用户名: 密码: 验证码:
关于室内臭氧浓度变化规律及来源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于光化学烟雾污染的出现,国外有关学者从上个世纪 70 年代初开始,就
    对各种类型建筑室内外空气中臭氧浓度的关系作了大量的研究。然而在国内(除
    香港外),就在臭氧污染水平日益加剧的今天,针对室内臭氧污染的研究课题却
    仍是鲜为人知的。本课题的目的就在于填补这一空白,为人们减少不必要的臭氧
    暴露,提高室内空气品质提供有效的参考。本课题的研究内容主要包括两部分:
    一是考察室内外臭氧浓度的变化规律以及室内外臭氧浓度的比值,通过使用紫外
    吸收式臭氧分析仪对典型建筑的室内外臭氧浓度进行连续监测来实现。调查对象
    包括:2 间办公室、1 间民居卧室、2 间学校教室以及 1 间药厂洁净室。监测结
    果表明室内臭氧浓度在一天中的变化与室外臭氧浓度类似。在晴或晴间多云的天
    气,臭氧浓度在上午逐渐升高,在中午或下午达到最高点后逐渐下降。最高时均
    值在 14:00~16:00 时段出现频率最高。在对 1 间办公室和 1 间中学教室的监测中
    观察到了明显的室内臭氧浓度峰值比室外滞后的现象,滞后时间分别 4 小时和 1
    小时。被调查对象的平均臭氧 I/O 比在 9.5%~84.5%的范围内,与换气次数有较
    密切的关系。本课题的另外一个主要部分是定量研究室内污染源之一——静电过
    滤器的臭氧发生率及其影响因素。通过在不锈钢风道实验台上,对某厂生产的过
    滤器样本在不同的电晕极形状、电压、风量水平组合下的臭氧发生量进行测量获
    得。实验测得静电过滤器样本的臭氧发生率范围为 10.6~225.6mg/m3,并通过方
    差分析,确定电晕极电压和电晕极形状为影响静电过滤器臭氧发生率的主要因
    素。在其它条件相同时,随电晕极电压升高臭氧发生率增大,电晕极形状为板状
    的静电过滤器比电晕极形状为线状的有更高的臭氧发生率。另外,本课题还考察
    了温度和室内气流状况对臭氧在室内表面衰减的影响,结果表明室内气流状况对
    臭氧在室内表面上的衰减影响很大,而小范围的温度波动对臭氧在室内表面上的
    衰减影响不大。除此之外,本课题还从理论上对减小室内空气臭氧浓度的可能途
    径进行了探讨,以期为人们减少臭氧暴露提供有力参考。
As the pollution of Photochemical smog arose, a large amount of research, which
    focused on the relationship between indoor and outdoor ozone concentrations, have
    been carried out by foreign researchers since the early 1970s, whereas few researches
    on such topics has been found in our nation except for Hong Kong. The object of this
    thesis is to bridge the gap of knowledge and provide a reference for people who want
    to avoid personal ozone exposure and improve indoor air quality. There are two main
    parts in this thesis. The first one is to monitor the changes of indoor and outdoor
    ozone concentrations and investigate the indoor-outdoor ozone concentration ratio.
    Using ultraviolet adsorption method, we have carried out consecutive measurement
    on some representative buildings, which include two office rooms, one residential
    bedroom, two classrooms in a middle school and one cleanroom in a Pharmaceutical
    manufactory. The results of the investigation indicate that the change of indoor ozone
    levels is similar to that of outdoor. On cloudless days the ozone levels tend to rise in
    the morning, to be highest at noon or in the afternoon and then decline. Ozone
    concentrations most likely peak during 14:00-16:00 pm. Lags between peaks of
    outdoor concentrations and subsequent indoor peaks have been observed during the
    investigation. The respective lag time is 4 hours for an office and 1 hour for a
    classroom. The average indoor values were 9.5 to 84.5 percent of those outdoors, and
    are closely related to air exchange rates. Another objective of this thesis is to find out
    the main factors influencing the ozone emission rate of electrostatic air filters. By
    using a stainless steel test plenum, we have measured the ozone emission rates under
    different voltage levels, air flow rates, and figurations of corona electrode. The
    measured ozone emission rates are 10.6-225.6 mg/m3. The voltage level and
    figuration of corona electrode are found to be the main factors influencing ozone
    emissions. The higher the voltage of corona electrode is, the more ozone will be
    produced if other factors remain invariable. Filters with a flat corona electrode tend to
    produce more ozone than those with a wire corona electrode. In addition, the
    influence of temperature and the air flow pattern on ozone deposition on indoor
    surfaces has been checked in the present study. The results suggest that the air flow
    pattern affects the ozone deposition rate greatly, while a small change of temperature
    would not be so important. Furthermore, this thesis also discussed the methods
    effective for reducing indoor ozone concentrations from the point view of theory.
引文
参考文献
    [1]储金宇,吴春笃等, 臭氧技术及应用, 北京市:化学工业出版社,2002.19~40
    [2]William F. Mcdonnell, M.D., Howard R. Kehrl, M.D., et al., Respiratory Response
     of Humans Exposed to Low Levels of Ozone for 6.6 Hours, Archives of
     Environmental Health, 1991, 46(3): 145-150
    [3]Michael Brauer, Jeffrey R. Brook, Ozone Personal Exposures and Health Effects
     For Selected Groups Residing in the Fraser Valley, Atmospheric Environment, 1997,
     31(14): 2113-2121
    [4]Clifford P. Weisel, Ronald P. Cody, and Paul J. Lioy, Relationship between
     Summertime Ambient Ozone Level and Emergency Department Visits for Asthma
     in Central New Jersey, Environmental Health Perspectives, 1995, 103(Supplement
     2): 97-102
    [5]宋宏,蔡承铿等, 石油化工企业外环境空气臭氧水平与儿童健康关系的研究,
     环境与健康杂志,1998,15(2):61-64
    [6]方企圣,王沐沂,陈宇炼, 臭氧(O3)毒性及环境卫生基准研究, 环境监测管
     理与技术,1992,4(3):19-24
    [7]Eric Joos, Gerard Maffiolo, Airborne Measurements of Ozone Concentrations in
     Background Air and Power Plant Plumes, Atmospheric Environment, 1989,
     23(10): 2249-2257
    [8]Betty K. Pun, Shiang-Yun Wu, and Christian Seigneur, Contribution of Biogenic
     Emissions to the Formation of Ozone and Particulate Matter in the Eastern United
     States, Environ. Sci. Technol., 2002, 36(16): 3586-3596
    [9]Frank A. A. M. de Leeuw, Contributions of Traffic Emissions to Mesoscale NOx
     and O3 Concentrations, Atmospheric Environment, 1989, 23(1): 49-53
    [10]W. L. Chameides, P. S. Kasibhatla, J. Yienger, H. Levy Ⅱ , Growth of
     Continental-Scale Metro-Agro-Plexes,Regional Ozone Pollution,and World Food
     Production, Science, 1994, 264(1 April):74-77
    [11]宋广生, 室内环境质量评价及检测手册, 北京:机械工业出版社,2002.12
    [12]中华人民共和国国家质量监督检验检疫总局,卫生部,国家环境保护总局,
     GB/T 18883-2002,室内空气质量标准, 北京:中国标准出版社,2003-01
    [13]中华人民共和国卫生部,室内空气质量卫生规范, 2001-9 发布
    [14]中华人民共和国卫生部,GB/T18202-2000,室内空气中臭氧卫生标准,北京:
     中国标准出版社,2000-9-30 发布
    [15]中华人民共和国国家环境保护局,国家技术监督局,GB3095-1996,环境空
     气质量标准,北京:中国标准出版社,1996-01-18 发布
    [16]中华人民共和国卫生部,GB/T18066-2000,居住区大气中臭氧卫生标准,北
    京:中国标准出版社
     74
    
    
    参考文献
    [17] U. S. Environmental Protection Agency, The National Ambient Air Quality
     Standards, 1997-07
    [18]Charles J. Weschler, Helen C. Shields, Datta V. Naik, Indoor Ozone Exposures,
     Journal of the Air Pollution Control Associaton, 1989, 39(12): 1562-1568
    [19]Fredrick H. Shair and Kenneth L. Heitner, Theoretical Model for Relating Indoor
     Pollutant Concentrations to Those Outside, Environ. Sci. Technol., 1974, 8(5):
     444-453
    [20]Martin Kraenzmer, Modeling and Continuous Monitoring of Indoor Air Pollutants
     for Identification of Sources and Sinks, Environment International, 1999, 25(5):
     541-551
    [21]John E. Yocom, Indoor-Outdoor Air Quality Relationships: a Critical Review.
     Journal of the Air Pollution Control Association, 1982, 32(5): 500-520
    [22]Rolf H. Sabersky, Daniel A. Sinema, and Fredrick H. Shair, Concentrations,
     Decay Rates, and Removal of Ozone and Their Relation to Establishing Clean
     Indoor Air, Environ. Sci. Technol., 1973, 7(4): 347-353
    [23]T. D. Davies, B. Ramer, G. Kaspyzok, and A. C. Delany, Indoor/Outdoor Ozone
     Concentrations at a Contemporary Art Gallery, Journal of the Air Pollution
     Control Associaton, 1984, 31(2): 135-137
    [24]William W. Nazaroff and Glen R. Cass, Mathematical Modeling of Chemically
     Reactive Pollutants in Indoor Air, Environ. Sci. Technol., 1986, 20(9): 924-934
    [25]James R. Druzik, Mark S. Adams, Christine Tiller, and Glen R. Cass, The
     Measurement and Model Predictions of Indoor Ozone Concentrations in Museums,
     Atmospheric Environment, 1990, 24A(7): 1813-1823
    [26]Charles J. Weschler, Helen C. Shields, Datta V. Naik, Ozone-Removal
     Efficiencies of Activated Carbon Filters After More Than There Years of
     Continuous Service, ASHRAE Transactions, 1994a, 100(2): 1121-1129
    [27]Charles J. Weschler, Helen C. Shields, and Datta V. Naik, Indoor Chemistry
     Involving O3, NO, AND NO2 as Evidenced by 14 Months of Measurements at a
     Site in Southern California, Environ. Sci. Technol., 1994, 28(12): 2120-2132
    [28]Isabelle Romieu, Marlene Cortez Lugo, et al., Evaluation of Indoor Ozone
     Concentration and Predictors of Indoor-Outdoor Ratio in Mexico City, Air &
     Waste Manag. Assoc., 1998, 48(April): 327-335
    [29]Lynn G. Salmon, Glen R. Cass, Katarzyna Bruckman, and Jerzy Haber, Ozone
     Exposure Inside Museums in the Historic Central District of Krakow, Poland,
     Atmospheric Environment, 2000, 34(22): 3823-3832
    [30]Christopher Y. H. Chao, Comparison Between Indoor and Outdoor Air
     Contaminant Levels in Residential Buildings From Passive Sampler Study,
     Building and Environment, 2001, 36(9): 999-1007
    [31]M. D. Lebowitz, G. Corman, M. K. O’Rourke, and C. J. Holberg, Indoor-Outdoor
     Air Pollution, Allergen and Meteorological Monitoring in an Arid Southwest Area,
     Journal of the Air Pollution Control Associaton, 1984, 34(10): 1035-1038
     75
    
    
    参考文献
    [32]Frank X. Mueller, Leopold Loeb, and William H. Mapes, Decomposition Rates of
     Ozone in Living Areas, Environ. Sci. Technol., 1973, 7(4): 342-346
    [33]Heinz-J?rn Moriske, Gerhard Ebert et al., Concentrations and Decay Rates of
     Ozone in Indoor Air in Dependence on Building and Surface Materials,
     Toxicology Letters, 1998, 96-97: 319-323
    [34]Richard Reiss, P. B. Ryan, Petros Koutrakis, Modeling Ozone Deposition Onto
     Indoor Residential Surfaces, Environ. Sci. Technol., 1994, 28(3): 504-513
    [35]Fredrick H. Shair, Relating Indoor Pollutant Concentrations of Ozone and Sulfur
     Dioxide to Those Outside: Economic Reduction of Indoor Ozone Through
     Selective Filtration of the Make-up Air, ASHRAE Transactions, 1981, 87(1):
     116-139
    [36]D. J. Sutton, K. M. Nodolf, and K. K. Makino, Predicting Ozone Concentrations
     in Residential Structures, ASHRAE JOURNAL, 1976, 18(9): 21-26
    [37]J. L. Niu, T. C. W. Tung, J. Burnett, Quantification of Dust Removal and Ozone
     Emission of Ionizer Air-cleaners by Chamber Testing, Journal of Electrostatics,
     2001, 51-52: 20-24
    [38]Linmao Liu, Jingfu Guo, Jie Li, and Lianxi Sheng, The Effect of Wire Heating
     and Configuration on Ozone Emission in a Negative Ion Generator, Journal of
     Electrostatics, 2000, 48(2): 81-91
    [39]U. S. Environmental Protection Agency, Office Equipment: Design, Indoor Air
     Emissions, and Pollution Prevention Opportunities, Air and Energy Engineering
     Research Laboratory, Research Triangle Park, 1995
    [40]S. C. Lee, Sanches Lam, Ho Kin Fai, Characterization of VOCs, Ozone, and PM10
     Emissions From Office Equipment in an Environmental Chamber, Building and
     Environment, 2001, 36(7): 837-842
    [41]U. S. Environmental Protection Agency, Ozone Generators that are Sold as Air
     Cleaners: An Assessment of Effectiveness and Health Consequences, National
     Service Center for Environmental Publications (NSCEP),2003
    [42]解广润,陈慈萱,高压静电除尘,北京:水利电力出版社,1993.14-27
    [43]Roger Atkinson, E. C. Tuazon, S. M. Aschmann, Products of The Gas-Phase
     Reactions of O3 With Alkenes, Environ. Sci. Technol., 1995, 29(7): 1860-1866
    [44]Charles. J. Weschler and Helen C. Shields, Potential Reactions Among Indoor
     Pollutants, Atmospheric Environment, 1997, 31(21): 3487-3495
    [45]Charles H. Hales, Alonzo M. Rollinson, and Fredrick H. Shair, Experimental
     Verification of Linear Combination Model for Relating Indoor-Outdoor Pollutant
     Concentrations, Environ. Sci. Technol., 1974, 8(5): 452-453
    [46]Murad I.H. Helaleh, Suharto Ngudiwaluyo, Takashi Korenaga, et al.,
     Development of passive sampler technique for ozone concentration,
     Talanta, 2002, 58(4): 649-659
    [47]周中平,赵寿堂,朱立等,室内污染检测与控制,北京:化学工业出版社,
     2002.155-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700