用户名: 密码: 验证码:
肝癌血管内皮细胞比正常血管内皮细胞具有更强的血管生成能力及药物抵抗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌是常见的恶性肿瘤,手术切除仍是最有效的治疗方法,但根治术后5年转移复发率高达60-70%,是影响肝癌远期疗效的主要原因。抑制肿瘤血管生成,可减少肿瘤赖以生存的营养供应,从而抑制肿瘤生长。对不能切除的肝癌和肝癌术后转移复发的预防,抗血管生成是一条有希望的途径。血管生成抑制剂治疗肿瘤的理论基础在于新生与重塑的肿瘤血管不同于静止的正常血管。血管异质性是近年肿瘤血管生成研究的热点,从分子水平研究肿瘤血管的异质性,有助于监测肿瘤的演进,估计肿瘤的恶性程度,并可能为肿瘤治疗提供新靶点。证据表明,肿瘤血管内皮细胞的生长因子受体,信号转导分子及黏附分子等与细胞活性相关的分子表达都与正常血管内皮细胞有所差异,这些分子的异常表达可能促进了肿瘤血管内皮细胞在细胞功能上与正常血管内皮细胞有所差异。迄今已有报道从乳腺癌、结肠癌及神经胶质瘤等肿瘤中分选培养的内皮细胞比正常内皮细胞具有更强的血管生成能力及化疗抵抗能力,但尚未见检测肿瘤血管内皮细胞对抗血管生成药物敏感性的研究报道,也未见分离培养肝癌血管内皮细胞并研究其血管生成能力等特性的研究报道。目前,sorafenib等抗血管生成药物在肝癌的治疗上取得了进展,可延长患者生存期,但其疗效并不持久,通常几个月后即出现药物抵抗,肿瘤又重新生长,而其耐药机制尚不明了。本课题拟通过分离人肝癌及癌周组织的血管内皮细胞进行传代培养,并检测肿瘤血管内皮细胞及正常血管内皮细胞间的功能差异,同时检测肿瘤血管内皮细胞及正常血管内皮细胞对抗血管生成药物反应的差异,并探讨其发生差异的分子机制,以期为提高抗血管生成药物疗效找到新的途径。
     1.肿瘤血管内皮研究的平台建设一人肝癌及癌周组织血管内皮细胞的分离、鉴定与传代培养
     血管内皮细胞的数量极为有限,其分离与纯化受多种因素影响,如何从肿瘤组织的多种混杂细胞中分离纯化内皮细胞成为问题的关键。我们采用CD105抗体交联免疫磁珠分选法,并加以优化,对人肝癌及癌周组织进行血管内皮细胞分选,并进行传代培养。从肝癌癌周组织中分离的CD105阳性细胞呈典型的“铺路石样”内皮细胞形态特征;从肝癌组织中分离的CD105阳性细胞则无此特征,而呈纤维状的梭长表型。RT-PCR检测AFP及流式检测CD68的结果显示阳性分选细胞的CD105表达高达99%,但不表达AFP及CD68,从而排除了肿瘤细胞及巨噬细胞的污染;细胞免疫化学检测显示阳性分选细胞中Ⅷ因子表达为阳性,超过95%的阳性分选细胞表达Ⅷ因子及呈乙酰化低密度脂蛋白摄取实验阳性;分选细胞在Matrigel胶中可形成毛细管结构;流式结果显示CD105、CD31、CD34、CD144、VEGFR1及VEGFR2等血管内皮细胞标记在分选所得CD105阳性细胞上都有所表达。同时可将阳性分选细胞进行传代培养至20代以上。上述结果表明,通过优化的免疫磁分选法,我们成功分选获得高纯度的CD105阳性肝癌血管内皮细胞及CD105阳性正常血管内皮细胞,并能够成功传代培养,分离培养的内皮细胞可用于肝癌血管生成的相关研究。
     2.肿瘤血管内皮细胞及正常血管内皮细胞的功能比较
     为比较CD105~+TEC(肿瘤血管内皮细胞)与CD105~+NEC(正常血管内皮细胞)及HUVEC(脐静脉内皮细胞)的功能差异,我们在完全血清培养液中连续培养细胞,结果CD105~+TEC的增殖显著高于CD105~+NEC及HUVEC;在无血清培养液中培养细胞显示CD105~+TEC的抗凋亡能力显著高于CD105~+NEC及HUVEC;划痕实验显示CD105~+TEC的迁移能力高于CD105~+NEC及HUVEC;3D Magtrigel胶无血清培养液中形成毛细网状结构功能的结果显示CD105~+TEC的血管生成能力高于CD105~+NEC及HUVEC;细胞黏附结果显示CD105~+TEC与肿瘤细胞相互作用的能力高于CD105~+NEC及HUVEC;药物试验显示CD105~+TEC对化疗药物阿霉素及5-氟尿嘧啶的抵抗能力显著高于CD105~+NEC及HUVEC。以上说明CD105~+TEC与CD105~+NEC及HUVEC具有功能差异,表现出更强的增殖、抗凋亡、迁移、血管生成能力、与肿瘤细胞相互作用能力以及更强的化疗药物抵抗能力,应该更适用于肿瘤血管生成机制的体外研究。
     3.肿瘤血管内皮细胞及正常血管内皮细胞的对sorafenib处理的反应差异及其机制研究
     目前虽已有分选培养肿瘤血管内皮细胞及探索其功能的研究,但还没有关于肿瘤血管内皮细胞对抗血管生成药物反应的研究报道。我们比较了肿瘤血管内皮细胞及正常血管内皮细胞对sorafenib的反应差异:细胞增殖实验显示sorafenib在低浓度时对各细胞系的影响无显著差异,当sorafenib的浓度大于5μM时,CD105~+TEC比CD105~+NEC及HUVEC显示出更高的抵抗能力;5μM sorafenib的浓度时,小管形成实验及spheroid assay实验显示,HuVEC及CD105~+NEC不能形成毛细网状结构或发生出芽结构,而CD105~+TEC仍能形成毛细网状结构及发生出芽结构,说明肿瘤血管内皮细胞对sorafenib具有更强的抵抗作用。接着我们检测了各细胞系在sorafenib处理前后其p-STAT3、STAT3、p-Akt、Akt、p-MAPK及MAPK信号分子的变化,结果显示相对于HUVE及CD105~+NEC,CD105~+TEC在sorafenib作用24小时前后都表达更高水平的p-AKT及p-STAT3,其P-MAPK的基本表达水平更低,且P-MAPK的表达在sorafenib处理后发生反弹性上升。提示缩短给药间隔时间或联合其他药物治疗可能有助于提高sorafenib的疗效。
     结论
     1.采用优化的免疫磁分选法可有效分离纯化肝癌及癌周组织中的血管内皮细胞,并可进行传代培养。
     2.CD105~+TEC较CD105~+NEC及HUVEC在内皮细胞特异性分子的表达方面有差异。
     3.CD105~+TEC较CD105~+NEC及HUVEC具有功能差异,表现出更强的生存能力及化疗抵抗性。
     4.CD105~+TEC较CD105~+NEC及HUVEC对soraafenib具有更强的抵抗作用,其机制与CD105~+TEC表达更高水平的p-AKT及p-STAT3,但表达更低水平的P-MAPK,且P-MAPK的表达在sorafenib处理后发生反弹性上升相关。
     应用价值
     1.分选获得纯化的肝癌及癌周血管内皮细胞,并能进行传代培养,可用于肝癌血管生成机制及抗血管生成治疗的相关研究。
     2.探索了CD105~+TEC对sorafenib更具抵抗能力的机制,为提高sorafenib对肝癌的疗效提供了新线索。
     创新点
     1.首次成功传代培养从肝癌组织分选的CD105~+血管内皮细胞。
     2.首次验证了肿瘤血管内皮细胞对抗血管生成药物sorafenib更具抵抗性,并探索其可能的分子机制。
Hepatocellular carcinoma(HCC)is one of the most prevalent cancers in Asia and Africa.Despite endeavors have been made to improve its prognosis,the overall survival,however,is still unsatisfied.The high rate of metastasis and recurrence after curative resection was responsible for the poor prognosis of resectable HCC.
     Anti-angiogenesis is an attractive treatment for HCC,because HCC is a typical hypervascular cancer,its growth,metastasis or even hepatocarcinogenesis depend on angiogenesis.As a major part of tumor vessels,tumor-drived endothelial cells(TEC) are heterogeneous in different organs,tissues and tumors.Alterations in growth factor receptors,cellular survival pathways,surface adhesion molecules,and passage-related changes in EC markers are all consistent with molecular perturbations in TEC,which may contribute to the function distinction between TEC and normal endothelial cells (NEC).Moreover,recent studies indicate that TEC from breast tumor,renal tumor and nasopharyngeal carcinoma,compared with NEC,were less sensitive to chemotherapeutic agents such as vincristine and doxorubicin in vitro.While whether acquired drug resistance to anti-angiogenic therapies might be a feature of the TEC has not yet been reported.The aim of this study was to investigate the angiogenesis activity and response to drug treatment of TECs and NECs derived from human hepatocellular carcinoma
     1.Isolation and culture TECs or NECs from HCC or adjacent normal liver tissue
     As a main target of anti-angiogenesis therapy,TECs represent only a minor fraction of the total cell population within tumor tissues.Along with the fact that endothelial cells are enmeshed in a complex tissue consisting of a variety of cells,analysis of TEC has long been considered a tough task due to the difficulty of isolation and purification.In this study,a modified immunomagnetic methods using magnetic beads conjugated with anti-CD 105 antibody were used to isolate vascular endothelial cells from human HCC or adjacent normal liver tissue.The isolated NEC presented typical“cobblestone”appearance while TEC not.Negative expression of alpha fetoprotein (AFP)and CD68 in isolated ECs excludes the contamination of tumor cells and macrophages.The expression of CD105 and von Willebrand factor(vWF)was positive in more than 99%of isolated cells.Internalization of acetylated low-density lipoprotein(DiI-Ac-LDL)was positive in more than 95%of isolated cells.The isolated cells could form capillary-like tubes on BD Matrigel Matrix.Also,the isolated cells could express a panel of endothelial markers including CD105,CD31, CD34,VE-cadherin(CD144),vascular endothelial growth factor receptor-1 (VEGFR1),VEGFR2 with different ratio.Thus,TEC and NEC can be isolated from HCC and adjacent normal liver tissue by using modified immunomagnetic methods, and these cells can be serially subcultured and used for angiogenesis related researches in HCC.
     2.Functional characteristics of CD105~+ TEC
     To compare the function distinction between CD105~+ TEC and CD105~+ NEC or human umbilical vein endothelial cells(HUVEC),a series experiments have been done.Cell proliferation was measured over a period of 72 hrs in full medium. Proliferation of CD105+ TEC was significantly more active than CD105+ NEC and HUVEC when cultured in the serum supplemented medium for 24,48,and 72 hrs(P<0.05).CD105+ TEC was more resistant to apoptosis in the serum-free medium compared with CD105+ NEC and HUVEC.Wound healing assay revealed increased migration ability of CD105+ TEC and endothelial cell-tumor cell interaction assay revealed increased ability to adhere more HCC cells of CD105+ TEC,with respect to CD105+ NEC and HUVEC.CD105+ TEC also could form capillary-like structures on Matrigel in the absence of serum while HUVEC not.Moreover,CD105+ TEC was presented increased drug resistance to cytotoxic therapy including adriamycin and 5-fluorouracil(5-Fu)than CD105+ NEC and HUVEC.Those data confirmed CD105+ TECs did not undergo cell senescence in serum-free medium and showed enhanced proliferation,motility,pro-angiogenesis properties,and resistance to cytotoxic drug treatment.
     3.The increased resistance of CD105+ TECs to sorafenib and its mechanism
     A handful of laboratories have reported successful isolation and subsequent culture of TEC and explored some characteristics of TEC,while whether acquired drug resistance to anti-angiogenic therapies might be a feature of the TEC has not yet been reported.In this study,we have compared the response of CD105+ TEC,CD105+ NEC,and HUVEC to the anti-angiogenic drug sorafenib.Cell proliferation revealed that HUVECs and CD105+ NECs were sensitive to sorafenib in a dose-dependent manner when the concentration was over 2μM,while CD105+ TEC were resistant to sorafenib at the higher dosage of 10μM.The tube formation experiment and EC-spheroid assay showed CD105+ TEC could form capillary-like tubes and produce sprouts at 5μM sorafenib while CD105+ NEC,and HUVEC not.These results demonstrated CD105+ TECs acquire more resistance to anti-angiogenic therapies than normal EC.Then we investigated the expression levels of p-STAT3,STAT3, p-Akt,Akt,p-MAPK and MAPK of different types of EC after sorafenib treatment, and found that the expression of p-STAT3 and p-Akt in CD105+ TECs before and after sorafenib treatment were higher than NECs.We also found that the baseline level of p-MAPK in CD105+ TEC was lower than NEC,and after sorafenib treatment for 24 hrs,in CD105+ TECs p-MAPK expression was significantly higher than untreated cells.These changes may contribute to the resistance of CD105+ TEC to sorafenib,and suggest a shorter dosing interval of sorafenib may of clinical benefit.
     Conclusions
     1.The modified immunomagnetic affinity purification can successfully isolate CD105+ endothelial cells from HCC and adjacent normal liver tissue,and these cells can be serially subcultured.
     2.Differential endothelial markers expression does exist between CD105+ TEC, CD105+ NEC,and HUVEC.
     3.Differential functional characteristics do exist between CD105+ TEC,CD105+ NEC,and HUVEC.CD105+ TEC acquire more pro-angiogenesis properties and resistance to cytotoxic drug treatment.
     4.CD105+ TEC acquire more resistance to sorafenib than normal ECs.The underlying mechanism may be related to the differential expression of p-STAT3, p-Akt and P-MAPK between CD105+ TEC and normal EC.
     The novelties of this work:
     1.Isolated and serially subcultured endothelial cells from HCC and adjacent normal liver tissue,and these cells can be used for angiogenesis related researches in HCC.
     2.For the first time,identified tumor endothelial cells acquired drug resistance to anti-angiogenic therapies,and explored the underlying mechanism.
引文
1. Tang ZY, Ye SL, Liu YK, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2004; 130: 187-96.
    2. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001;2: 533-43.
    3. El-Serag HB. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 2002;35: S72-8.
    4. Tang ZY. Hepatocellular carcinoma surgery-review of the past and prospects for the 21st century. J Surg Oncol 2005;91: 95-6.
    5. Zhou XD, Tang ZY, Yu YQ, et al. Recurrence after resection of alpha-fetoprotein-positive hepatocellular carcinoma. J Cancer Res Clin Oncol 1994;120: 369-73.
    6. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998;102: 430-7.
    7. Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber BL. Heterogeneous vascular dependence of tumor cell populations. Am J Pathol 2001;158: 1325-34.
    8. Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol 2000;18: 813-27.
    9. Fidler IJ. Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. J Natl Cancer Inst 2001;93: 1040-1.
    10. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3: 401-10.
    11. Ozawa CR, Banfi A, Glazer NL, et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 2004;113: 516-27.
    12. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 2007;74: 72-84.
    13. Aird WC. Molecular heterogeneity of tumor endothelium. Cell Tissue Res 2009;335: 271-81.
    14. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008;48: 1312-27.
    15. Villanueva A, Toffanin S, Llovet JM. Linking molecular classification of hepatocellular carcinoma and personalized medicine: preliminary steps. Curr Opin Oncol 2008;20: 444-53.
    16. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6: 389-95.
    17. Folkman J. Angiogenesis. Annu Rev Med 2006;57: 1-18.
    18. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27-31.
    19. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006;6: 674-87.
    20. Pang R, Poon RT. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett 2006;242: 151-67.
    21. Jain RK. Molecular regulation of vessel maturation. Nat Med 2003 ;9: 685-93.
    22. Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156: 1363-80.
    23. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 2003;163: 1801-15.
    24. Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002;160: 985-1000.
    25. McDonald DM, Baluk P. Significance of blood vessel leakiness in cancer. Cancer Res 2002;62: 5381-5.
    26. Essler M, Ruoslahti E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci U S A 2002;99: 2252-7.
    27. St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000;289: 1197-202.
    28. Oh P, Li Y, Yu J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 2004;429: 629-35.
    29. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 2007;11:539-54.
    30. Hida K, Hida Y, Amin DN, et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 2004;64: 8249-55.
    31. Zhang T, Sun HC, Xu Y, et al. Overexpression of platelet-derived growth factor receptor alpha in endothelial cells of hepatocellular carcinoma associated with high metastatic potential. Clin Cancer Res 2005;11: 8557-63.
    32. Miebach S, Grau S, Hummel V, Rieckmann P, Tonn JC, Goldbrunner RH. Isolation and culture of microvascular endothelial cells from gliomas of different WHO grades. J Neurooncol 2006;76: 39-48.
    33. Grange C, Bussolati B, Bruno S, Fonsato V, Sapino A, Camussi G. Isolation and characterization of human breast tumor-derived endothelial cells. Oncol Rep 2006;15: 381-6.
    34. Amin DN, Hida K, Bielenberg DR, Klagsbrun M. Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res 2006;66: 2173-80.
    35. Tang ZY. Hepatocellular carcinoma-cause, treatment and metastasis. World J Gastroenterol 2001 ;7:445-54.
    36. Tang ZY. Hepatocellular carcinoma. J Gastroenterol Hepatol 2000;15 Suppl: G1-7.
    37. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003 ;362: 1907-17.
    38. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407: 249-57.
    39. Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J 2003; 17: 984-92.
    40. Dallas NA, Samuel S, Xia L, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 2008; 14: 1931-7.
    41. Tanaka F, Otake Y, Yanagihara K, et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD 105 antibody. Clin Cancer Res 2001;7: 3410-5.
    42. Ho JW, Poon RT, Sun CK, Xue WC, Fan ST. Clinicopathological and prognostic implications of endoglin (CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver. World J Gastroenterol 2005;11: 176-81.
    43. Yang LY, Lu WQ, Huang GW, Wang W. Correlation between CD 105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer 2006;6: 110.
    44. Benetti A, Berenzi A, Gambarotti M, et al. Transforming growth factor-beta 1 and CD105 promote the migration of hepatocellular carcinoma-derived endothelium. Cancer Res 2008;68: 8626-34.
    45. DeLisser HM, Christofidou-Solomidou M, Strieter RM, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997;151: 671-7.
    46. Cavallaro U, Liebner S, Dejana E. Endothelial cadherins and tumor angiogenesis. Exp Cell Res 2006;312: 659-67.
    47. Plate KH, Breier G, Millauer B, Ullrich A, Risau W. Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 1993;53: 5822-7.
    48. Allport JR, Weissleder R. Murine Lewis lung carcinoma-derived endothelium expresses markers of endothelial activation and requires tumor-specific extracellular matrix in vitro. Neoplasia 2003 ;5: 205-17.
    49. Alessandri G, Chirivi RG, Fiorentini S, et al. Phenotypic and functional characteristics of tumour-derived microvascular endothelial cells. Clin Exp Metastasis 1999;17: 655-62.
    50. Charalambous C, Pen LB, Su YS, Milan J, Chen TC, Hofman FM. Interleukin-8 differentially regulates migration of tumor-associated and normal human brain endothelial cells. Cancer Res 2005;65: 10347-54.
    51. Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J 2003;17: 1159-61.
    52. Fonsato V, Buttiglieri S, Deregibus MC, Puntorieri V, Bussolati B, Camussi G. Expression of Pax2 in human renal tumor-derived endothelial cells sustains apoptosis resistance and angiogenesis. Am J Pathol 2006;168: 706-13.
    53. Charalambous C, Hofman FM, Chen TC. Functional and phenotypic differences between glioblastoma multiforme-derived and normal human brain endothelial cells. J Neurosurg 2005;102: 699-705.
    54. Li H, Gerald WL, Benezra R. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res 2004;64: 6137-43.
    55. di Tomaso E, Capen D, Haskell A, et al. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res 2005;65: 5740-9.
    56. Ye C, Kiriyama K, Mistuoka C, et al. Expression of E-selectin on endothelial cells of small veins in human colorectal cancer. Int J Cancer 1995;61: 455-60.
    57. Bussolati B, Grange C, Bruno S, et al. Neural-cell adhesion molecule (NCAM) expression by immature and tumor-derived endothelial cells favors cell organization into capillary-like structures. Exp Cell Res 2006;312: 913-24.
    58. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003;300: 1155-9.
    59. Bocci G, Nicolaou KC, Kerbel RS. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 2002 ;62: 6938-43.
    60. Bocci G, Danesi R, Del Tacca M, Kerbel RS. Selective anti-endothelial effects of protracted low-dose BAL-9504, a novel geranylgeranyl-transferase inhibitor. Eur J Pharmacol 2003 ;477: 17-21.
    61. Zhang XS, Zhu XF, Gao JS, et al. Variable sensitivity of endothelial cells to epirubicin in xenografts of human nasopharyngeal carcinoma CNE-2 cells. Cancer Biol Ther 2002;1: 263-5.
    62. Camassei FD, Arancia G, Cianfriglia M, et al. Nephroblastoma: multidrug-resistance P-glycoprotein expression in tumor cells and intratumoral capillary endothelial cells. Am J Clin Pathol 2002; 117: 484-90.
    63. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C. Genetic instability and darwinian selection in tumours. Trends Cell Biol 1999;9: M57-60.
    64. Yu JL, Coomber BL, Kerbel RS. A paradigm for therapy-induced microenvironmental changes in solid tumors leading to drug resistance. Differentiation 2002;70: 599-609.
    65. Hill R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005;123: 1001-11.
    66. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285: 1182-6.
    67. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86: 353-64.
    68. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6: 273-86.
    69. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005;333: 328-35.
    70. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 2005;19: 7-16.
    71. Smith JK, Mamoon NM, Duhe RJ. Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncol Res 2004; 14: 175-225.
    72. Apte RS. Pegaptanib sodium for the treatment of age-related macular degeneration. Expert Opin Pharmacother 2008;9: 499-508.
    73. Gragoudas ES, Adamis AP, Cunningham ET, Jr., Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004;351:2805-16.
    74. Saltz LB, Lenz HJ, Kindler HL, et al. Randomized phase Ⅱ trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol 2007;25: 4557-61.
    75. Shojaei F, Ferrara N. Antiangiogenic therapy for cancer: an update. Cancer J 2007;13: 345-8.
    76. Herrmann R, Bodoky G, Ruhstaller T, et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase Ⅲ trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. J Clin Oncol 2007;25: 2212-7.
    77. Miller KD, Sweeney CJ, Sledge GW, Jr. Can tumor angiogenesis be inhibited without resistance? EXS 2005: 95-112.
    78. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100: 57-70.
    79. Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer 2008;8: 56-61.
    80. Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs 2001;169: 1-11.
    81. Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 2005;7: 452-64.
    82. De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8: 211-26.
    83. Hattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 2002;8: 841-9.
    84. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005 ;438: 820-7.
    85. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005;8: 299-309.
    86. Mizukami Y, Jo WS, Duerr EM, et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1 alpha-deficient colon cancer cells. Nat Med 2005;11:992-7.
    87. Relf M, LeJeune S, Scott PA, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997;57: 963-9.
    88. Glade Bender J, Cooney EM, Kandel JJ, Yamashiro DJ. Vascular remodeling and clinical resistance to antiangiogenic cancer therapy. Drug Resist Updat 2004;7: 289-300.
    89. Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 1999; 103: 159-65.
    90. Sun HC, Li XM, Xue Q, Chen J, Gao DM, Tang ZY. Study of angiogenesis induced by metastatic and non-metastatic liver cancer by corneal micropocket model in nude mice. World J Gastroenterol 1999;5: 116-8.
    91. Sun HC, Tang ZY, Li XM, Zhou YN, Sun BR, Ma ZC. Microvessel density of hepatocellular carcinoma: its relationship with prognosis. J Cancer Res Clin Oncol 1999;125: 419-26.
    92. Bradley DA, Dunn R, Nanus D, et al. Randomized, double-blind, placebo-controlled phase II trial of maintenance sunitinib versus placebo after chemotherapy for patients with advanced urothelial carcinoma: scientific rationale and study design. Clin Genitourin Cancer 2007;5: 460-3.
    93. Faivre S, Delbaldo C, Vera K, et al. Safety, pharmacokinetic, and antitumor activity of SUl 1248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006;24: 25-35.
    94. Philip PA, Mahoney MR, Allmer C, et al. Phase Ⅱ study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 2005;23: 6657-63.
    95. Thomas MB, Morris JS, Chadha R, et al. Phase Ⅱ trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 2009;27: 843-50.
    96. Zhu AX, Blaszkowsky LS, Ryan DP, et al. Phase Ⅱ study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006;24: 1898-903.
    97. Vermorken JB, Trigo J, Hitt R, et al. Open-label, uncontrolled, multicenter phase Ⅱ study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 2007;25: 2171-7.
    98. Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006;66: 11851-8.
    99. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004;64: 7099-109.
    100. Yang F, Van Meter TE, Buettner R, et al. Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 2008;7: 3519-26.
    101. Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase Ⅱ study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006;24: 4293-300.
    102. Cheng A, Kang Y, Chen Z, et al. Randomized phase Ⅲ trial of sorafenib versus placebo in Asian patients with advanced hepatocellular carcinoma. J Clin Oncol (Meeting Abstracts) 2008;26: 4509-.
    103. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359: 378-90.
    104. Kelley RK, Venook AP. Sorafenib in hepatocellular carcinoma: separating the hype from the hope. J Clin Oncol 2008;26: 5845-8.
    105. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8: 592-603.
    106. Kerbel RS. Tumor angiogenesis. N Engl J Med 2008;358: 2039-49.
    107. Yamagishi S, Yonekura H, Yamamoto Y, et al. Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J Biol Chem 1997;272: 8723-30.
    108. Korff T, Augustin HG. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 1998;143: 1341-52.
    109. Hofmann JJ, Luisa Iruela-Arispe M. Notch expression patterns in the retina: An eye on receptor-ligand distribution during angiogenesis. Gene Expr Patterns 2007;7: 461-70.
    110. Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 2007;7: 327-31.
    1. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350: 2335-42.
    2. Vogelzang NJ. Treatment options in metastatic renal carcinoma: an embarrassment of riches. J Clin Oncol 2006;24: 1-3.
    3. Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol 2004;68: 1017-21.
    4. Zhu AX, Blaszkowsky LS, Ryan DP, et al. Phase Ⅱ study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006;24: 1898-903.
    5. Siegel AB, Cohen EI, Ocean A, et al. Phase Ⅱ trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 2008;26: 2992-8.
    6. Thomas MB, Morris JS, Chadha R, et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 2009;27: 843-50.
    7. Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006;66: 11851-8.
    8. Abou-Alfa GK, Schwartz L, Ricci S, et al. Phase Ⅱ study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006;24: 4293-300.
    9. Cheng A, Kang Y, Chen Z, et al. Randomized phase Ⅲ trial of sorafenib versus placebo in Asian patients with advanced hepatocellular carcinoma. J Clin Oncol (Meeting Abstracts) 2008;26: 4509-.
    10. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359: 378-90.
    11. Liu Y, Poon RT, Li Q, Kok TW, Lau C, Fan ST. Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 2005;65: 3691-9.
    12. Yang ZF, Poon RT, Liu Y, et al. High doses of tyrosine kinase inhibitor PTK787 enhance the efficacy of ischemic hypoxia for the treatment of hepatocellular carcinoma: dual effects on cancer cell and angiogenesis. Mol Cancer Ther 2006;5: 2261-70.
    13. Hsu C, Cheng JC, Cheng AL. Recent advances in non-surgical treatment for advanced hepatocellular carcinoma. J Formos Med Assoc 2004; 103: 483-95.
    14. Patt YZ, Hassan MM, Lozano RD, et al. Thalidomide in the treatment of patients with hepatocellular carcinoma: a phase Ⅱ trial. Cancer 2005;103: 749-55.
    15. Lin AY, Brophy N, Fisher GA, et al. Phase Ⅱ study of thalidomide in patients with unresectable hepatocellular carcinoma. Cancer 2005;103: 119-25.
    16. Schwartz JD, Sung M, Schwartz M, et al. Thalidomide in advanced hepatocellular carcinoma with optional low-dose interferon-alpha2a upon progression. Oncologist 2005;10: 718-27.
    17. Pinter M, Wichlas M, Schmid K, et al. Thalidomide in advanced hepatocellular carcinoma as antiangiogenic treatment approach: a phase Ⅰ/Ⅱ trial. Eur J Gastroenterol Hepatol 2008;20: 1012-9.
    18. Goodman VL, Rock EP, Dagher R, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 2007; 13: 1367-73.
    19. Faivre S, Demetri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 2007;6: 734-45.
    20. Zhu AX, Raymond E. Early development of sunitinib in hepatocellular carcinoma. Expert Rev Anticancer Ther 2009;9: 143-50.
    21. Wang SY, Chen B, Zhan YQ, et al SU5416 is a potent inhibitor of hepatocyte growth factor receptor (c-Met) and blocks HGF-induced invasiveness of human HepG2 hepatoma cells. J Hepatol 2004;41: 267-73.
    22. Morabito A, De Maio E, Di Maio M, Normanno N, Perrone F. Tyrosine kinase inhibitors of vascular endothelial growth factor receptors in clinical trials: current status and future directions. Oncologist 2006;11: 753-64.
    23. Mauriz JL, Gonzalez P, Duran MC, Molpeceres V, Culebras JM, Gonzalez-Gallego J. Cell-cycle inhibition by TNP-470 in an in vivo model of hepatocarcinoma is mediated by a p53 and p21WAFl/CIPl mechanism. Transl Res 2007;149: 46-53.
    24. Kinoshita S, Hirai R, Yamano T, Yuasa I, Tsukuda K, Shimizu N. Angiogenesis inhibitor TNP-470 can suppress hepatocellular carcinoma growth without retarding liver regeneration after partial hepatectomy. Surg Today 2004;34: 40-6.
    25. Wang L, Tang ZY, Qin LX, et al. High-dose and long-term therapy with interferon-alfa inhibits tumor growth and recurrence in nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential. Hepatology 2000;32: 43-8.
    26. Soff G. Angiostatin and hepatocellular carcinoma. Hepatology 2003;37: 505-6.
    27. Ishikawa H, Nakao K, Matsumoto K, et al. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene. Hepatology 2003;37: 696-704.
    28. Schmitz V, Raskopf E, Gonzalez-Carmona MA, et al. Plasminogen fragment K1-5 improves survival in a murine hepatocellular carcinoma model. Gut 2007;56: 271-8.
    29. Liu H, Peng CH, Liu YB, et al. Inhibitory effect of adeno-associated virus-mediated gene transfer of human endostatin on hepatocellular carcinoma. World J Gastroenterol 2005;11: 3331-4.
    30. Gasparini G, Longo R, Fanelli M, Teicher BA. Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol 2005;23: 1295-311.
    31. Miller KD, Sweeney CJ, Sledge GW, Jr. Can tumor angiogenesis be inhibited without resistance? EXS 2005: 95-112.
    32. Kerbel RS, Yu J, Tran J, et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 2001 ;20: 79-86.
    33. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005;8: 299-309.
    34. Franco M, Man S, Chen L, et al. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res 2006;66: 3639-48.
    35. Mancuso MR, Davis R, Norberg SM, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 2006;116: 2610-21.
    36. George S, Rini BI. Therapeutic considerations in patients with metastatic renal cell carcinoma previously treated with antiangiogenic therapies. Clin Genitourin Cancer 2006;5 Suppl 1: S40-4.
    37. Jubb AM, Oates AJ, Holden S, Koeppen H. Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 2006;6: 626-35.
    38. Tuma RS. Success of bevacizumab trials raises questions for future studies. J Natl Cancer Inst 2005;97: 950-1.
    39. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008;48: 1312-27.
    40. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8: 592-603.
    41. Kerbel RS. Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 2006;312: 1171-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700