用户名: 密码: 验证码:
日侧磁层顶磁重联过程的卫星和地面联合观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日侧磁层顶边界层是太阳风-磁层耦合和相互作用的重要区域。太阳风可以通过日侧磁层顶向地球磁层输运或转换质量、动量和能量,而磁重联则是这一输运或转换过程中最为重要的物理过程之一。本文基于我国南极中山站和北极黄河站白天处在极隙区并形成地磁共轭的优越地理条件,联合Cluster卫星簇和我国双星(TC-1、TC-2)及超级双极光雷达网(SuperDARN)和欧洲非相干散射雷达(EISCAT)的协同观测,对于行星际磁场(IMF)南向和北向两种情况选取了五个典型的日侧磁层顶磁重联事件并加以详细分析,试图揭示日侧磁重联产生的通量传输事件(FTEs)和高纬尾瓣重联的演化特征和物理特性。
     在南向行星际磁场(IMF BZ<0)条件下,本文详细分析了2004年4月1日11:48-13:00 UT期间、2004年2月11日09:00-12:00 UT期间和2004年3月13日12:00-12:40 UT期间Cluster/TC-1卫星穿越磁层顶前后的磁通门磁力计(FGM)和电子/电流试验仪(PEACE)及EISCAT和SuperDARN雷达的同时观测资料。采用最小变化量分析法(MVA)将磁场数据投影到局地磁层顶法线坐标系(LMN)并结合卫星PEACE记录的电子能谱数据发现在卫星穿越磁层顶前后观测到了一系列日侧磁层顶低磁纬重联产生的FTEs,这些FTEs具有准周期性。采用最小方向微分法(Minimum Directional Derivative (or Difference),简称MDD)和时空微分法(Spatio-temporal Difference,简称STD)对这些FTEs的维数、运动速度和尺度大小进行详细分析发现这些FTEs通常是径向尺度约为0.60-1.05 RE的准二维结构,具有尾向和昏向(或晨向)运动速度,与Cooling模型预测的通量管运动方向基本一致。通量管内电流密度较大,可达10-7A/m2。详细分析发现2004年2月11日事件中可能存在一对FTEs产生于同一条重联X-线(与北半球极隙区相连的FTEs被Cluster卫星观测到,而与南半球极隙区相连的FTEs被TC-1卫星观测到)。采用Cooling模型对这一对FTEs进行预测并与Cluster卫星观测的FTEs的运动速度进行比较,推算出TC-1卫星观测到的FTEs的运动速度和尺度,从而得出随着FTEs的尾向运动,其速度和尺度均有所增加。
     这些FTEs的运动与CUTLASS(或Stokkseyri)SuperDARN雷达观测的“极向运动雷达极光”结构(PMRAFs)(或“脉冲式电离层流”(PIFs))有着很好的对应关系,也与EISCAT Svalbard雷达观测的极向对流和软电子沉降特征有一定的对应关系。同时,这些FTEs的运动方向及Cooling模型预测的通量管运动方向与SuperDARN雷达共轭观测的南北极极区电离层对流增强方向基本一致,该对流增强的持续时间大约为4-8分钟,进而推出自磁重联发生到FTEs融入极盖区开放磁力线中的演化时间大约为4-8分钟;然而,这些FTEs在南极和北极极区电离层的响应时间(对流增强的开始时间)是不同的,进而推测出产生这些FTEs的重联点位于日下点以南(或以北)的日侧磁层顶区域。
     在北向行星际磁场条件(IMF BZ>0)下,本文还详细分析了2004年3月26日09:00-10:00 UT期间和2005年1月11日09:00-14:00 UT期间Cluster/TC-1卫星穿越磁层顶前后的磁通门磁力计(FGM)和电子/电流试验仪(PEACE)及地面CUTLASS SuperDARN雷达和我国北极黄河站全天空极光的同时观测资料,并考察了相应时刻低轨卫星DMSP_F13观测的粒子沉降和等离子体对流数据。分析被投影到局地磁层顶法线坐标系(LMN)的磁场数据和卫星PEACE记录的电子能谱数据发现在北向行星际条件下卫星观测到了一些典型的磁重联特征,该特征伴随有明显的粒子加速和等离子体混合特征。这些磁重联可能是高纬尾瓣重联。地面CUTLASS SuperDARN雷达观测到了“赤向运动雷达极光结构”和向阳对流的增强,该对流增强的持续时间大约为8分钟,说明这些高纬尾瓣重联的演化时间大约为8分钟。我国北极黄河站全天空极光观测显示了北极极区电离层对磁层顶磁重联有很好的响应,并且发现极光增亮的区域与行星际磁场(IMF)时钟角有很强的依赖关系。DMSP_F13卫星观测的电离层相应区域软电子沉降和离子色散特征进一步证实了尾瓣重联的发生,该卫星观测的等离子体对流方向和Cluster卫星观测的高纬重联产生的FTEs的运动方向及我国北极黄河站观测的该区域的极光运动趋势基本一致。
     日侧磁层顶磁重联过程及其动力学效应十分复杂,本文仅分析和研究了五个典型的事件。尽管本文揭示了一些新的结构和现象,并对FTEs的演化过程形成了一些新的认识,但对磁层顶磁重联的整体形态、磁重联的三维几何结构、磁层顶磁重联对极区电离层的影响等问题尚待进一步深入研究。
The dayside magnetopause boundary layer is the key region for the solar wind-magnetosphere coupling and interaction. Solar wind plasma can easily cross this region to transfer mass, momentum and energy into the magnetosphere. One of the most important ways of these transferring processes is the magnetic reconnection. Based on the good geographic locations of magnetic conjugate between Chinese Zhongshan Station in Antarctic and Yellow River Station in Arctic, this thesis coordinated Cluster/Double Star (TC-1 and TC-2), Super Dual Auroral Radar Network (SuperDARN) and EISCAT radar observations for five selected cases of the magnetic reconnections on the dayside magnetopause during southward or northward interplanetary magnetic field (IMF). The five cases were analyzed in some detail for trying to reveal the evolutions and physical characteristic of the flux transfer events (FTEs) originated by the magnetic reconnections on the dayside magnetopause.
     Under southward IMF (BZ<0) condition, this thesis analyzed the observations of the flux gate magnetometer (FGM) and PEACE instruments onboard the Cluster/TC-1 Spacecraft, and the EISCAT and SuperDARN radars between 11:48 and 13:00 UT on 1 April 2004, 09:00 and 12:00 UT on 11 February 2004, and 12:00 and 12:40 UT on 13 March 2004. The magnetic field data are expressed in local boundary normal coordinates (LMN), which have been found by performing minimum variance analysis (MVA) on the local magnetopause crossing of Cluster 3 and TC-1. Combining with the electron spectrograms data from the PEACE instrument onboard Cluster/TC-1, it is shown that a series of FTEs, which originated from the low-latitude magnetic reconnections on the dayside magnetopause, was observed before and after the magnetopause crossing of Cluster/TC-1. These FTEs appeared quasi-periodically.We applied the four-spacecraft techniques of“Minimum Directional Derivative (or Difference)”(MDD) and“Spatio-temporal Difference”(STD) to calculate the dimension, motion and scale of these FTEs. With a quasi-2-D structure and a scale of 0.60~1.05RE with the current density reaching as high as about 10-7A/m2, the inferred northwardly reconnected flux tubes for these FTEs are shown to move northward, duskward (or downward) and tailward, which consistent with the expected motion of the reconnected magnetic flux tubes by running the Cooling model. It is found that there was one pair of FTEs which might be originated from the same reconnection X-line (the FTE connected to the northern cusp was observed by Cluster, and the one connected to the southern cusp was observed by TC-1) for the case of 11 February 2004. Using the Cooling model to predict the motions of the above pair of FTEs and comparing the expected motion with the motion observed by Cluster, this thesis inferred the motion of FTE measured by TC-1, and found that the speed and scale of the FTEs were increasing with its tailward motion.
     The motions of these FTEs are good corresponding with the“poleward-moving radar auroral forms”(PMRAFs) (or“pulsed ionospheric flows”(PIFs)) observed by CUTLASS (or Stokkseyri) SuperDARN radar, and also corresponding with the bursts of poleward flow and low-energy electron precipitation recorded by the EISCAT radars. Furthermore, the motion direction of the FTEs observed by Cluster/TC-1 and the expected flux tubes predicted by Cooling model are temporally correlated with clear velocity enhancements in the ionospheric convections conjugate measured by SuperDARN radar in both hemispheres. The duration of these velocity enhancements imply that the evolution time of the FTEs is about 4-8 minutes from its origin on magnetopause to its addition into the polar cap. However, the ionospheric response time was different in each hemisphere. This suggests the reconnection site is located southward (or northward) of the subsolar region.
     Under northward IMF (BZ>0) condition, this thesis also analyzed the simultaneous observations of the FGM and PEACE instruments onboard the Cluster Spacecraft, the CUTLASS SuperDARN radar and the all sky imager at Chinese Yellow River Station in Ny-?lesund, Arctic during 09:00-10:00 UT on 26 March 2004 and 09:00-14:00 UT on 11 January 2005. Combining the magnetic field data expressed in LMN coordinates with the electron spectrograms data from the PEACE instrument onboard Cluster 1, it is shown that a series of high-latitude lobe reconnection signatures were observed, with clear accelerating and mixing of magnetosheath and magnetospheric plasma populations. These magnetic reconnection signatures might be originated by the high-latitude/lobe reconnection on the dayside magnetopause. A series of“equator-ward moving radar auroral forms”(EMRAFs) and enhanced sunward flows were observated by CUTLASS SuperDARN radar. The durations of the flow enhancements is about 8 minutes, suggested that the evolution time of the magnetic lobe reconnections is about 8 minutes from its origin on magnetopause to its addition into the polar cap. The optical aurora measurements showed that the observational ionospheric region was good response to the magnetopause reconnections. The regions of the aurora brightening were much dependent on the IMF clock angle. The low-altitude particle precipitation, observed by the Defense Meteorological Satellite Program (DMSP) F13, are presented to show the intense magnetosheath-like electron precipitation and a stepped ion dispersion signature, which are the good response to the pulse magnetopause reconnections (FTEs) and the boundary structure crossing. The plasma flow measurements by F13 were consistent with the motion of the FTE (originated by lobe reconnection) observed by Cluster and the trending of the aurora motions in the corresponding regions of the observation from the all sky imager at Chinese Yellow River Station.
     The magnetic reconnections on the dayside magnetopause and their dynamic effect are quite complicated. This thesis only detailedly analyzed and studied five typical cases. Although this thesis revealed some new structures and phenomena, and formed some new understanding, the global configurations of the magnetic reconnections on the dayside magnetopause, the 3-D geometry structure of magnetic reconnections, and the ionosperic response to the dayside magnetic reconnection in polar region still remain to be further analyzed and studied.
引文
[1]濮祖荫.磁层物理学.刘振兴等著《太空物理学》第五章.王大衍,张厚英主编.中国现代科学全书·空间科学卷.哈尔滨:哈尔滨工业大学出版社. 2005. 95-181
    [2] Champan S. and Ferraro V. C. A. A new theory of magnetic storms, Part 1, The initial phase. Terr. Magn. Atmosph. Elec. 1931, 36(77). 171-186
    [3] Biermann L. and Schlüter A. Cosmic Radiation and Cosmic Magnetic Fields. II. Origin of Cosmic Magnetic Fields. Phys. Rev. 1951, 82(6). 863-868
    [4] Dungey J. W. Electrodynamics of the outer atmosphere. Pennsylvania State University Ionosphere Research Laboratory Report 69. 1954
    [5] Chaill L. J. and Patel V. L. The boundary of the geomagnetic field. Planet Space Sci. 1967, 15. 997-1033
    [6] Russell C. T. The structure of the magnetopause, in Geophys. Mono. 90. Physics of the Magnetopause. Edited by Song P., Sonnerup B. U. ?., and Thomsen M. F. Washington, DC. American Geophysical Union. 1995, 81-98
    [7] Axford W. I. and Hines C. O. A unifing theory of high-latitude geophysical phenimana and geomagnetic storms. Can. J. Phys. 1961, 39. 1433-1464
    [8] Dungey, J. W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6. 47-48
    [9] Haerendel, G., Paschmann, G., Sckopke, N., et al. The frontside boundary layer of the magnetopause and the problem of reconnection. J. Geophys. Res. 1978, 83. 3195-3216
    [10] Russell, C. T. and Elphic, R. C. Initial ISEE magnetometer results. magnetopause observations. Space Sci. Rev. 1978, 22. 681-715
    [11] Russell C. T. and Elphic R. C. ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett. 1979, 6. 33-36
    [12] Paschmann G. Haerendel G. Papamastorakis I. et al. Plasma and magnetic field characteristics of magnetic flux tyransfer events. J. Geophys. Res. 1982, 87(A4).2159-2168
    [13]刘振兴、祝中伟、濮祖荫.磁层顶高纬边界层的瞬时重联过程.地球物理学报. 1995, 38. 141-149
    [14] Lui, A.T.Y., Jacquey, C. , Lakhina, G. S., et al. Critical issues on magnetic reconnection in space plasmas. Space Sci. Rev. 2005, 116. 497-521. doi:10.1007/s11214-005-1987-6
    [15] Sweet P. A. The neutral point of the solar flares. In: Electromagnetic Phnomena in Cosmic Physics. Edited by Lehner B. Cambridge University Press. 1958. 153
    [16] Parker, E. N. Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 1957, 62. 509
    [17] Petschek, H. E. Magnetic field annihilation. In: AAS-NASA Symposium on the Physics of Solar Flares. NASA Spec. Publ. Sp-50. 1957, 425-439
    [18] Hughes, W. J. The magnetopause, magnetotail, and magnetic reconnection. In: Introduction to Space Physics. Edited by Kivelson M. G. and Russell C. T. New York: Press Syndicate of the University of Cambridge. 1995, 227
    [19] Lee L. C. A review of magnetic reconnection: MHD models. Geophys. Mono. 90. Physics of the Magnetopause. Edited by Song P., Sonnerup B. U. ?., and Thomsen M. F. American Geophysical Union. Washington, DC. 1995. 139
    [20] Paschmann, G. Plasma acceleration at the Earth's magnetopause: Evidence for magnetic reconnection. Nature. 1979, 282. 243-246
    [21] Sonnerup, B. U. ?., Paschmann, G., Papamaastorakis, I. Evidence for magnetic field reconnection at the Earth’s Magnetopause. J. Geophys. Res. 1981, 86. 10049-10067
    [22] Gosling, J. T., Thomsen, M. F., Bame S. J., et al. Plasma flow reversal at the dayside magnetopause and the origin of assymmetric polar cap convection. J. Geophys. Res. 1990, 95. 8073-8084
    [23] Lee, L. C., and Fu, Z. F. A theory of magnetic flux transfer at the earth's magnetopause. Geophys. Res. Lett. 1985, 12. 105-108
    [24] Scholer, M. Magnetic flux transfer at the magnetopause based on single X-line bursty reconnection. Geophys. Res. Lett. 1988, 15. 291-294
    [25] Southwood, D. J., Saunders, M. A., and Saunders, M. A. What are flux transfer events? Planetary and Space Science. 1988, 36 (05). 503-508
    [26] Liu, Z. X., and Hu, Y. D. Local magnetic field reconnection cause by vortices in the flow field. Geophys. Res. Lett. 1988, 15. 752-755
    [27]刘振兴,濮祖荫.涡旋诱发重联模型(I)-动力学特征.地球物理学报.1990, 33. 1-11
    [28]刘振兴,濮祖荫.涡旋诱发重联模型(II)-通量传输事件理论和模拟.地球物理学报.1990, 33. 249
    [29] Scholer, M. Models of flux transfer events. In: Physics of the Magnetopause, Geophys. Monogr. Ser. Vol. 90. Edited by Song P. Sonnerup B. U. ?., and Thomsen M. F. Washington, DC. American Geophysical Union. 1995. 81
    [30]王水,李罗权.磁场重联.合肥:安徽教育出版社. 1998
    [31] Escoubet, C. P., Schmidt, R., and Goldstein, M. I. Cluster - Science and mission overview. Space Sci. Rev. 1997, 79. 11-32
    [32] Owen, C. J. , Fazakerley, A. N., Carter, P. J., et al. Cluster PEACE observations of electrons during magnetospheric flux transfer events. Ann. Geophys. 2001, 19. 1509-1522
    [33] Dunlop, M. W., Taylor, M. G. G. T., Davies, J. A., et al. Coordinated Cluster/Double Star observations of dayside reconnection signatures. Ann. Geophys. 2005, 23. 2867-2875. SRef-ID: 1432-0576/ag/2005-23-2867
    [34] Pu, Z. Y., Zong, Q. G., Fritz, T., et al. Multiple Flux Rope Events At The High-Latitude Magnetopause: Cluster/Rapid Observation On January 26, 2001. Survey in Geophys. 2005 , 26(1 - 3) . 193-214
    [35] Fear, R. C., Fazakerley, A. N., Owen, C. J., et al. Cluster observations of bounday layer structure and a flux transfer event near the cusp. Ann. Geophys. 2005,23. 2605-2620
    [36] Zheng, Y., Le, G., Slavin, J. A., et al. Cluster observation of continuous reconnection at daysidemagnetopause in the vicinity of cusp. Ann. Geophys. 2005, 23. 2199-2215
    [37] Hasegawa, H., Sonnerup, B. U. ?., Owen, C. J., et al. The structure of flux transfer events recovered from Cluster data. Ann. Geophys. 2006, 24. 603-618
    [38]黄宗英,濮祖荫,肖池阶等. 2001年1月26日高纬磁层顶通量管事件的观测研究.地球物理学报. 2004 , 47(2). 181-189
    [39]左平兵,刘绍亮,金曙平等. 2001年3月2日磁通量管传输事件特性的研究.地球物理学报. 2004, 47(3). 376-384
    [40]姚丽,刘绍亮,金曙平等.高纬向阳侧磁层顶通量传输事件的特性研究——通量管轴线方位及运动分析.地球物理学报. 2005, 48 (6). 1217-1225
    [41]张清和,刘瑞源,黄际英等. 2004年4月1日磁通量传输事件特性的研究——通量管内电流密度、粒子运动与管轴方向的对比分析.极地研究. 2007, 19(2). 121-130
    [42]张清和,刘瑞源,黄际英等. 2004年2月11日Cluster卫星和CUTLASS雷达同时观测的磁通量管传输事件.地球物理学报. 2008, 51(1). 1-9
    [43] Wannberg G., Wolf, L., Vanhainen, L.-G., et al. The EISCAT Svalbard radar: A case study in modern incoherent scatter radar system design. Radio Sci. 1997, 32. 2283-2307
    [44] Greenwald, R. A., et al. Darn/SuperDARN: A global view of the dynamics ofhigh-latitude convection. Space Sci. Rev. 1995, 71. 761-796
    [45] Amm, O., Donovan, E. F., Frey, H., et al. Coordinated studies of the geospace environment using Cluster, satellite and ground-based data: an interim review. Ann. Geophys. 2005, 23. 2129-2170
    [46] van Eyken, A. P., Rishbeth, H., Willis, D. M., et al. Initial EISCAT observations of plasma convection at invariant latitudes 70°–77°. J. atmos. terr. Phys. 1984, 46. 635-641
    [47] Goertz, C. K., Nielsen, E., Korth, A., et al. Observations of a possible signature of flux transfer events. J. Geophys. Res. 1985, 90. 4069-4078
    [48] Elphic, R. C., Lockwood, M., Cowley, S.W. H., et al. Flux transfer events at the magnetopause and in the ionosphere. Geophys. Res. Lett. 1990, 17. 2241-2244
    [49] Neudegg, D. A., Yeoman, T. K., Cowley, S. W. H., et al. A flux transfer event observed at the magnetopause by the Equator-S spacecraft and in the ionosphere by the CUTLASS HF radar. Ann. Geophys. 1999, 17. 707-711
    [50] Pinnock, M., Rodger, A. S., Dudeney, J. R., et al. Observations of an enhanced convection channel in the cusp ionosphere. J. Geophys. Res. 1993, 98. 3767-3776
    [51] Pinnock, M., Rodger, A. S., Dudeney, J. R., et al. High spatial and temporal resolution observations of the ionospheric cusp. Ann. Geophys. 1995, 13. 919-925
    [52] Sandholt, P. E., Lockwood, M., Oguti, T., et al. Midday auroral breakup events and related energy and momentum transfer from the magnetosheath. J. Geophys. Res. 1990, 95. 1039-1060
    [53] Thorolfsson, A., Cerisier, J.-C., Lockwood, M., et al. Simultaneous optical and radar signatures of poleward-moving auroral forms. Ann. Geophysicae. 2000, 18. 1054-1066
    [54] Provan, G., Yeoman, T. K., and Milan, S. E. CUTLASS Finland radar observations of the ionospheric signatures of flux transfer events and the resulting plasma flows. Ann. Geophys. 1998, 16. 1411-1422
    [55] Milan, S. E., Lester, M., Cowley, S. W. H., et al. Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS and IMAGE signatures of transient magnetic flux transfer at the magnetopause. J. Geophys. Res. 2000, 105. 15 741-15 756
    [56] Wild, J. A., Cowley, S. W. H., Davies, J. A., et al. First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by theCUTLASS and EISCAT radars. Ann. Geophys. 2001, 19. 1491-1508
    [57] Wild, J. A., Milan, S. E., Cowley, S. W. H., et al. Coordinated interhemispheric SuperDARN radar observations of the ionospheric response to flux transfer events observed by the Cluster spacecraft at the high-latitude magnetopause. Ann. Geophys. 2003, 21. 1807-1826
    [58] Marchaudon, A., Cerisier, J., Bosqued, J., Dunlop, M., et al. Transient plasma injections in the dayside magnetosphere: one-to-one correlated observations by Cluster and SuperDARN. Ann. Geophys. 2004, 22. 141-158
    [59] Wild, J. A., Milan, S. E., Davies, J. A., Dunlop, M. W., et al. On the location of dayside magnetic reconnection during an interval of duskward oriented IMF, Ann. Geophys. 2007, 25. 219-238
    [60] Lockwood, M., Fazakerley, A., Opgenoorth, H., et al. Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures. Ann. Geophys. 2001, 19. 1613-1640
    [61] Lockwood, M., Opgenoorth, H. J., van Eyken, A. P., et al. Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe. Ann. Geophys. 2001, 19. 1589-1612
    [62] Moen, J., Holtet, J. A., Pedersen, A., et al. Cluster boundary layer measurements and optical observations at magnetically conjugate sites. Ann. Geophys. 2001, 19. 1655-1668
    [63] Phan, T. D., Frey, H. U., Frey, S., et al. Simultaneous Cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophys. Res. Lett. 2003, 30. 1509. doi: 10.1029/2003GL016885
    [64] Hu, H., Yeoman, T. K., Lester, M., et al. Dayside flow bursts and high-latitude reconnection when the IMF is strongly northward. Ann. Geophys. 2006, 24. 2227-2242
    [65] Cowley, S. W. H and Lockwood, M. Excitation and decay of solar driven flows in the magnetosphere-ionosphere system. Ann. Geophys. 1992, 10. 103-115
    [66] Lockwood, M. and Smith, M. F. Low- and mid-altitude cusp particle signatures for general magnetopause reconnection rate variations: 1. Theory. J. Geophys. Res. 1994, 99. 8531-8553
    [67] Lockwood, M., Davis, C. J., Smith, M. F., et al. Location and characteristics of the reconnection X-line deduced from low-altitude satellite and ground-basedobservations: 2. Defense Meteorological Satellite Program and European Incoherent Scatter data. J. Geophys. Res. 1995, 100. 21 803-21 813
    [68] McWilliams, K. A., Yeoman, T. K., and Cowley, S. W. H Twodimensional electric field measurements in the ionospheric footprint of a flux transfer event. Ann. Geophys. 2001, 18. 1584-1598
    [69] Dunlop, M. W., Balogh, A., Glassmeier, K.-H., et al. Four-point Cluster application of magnetic field analysis tools: The Curlometer. J. Geophys. Res. 2002, 107(A11). 1384. doi:10.1029/2001JA005088
    [70] Liu, Z.-X., Escoubet, C. P., Pu, Z., et al. The Double Star mission. Ann. Geophys. 2005, 23. 2707-2712
    [71]黄德宏,Moen, J., Brekke, A.等.极光亚暴期间的南极中山站地磁共轭点位置研究.地球物理学报. 2004, 46(1). 54-60
    [72] Nishino, M., Yamagishi, H., Sato, N., et al. Cusp-latitude conjugate ionospheric absorption associated with increase of solar wind dynamic pressure during strong northward IMF:a case study. Adv. Polar Upper Atmos. Res. 2004, 18. 35-52
    [73] Dunlop, M. W., Balogh, A., Southwood, D. J., et al. Configuration sensitivity of multipoint magnetic field measurements. In: Proceedings of the International Workshop on‘‘Space Plasma Physics Investigations by Cluster Regatta’’. Graz, 1990, Feb., 20– 22. ESA SP-306. 23-28. Eur. Space Agency, Paris, France
    [74] Robert, P., Roux, A., and Coeur-Joly, O. Validity of the estimate of the current density along Cluster orbit with simulated magnetic data. In: Cluster workshop on Physical Measurements and Mission Oriented Theory. ESA SP-371, 1994, 229
    [75] Mottez, F. and Chanteur, G. Surface crossing by a group of satellites: a theoretical study. J. Geophys. Res. 1994, 99. 13 499-13 507
    [76] Paschmann, G. and Daly, P. W. (Eds) Analysis Methods for Multi-Spacecraft Data, ISSI Scientific Report SR-001. 1998
    [77] Escoubet, C. P., Fehringer, M., and Goldstein, M. Introduction: the Cluster mission. Ann. Geophys. 2001, 19. 1197-1200
    [78] Liu, Q. and Rodriguez-Canabal, J. A preliminary study on collaborative geomagnetic measurements between Cluster II and Double Star Program. In: ESA/ESOC internal document. 1998
    [79] Smith, C. W., L’Heureux, J. N. F., Acu?na, M. H., et al. The ace magnetic fields experiment. Space Sci. Rev. 1998, 86. 613-632
    [80] McComas, D. J., Bame, S. J. , Barker, P., et al. Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev. 1998, 86. 563-612
    [81] Sonnerup, B. U. ?. and Cahill, J. L. J. Magnetopause structure and attitude from Explore 12 observations. J. Geophys. Res. 1967, 72(1). 171-183
    [82] Sonnerup, B. U. ?., Papamastorakis, I., Paschmann, G., et al. The magnetopause for large magnetic shear: Analysis of convection electric fields from AMPTE/IRM. J. Geophys. Res. 1990, 95. 10 541-10 557
    [83] Sonnerup, B.U. ?. and Maureen, S. Minimum and Maximum Variance Analysis. In: Analysis Methods for Multi-Spacecraft Data. Edited by Gotz Paschmann and Patrick W. Daly. Noordwijk: ESA Publications Division. 1998, 185-220
    [84]黄宗英.高纬磁层顶时空结构事例分析——高纬磁层顶边界层CLUSTER观测数据分析研究.北京大学博士论文. 2006
    [85] Paschmann, G., Papamastorakis, I., et al. The magnetopause for large magnetic shear: AMPTE /IRM observations. J. Geophys. Res. 1986, 91. 11 099-11 115
    [86] Hudson, P. D. Discontinuities in an anisotropic plasma and their identification in the solar wind. Planet. Space Sci. 1970, 18. 1611
    [87] Sonnerup, B. U. ?., Papamastorakis, I., et al. Magnetopause properties from AMPTE/IRM observations of the convection electric field: Method Development. J. Geophys. Res. 1987, 92(A11). 12 127-12 159
    [88] Steven, J., Shwartz. Shock and discontinuity normals, Mach numbers, and related Parameters. In: Analysis Methods for Multi-Spacecraft Data. Edited by Gotz Paschmann and Patrick W. Daly. Noordwijk: ESA Publications Division. 1998, 249-270
    [89] Landau, L. D. and Lifshits, E. M. Course of Theoretical Physics. (1, 5). New York: Pergamon Press. 1960
    [90] Sonnerup, B. U. ?. Magnetic field reconnection. In: Solar System Plasma Physics III. Edited by L. J. Lanzerotti, C. F. Kennel, and E. N. Parker. North Holland Pub. Co. Amsterdam. 1979, 45-108
    [91] Paschmann, G., Sonnerup, B. U. ?., Papamastorakis, I., et al. Plasma acceleration at the earth’s magnetopause: Evidence for reconnection. Nature. 1979, 282. 243-246
    [92] De-Hoffmann, F. and Teller, E. Magneto-hydrodynamic shocks. Phys. Rev. 1950, 80. 692-703
    [93] Walèn, C. On the Theory of Sunspots. Arkiv for Astronomi. 1944, 30. 1-87
    [94] Aggson, T. L., Gambardell and Maynard, N. C. Electric field measurements at the magnetopause: 1. Observation of large velocities at rotational magnetopause discontinuities. J. Geophys. Res. 1983, 88. 10 000-10 010
    [95] Aggson, T. L., Gambardella, P. J., and Maynard, N. C. Reply, J. Geophys. Res. 1985, 90(A8). 7631-7633
    [96] Paschmann, G. Comment on“Electric field measurements at the magnetopause: 1. Observation of large convective velocities at rotational magnetopause discontinuities”by T. L. Aggson, D. J. Gambardella, and N. D. Maynard. J. Geophys. Res. 1985, 90. 7629-7630
    [97] Russell, C. T. The magnetosphere. In: The Solar Wind and the Earth. Edited by S. -I. Akasofu and Y. Kamide. Tokyo: Terra Scientific Publishing Company (TERRAPUB). 1987, 73-100
    [98] Shi, Q. Q., Shen, C., Pu, Z. Y., et al. Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster. Geophys. Res. Lett. 2005, 32. L12105. doi: 10.1029/2005GL022454
    [99] Chanteur, G. Spatial interpolation for four spacecraft: Theory. In: Analysis Methods for Multi-Spacecraft Data. Edited by Paschmann G. and Daly P. W. Int. Space Sci. Inst. Bern. 1998. 349-369
    [100] Shi, Q. Q., Shen, C., Dunlop, M. W., et al. Motion of observed structures calculated from multi-point magnetic field measurements: Application to Cluster. Geophys. Res. Lett. 2006, 33. L08109. doi: 10.1029/2005GL025073
    [101] Cooling, B. M. A., Owen, C. J., and Schwartz, S. J. Role of the magnetosheath flow in determining the motion of the open flux tubes. J. Geophys. Res. 2001, 106. 18763-18775
    [102] Cowley, S. W. H. and Owen, C. J. A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet. Space Sci. 1989, 37. 1461-1475
    [103]肖池阶,濮祖荫,黄宗英等. 2001年1月26日高纬磁层顶通量管事件的观测研究——空间电流密度计算及分析.地球物理学报. 2004, 47(4). 555-561
    [104] Robert, P., Dunlop, M. W., Roux, A., et al. Accuracy of Current Density Determination. In: Analysis Methods for Multi-Spacecraft Data. Edited by Gotz Paschmann and Patrick W. Daly. ISSI Scientific Report SR-001(Electronic edition 1.1). 1998, 2000 ISSI/ESA
    [105] Russell, C. T. Geophysical coordinate transformation. Cosmic. Electrodyn. 1971, 2. 184-196
    [106] Hapgood, M. A. Space physics coordinate transformations: A user guide. Planet.Space Sci. 1992, 40. 711-717
    [107] Liou, K., Newell, P. T., and Meng, C.-I. Characteristics of the solar wind controlled auroral emissions. J. Geophys. Res. 1998, 103. 17 543-17 557
    [108] Fairfield, D. H.: Average and unusual locations of the Earth’s magnetopause and bow shock. J. Geophys. Res. 1971, 76. 6700-6716
    [109] Crooker, N. U. Dayside merging and cusp geometry. J. Geophys. Res. 1979, 84. 951-959
    [110] Tsyganenko, N. A., and Stern, D. P. Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 1996, 101(A12). 27 187-27 198
    [111] Shue, J. H., Song, P., Russell, C. T., et al. Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 1998, 103(A8). 17 691-17 700
    [112] Balogh, A., Carr, C. M., Acuna, M. H., et al. The Cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 2001, 19. 1207-1217. SRef-ID: 1432-0576/ag/2001-19-1207
    [113] Johnstone, A. D., Burge, S., Carter, P. J., et al. PEACE: A plasma electron and current experiment. Space Sci. Rev. 1997, 79. 351-398
    [114] Taylor, M. G. G. T., Fazakerley, A., Krauklis, I. C., et al. Four point measurements of electrons using PEACE in the high-altitude cusp. Ann. Geophys. 2001, 19. 1567-1578
    [115] Dunlop, M. W., Balogh, A., Cargill, P., et al. Cluster observes the Earth’s magnetopause: coordinated four-point magnetic field measurements. 2001, 19. 1449-1460
    [116] Zhang, Q. H., Liu, R. Y., Dunlop, M. W., et al. Simultaneous tracking of reconnected flux tubes: Cluster and conjugate SuperDARN observations on 1 April 2004. Ann. Geophys. 2008, 26(6). 1545-1557.
    [117] Marchaudon, A., Owen, C. J., Bosqued, J. M., et al. Simultaneous Double Star and Cluster FTEs observations on the dawnside flank of the magnetosphere. Ann. Geophys. 2005, 23. 2877-2887
    [118] Lockwood, M., Lanchester, B. S., Frey, H. U., et al. IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection. Ann. Geophys. 2003, 21. 955-982
    [119] Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., et al. Observations of reverse polarity flux transfer events at the Earth’s magnetopause. Nature. 1982, 300. 23-26
    [120] Lockwood, M. and Wild, M. N. On the quasi-periodic nature of magnetopause flux-transfer events. J. Geophys. Res. 1993, 98. 5935-5940
    [121] Pitout, F., Newell, P. T., and Buchert, S. C. Simultaneous high- and low-latitude reconnection: ESR and DMSP observations. Ann. Geophys. 2002, 20. 1311-1320
    [122] Marcucci, M. F., Coco, I., Ambrosino, D., et al. Extended SuperDARN and IMAGE observations for northward IMF: Evidence for dual lobe reconnection. J. Geophys. Res. 2008, 113. A02204. doi:10.1029/2007JA012466
    [123] Fear, R. C., Milan, S. E., Fazakerley, A. N., et al. Motion of flux transfer events: a test of the Cooling model. Ann. Geophys. 2007, 25. 1669-1690
    [124] Retino, A., Sundkvist, D., Vaivads, A., et al. In situ evidence of magnetic reconnection in turbulent plasma. Nature physics. 2007, 3. 235-238
    [125] Russell, C. T., Berchem, J., and Luhmann, J. G. ON THE SOURCE REGION OF FLUX TRANSFER EVENTS. Adv. Space Res. 1985, 5(4). 363-368
    [126] Pritchett, P. L. Collisionless magnetic reconnection in a three-dimensional open system. J. Geophys. Res. 2001, 106. 25 961-25 978
    [127] Le, G., Zheng, Y., Russell, C. T., et al. Flux transfer events simultaneously observed by Polar and Cluster: Flux rope in the subsolar region and flux tube addition to the polar cusp. J. Geophys. Res. 2008, 113. A01205. doi:10.1029/2007JA012377
    [128] Lockwood, M. and Moen, J. Reconfiguration and closure of lobe flux by reconnection during northward IMF: possible evidence for signatures in cusp/cleft auroral emissions. Ann. Geophys. 1999, 17. 996-1011
    [129] Huang, C.-S., Sofko, G. J., Koustov, A.V., et al. Evolution of ionospheric multicell convection during northward interplanetary magnetic field with |BZ/BY| > 1, J. Geophys. Res., 2000, 105(A12). 27 095-27 107
    [130] Sandholt, P. E., Farrugia, C. J., Moen, J., et al. A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation. J. Geophys.Res. 1998, 103(A10). 23 325-23 345
    [131] Sandholt, P. E. and Farrugia, C. J. On the dynamic cusp aurora and IMF By. J. Geophys. Res. 1999, 104(A6). 12 461-12 472
    [132]Sandholt, P. E., Farrugia, C. J., and Lybekk, B. The dynamic cusp aurora on 30 November 1997: response to southward turning of the IMF. Ann. Geophys. 1999, 17. 1155-1165
    [133] Lorentzen, D. A., Kintner, P. M., Moen, J., et al. Pulsating dayside aurora in relation to ion upflow events during a northward interplanetary magnetic field (IMF) dominated by a strongly negative IMF BY. J. Geophys. Res. 2007, 112(A03301). doi:10.1029/2006JA011757
    [134] Newell, P. T., Burke, W. J., Sánchez, E. R., et al. The Low-Latitude Boundary Layer and the Boundary Plasma Sheet at Low Altitude: Prenoon Precipitation Regions and Convection Reversal Boundaries. J. Geophys. Res. 1991, 96(A12). 21 013-21 023
    [135] Newell, P. T., Burke, W. J., Meng, C.-I., et al. Identification and Observations of the Plasma Mantle at Low Altitude. J. Geophys. Res. 1991, 96(A1). 35-45
    [136] Newell, P. T., Meng, C. -I., and Huffman, R. E., Determining the Source Region of Auroral Emissions in the Prenoon Oval Using Coordinated Polar BEAR UV-Imaging and DMSP Particle Measurements. J. Geophys. Res. 1992, 97(A8). 12 245-12 252
    [137] Priest, E. R. and Forbes, T. G. Magnetic Reconnection: MHD Theory and Applications. Cambridge: Cambridge Univ. Press. 2000
    [138] Bhattacharjee, A., Ma, Z.W., and Wang, X. Recent developments in collisionless reconnection theory: Applications to laboratory and space plasmas. Phys. Plasmas. 2001, 8(5). 1829-1839.
    [139] Wang, X. and Bhattacharjee, A. Nonlinear dynamics of the m=1 instability and fast sawtooth collapse in high-temperature plasmas. Phys. Rev. Lett. 1993, 70(11). 1627-1630. doi:10.1103/PhysRevLett.70.1627
    [140] Wang, X. and Bhattacharjee, A. Nonlinear dynamics of the m=1 kink-tearing instability in a modified magnetohydrodynamic model. Phys. Plasmas. 1995, 2(1). 171-181
    [141]张贤国.地球磁层中的磁场重联研究——三维磁重联现象研究初步.北京大学博士论文.2007
    [142] Dunlop M. W., Zhang Q. H., Xiao C. J., et al. Reconnection at high latitudes: anti-parallel merging. Phys. Rev. Lett. Submitted, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700