用水与废水,2006, 37(4):1-6
    [49]鲍其鼐.节约工业用水的新动向.上海化工,2006, 31(2),2-3
    [50]曹湘洪.中国工程院化工冶金与材料工程学部第五届学术会议论文集.北京:中国石化出版社,2005:384-387
    [51]杨政宏,方振.循环水泄漏背景下的组合处理工艺及其处理设备.中国专利,02112671, 2002-02-10
    [52]徐军,吴潮汉.达标外排水回用循环水技术三年工业化运行的体会.工业水处理技术,北京:中国石化出版社,2004:37-42
    [53]王晓琳,丁宁.反渗透和纳滤技术与应用.北京:化学工业出版社,2005:298-359
    [54]卢彦越,胡仰栋,徐冬梅,等.反渗透海水淡化系统的优化设计.水处理技术,2005, 31(3):9-14
    [55] P. XU, J. E. DREWES, T.U.KIM. Effect of Membrane Fouling on Transport of Organic Contaminants in NF/RO Membrane Applications. Journal of Membrane Science, 2006, 279(1-2):165-175
    [56] W. S. ANG, S. LEE, M. ELIMELECH. Chemical and Physical Aspects of Cleaning of Organic-Fouled Reverse Osmosis Membranes. Journal of Membrane Science, 2006, 272(1-2):198-210
    [57] S. LEE, W. S. ANG, M. ELIMELECH. Fouling of Reverse Osmosis Membranes by Hydrophilic Organic Matter: Imlications of Water Reuse. Desalination, 2006, 187(1-3):313-321
    [58]孙晓慰,朱国富.电吸附水处理技术与设备.工业水处理,2002, 22(8):1-3
    [59] C. J. GABELICH, T. D. TRAN. Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels. Environmental Science and Technology, 2002, 36(13):3010-3019
    [60] D. S. ZHANG, L. Y. SHI, J. H. FAN. Removal of NaCl from Salt Water Solution Using Carbon Nanotubes/Activated Carbon Composite Electrodes. Materials Letters, 2006, 60(3):360-363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700