用户名: 密码: 验证码:
松辽盆地南部梨树断陷深层油气成因与成藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨树断陷油气资源量丰富,但与松辽盆地其它断陷相比,油气成因和聚集成藏研究相对薄弱。本论文以梨树断陷深层烃源岩与油气为研究对象,综合利用现代有机地球化学分析方法和盆地模拟等技术,在烃源岩评价和烃源岩、原油、天然气地球化学研究基础上,深入探讨了梨树断陷深层油气成因与来源;通过系统剖析油藏烃类的非均质性、原油含氮化合物绝对浓度与相对比值以及生物标志化合物尤其是成熟度参数的变化特征,提出了梨树断陷油气运移方向、路径与聚集模式;开展了不同构造区代表性单井埋藏史研究,同时结合储层流体包裹体的详细研究以及地质构造和输导体系分布特征,明确了梨树断陷油气藏形成期次与成藏时间,研究成果为梨树断陷深层油气勘探提供了科学理论依据。
     对梨树断陷不同地区不同层位烃源岩进行了系统评价,指出烃源岩的空间展布特征。营城组和沙河子组烃源岩厚度大且有机质丰度高,登娄库组烃源岩次之。烃源岩以Ⅱ2-Ⅲ型有机质为主,洼陷带有机质类型优于斜坡带,大部分烃源岩处于成熟-高成熟阶段。平面上,桑树台洼陷带烃源岩沉积厚度最大且有机质丰度高,自南西-北东向,烃源岩厚度和有机碳含量逐渐减小;纵向上,营城组有机碳含量介于0.02%~12.01%之间,烃源岩最厚处位于孤家子地区,厚度为731m,双龙地区烃源岩厚度达200m,好-优质烃源岩分布于孤家子-十屋-后五家户一带,苏家屯次洼和双龙地区均发育一定的好-中等烃源岩,八屋部分地区主要为中等烃源岩,而秦家屯和北部斜坡地区基本无烃源岩分布;沙河子组有机碳含量范围为0.08%~7.42%,西南洼陷带烃源岩沉积厚度达900m,双龙地区源岩厚度达200m,皮家-十屋-孤家子-后五家户一带主要发育好-优质烃源岩,且秦家屯、双龙和苏家屯地区也分布有一定的好烃源岩;洼陷区登娄库组烃源岩厚度可达500m,有机碳含量为3.8%~5.5%,而双龙地区登娄库组烃源岩厚度达300m以上,有机碳含量均值为2.02%。
     根据生物标志化合物组合特征将研究区的烃源岩划分为三种类型:Ⅰ类源岩沉积于深湖-半深湖强还原微咸水-半咸水沉积相,以水生生物和陆源高等植物为母质来源,正构烷烃呈双峰态,三环萜烷/藿烷值在0.29-1.24之间,C24四环二萜/C26三环萜烷值为0.35~0.94, C27/C29aaa20R甾烷为0.58~1.18, Pr/Ph为0.29~0.70,伽马蜡烷/C30藿烷值为0.19~0.40;Ⅱ类源岩沉积于还原的半咸水-咸水环境,以高等植物输入为主,正构烷烃呈单峰,三环萜烷/藿烷值为0.75~1.97,C24四环二萜/C26三环萜烷比值较低,为0.24~0.29, aaa20R甾烷C27/C29为0.35~0.50, Pr/Ph为0.88-0.95,伽马蜡烷/C30藿烷值为1.14~2.77;Ⅲ类烃源岩沉积于弱还原-弱氧化的淡水-微咸水的滨浅湖环境,有机质以高等植物输入为主,正构烷烃呈后峰型,高碳数部分具有明显的奇碳优势,三环萜烷/藿烷值较低,为0.08~0.41,C24四环二萜/C26三环萜烷值0.98~5.34, C27/C29aaa20R甾烷比值为0.07~0.47, Pr/Ph为1.03~4.27,伽马蜡烷/C30藿烷值为0.06~0.27。
     梨树断陷原油划分为两种成因三种类型:Ⅰ类原油源于强还原微咸水-咸水环境条件,有机质以陆生高等植物为主,三环萜烷/藿烷为0.07~0.42,C24四环二萜/C26三环萜为0.41~1.29,C28和C29三环萜烷丰度较低,C29甾烷优势分布,伽马蜡烷/C30藿烷为0.16~0.60,C29降藿烷>C29Ts>C30重排藿烷,Ts≤Tm;Ⅱ类原油来源于还原的咸水环境,母源以陆生高等植物为主,三环萜烷/藿烷值较高,为0.43~4.17,C24四环二萜/C26三环萜值仅0.10~0.29,C28和C29三环萜烷丰富,C29规则甾烷丰度较高,伽马蜡烷/C30藿烷值为0.42~1.10,C29降藿烷     精细油源对比结果表明,Ⅰ类原油与SN202井和SN18井营城组中下部烃源岩均具有C28和C29三环萜烷丰度较低,Ts与Tm相当,C30重排藿烷和伽马蜡烷丰度较低的共同特征;Ⅱ类原油与SN203井沙河子组中上部烃源岩均具有高丰度的C28和C29三环萜烷和C30重排藿烷以及伽马蜡烷等含量丰富的特征,混源油来源于上述两套烃源岩混合供烃。
     梨树断陷天然气为有机成因的混合气:①原油伴生气,主要分布于皮家、八屋等油气田;②不同成熟度的混合气,如苏家屯地区梨2井和四五家子地区W162井天然气可能为原油伴生气与原油裂解气的混合气;③孤家子、新立地区以及后五家户油气田HD20-18和HD26-17井天然气为煤成气与油型气的混合气。油型气主要源于断陷中心的营城组和沙河子组烃源岩,而煤成气主要来源于断陷中心的沙河子组煤系烃源岩。
     梨树断陷原油横向上主体沿西南-东北向向周缘斜坡区侧向运移,纵向上,沿断层向上垂向运移:Ⅰ类原油来源于西南深洼带营城组中下部源岩,沿断层、不整合面和连续砂体沿SW-NE向运移至断陷东北部;Ⅱ类原油源于西南深洼带沙河子组中上部烃源岩,向东北部运移。
     梨树断陷有登娄库期、泉头期和泉头末-嫩江期三期油气成藏。秦家屯地区登娄库组油气藏主要形成于泉头末期,营城组油气藏主要在泉头中期成藏,沙河子组油气藏主要在泉头早期成藏;八屋地区营城组油藏主要成藏期为泉头期,沙河子组油气藏成藏于登娄库末期和泉头期;北部斜坡营城组油气成藏期主要为泉头期;双龙地区登娄库组油气藏主要在泉头末-嫩江期成藏;后五家户地区登娄库组油气藏主要成藏期为泉头期,而营城组油藏主要在登娄库期聚集成藏。
The hydrocarbon resources of Lishu fault depression are rich, but compared with other faulted basins in Songliao basin, the research on oil and gas origin and accumulation is relatively weak. By taking source rocks, oils and gases from deep strata in Lishu fault depression as research objects and integrating utilization of modern organic geochemistry analysis methods and basin model etc technologies, this paper made a further discussion on oil and gas origin on the basis of source rocks evaluation and the geochemical study on source rocks, crude oils and natural gases, through systematical analysis on heterogeneity in reservior hydrocabon and variation characteristics of absolute concentrations and relative ratios of nitrogen compouns and biomarkers especially maturity parameters, put forward the hydrocarbon migration direction and pathway and accumulation mode of Lishu fault depression; carried out study of the burial history of representative single wells in different tectonic regions, meanwhile combining detailed study of fluid inclusions in reserviors and the characteristics of geological structure and petroleum transportation system, explicated the formation stages and accumulation time of hydrocarbon reservoirs in Lishu fault depression, the research result provides a scientific theory basis for exploration of deep reservoirs in Lishu fault depression.
     The spatial extension characteristcs of source rocks is pointed out in this paper based on systematical evaluation of source rocks from different horizons and regions in Lishu fault depression. The source rocks from Yingchang and Shahezi formations have large thickness and high abundance of organic matter, and Denglouku formation followed by. The major organic matter types of source rocks are Ⅱ2-Ⅲ, the organic matter type of the source rocks in the sag zone is better than that of the slope zone, most source rocks are in mature-high mature stage. In horizontal direction, the thickness of the source rocks in Sangshutai sag is the most thick, and the organic matter content is high, from SW to NE, the thickness and the organic matter content of source rocks decrease gradually. In vertically, the organic matter content range of Yingcheng formation is from0.02%to12.01%, the most thick source rocks are in Gujiazi area, the thickness is731m, the thickness of source rocks in Shuanglong area is200m, good-high quality source rocks are distributed in Gujiazi-Shiwu-Houwujiahu region, and some middle-good quality source rocks are deposited in Sujiatun and Shuanglong areas, Bawu area mainly exists middle quality source rocks, but Qinjiatun area and the northern slope zone basically have no source rocks; the organic matter content of source rocks from Shahezi formation is between0.08%and7.42%, the deposited thickness of source rocks in southwest sag is900m, and the thickness in Shuanglong area is200m, Pijia-Shiwu-Gujiazi-Houwujiahu region exists goog-high qulity source rocks, and some good quality source rocks are deposited in Qinjiatun, Shuanglong and Sujiatun areas; the thickness of source rocks from Denglouku formation in the sag is up to500m, the TOC is3.8%~5.5%, and the thickness of source rocks from Denglouku formation in Shuanglong area is300m, and the mean TOC is2.02%.
     Based on the geochemical characteristics of biomarkers, source rocks of Lishu fault depression can be divided into three types:the Ⅰ kind of source rocks are from semi-deep to deep lake under strong reduction condition and brackish to semi-saline water, and aquatic organisms and terrigenous higher plants are the major source of organic matter, based on the following characteristics:biomodel state of n-alkanes, the ratio of tricyclic terpanes/hopane values from0.29to1.24, C24tetracyclic diterpane/C26tricyclic terpane ratios between0.35and0.94, high ratios of C27/C29ααα20R sterane (0.58~1.18), low Pr/Ph ratios (0.29~0.70) and gammacerane/C30hopane values between0.19and0.40; the Ⅱ kind of source rocks are believed to originate from semi-saline to saline water under reduction condition and terrigenous higher plants are the major organic matter origin on the basis of following features of biomarkers, n-alkanes are distributed in unimodality, tricyclic terpanes/hopane values are0.75~1.97, C24tetracyclic diterpane/C26tricyclic terpane values are low, between0.24and0.29, C27/C29aaa20R sterane values are0.35~0.50, Pr/Ph ratios are0.88~0.95, gammacerane/C3o hopane values are high, from1.14to2.77; the III kind of source rocks derived from shore-shallow lacustrine with fresh to brankish water and weak reducing to weak oxidizing environment, terrigenous higher plants are the dominated original source:n-alkanes appear a postpeak model and odd carbon number predominace in higher carbon number, tricyclic terpanes/hopane values are low, the range is from0.08to0.41, C24tetracyclic diterpane/C26tricyclic terpane values are high (0.98-5.34), C27/C29aaa20R sterane values are low, between0.07and0.47, Pr/Ph ratios are from1.03to4.27, and gammacerane/C3o hopane values are0.06~0.27.
     Crude oils from Lishu fault depression can be divided into two origins and three types:the I kind of crude oils are derived from strong reduction environment with brackish-saline water, and terrigenous higher plants are the major source of organic matter:tricyclic terpanes/hopane values range is from0.07to0.42, C24tetracyclic diterpane/C26tricyclic terpane values are0.41~1.29, and the abundance of C28and C29tricyclic terpanes is low, C29steranes are the dominant distribution in steranes, gammacerane/C3o hopane values are0.16~0.60, the abundance of C3odiahopane、C29TS and C29norhopanes increase gradually, and the relative content of Ts is less than Tm; the II kind of crude oils are originated from saline water under reduction condition, and the original source is mainly terrigenous higher plants:tricyclic terpanes/hopane values are high, between0.43and4.17, C24tetracyclic diterpane/C26tricyclic terpane values are low, from0.10to0.29, C28and C29tricyclic terpanes are abundant, C29regular steranes content is high, gammacerane/C3o hopane values are from0.42to1.10, and the abundance of C3odiahopane、C29TS and C29norhaopanes decrease gradually, Ts/Tm ratios are high, up to4.56to10.44; the Ⅲ kind of crude oils are the mixtures of Ⅰ and Ⅱ kinds of oils, the characteristics of biomarkers of the Ⅲ kind are between Ⅰ and Ⅱ kinds of oils.
     Detail oil and source correlation results show that the source rocks from the middle and lower part of Yingcheng formation in SN202and SN18wells and the Ⅰ kind of crude oils all possess the features of low abundance of C28and C29tricyclic terpanes, and similar abundance of Ts and Tm, and with relative low content of C3odiahopane、 C29Ts and gammacerane; the Ⅱ kind of crude oils and source rocks from the middle-upper part of Shahezi formation in SN203well all have the characteristics of high abundance of C28and C29tricyclic terpanes, and high Ts, C29Ts、C30diahopane and gammacerane; and mixed oils are supplied from these two sets of source rocks.
     The natural gases from Lishu fault depression are organic origin gases with mixed-gases characteristics:①oil-associated gases, are mainly distributed in Pijia,Bawu etc oil and gas fields;②mixtures from gases of different maturity, the gses from Li2well in Sujiatun area and the gases from W162well in Siwujiazi area are mixtures of oil-associated gases and oil cracking gases;③the gases from Gujiazi、Xinli areas and HD20-18and HD26-17wells in Houwujiahu oil and gas field are mixtures of oil type gases and coal formed gases. The oil type gases are mainly originated from Yingcheng and Shahezi formations in the center of the depression, and the coal-bearing source rocks of Shahezi formation in the center of subsidence are the major source of the coal formed gases.
     In the horizontal direction, the major transportation direction of crude oils in Lishu fault depression is laterally migrated from SW to NE towards periphery slope zones, in the longitudinal direction, migrated vertically along faults:the I kind of crude oils are orignated from the middle or lower-middle part source rocks of Yingcheng formation in the fault terrace zone in the southwest region, migrated from SW to NE along faults, unconformity surfaces and continuous sand bodies towards the northeast region of the depression; the Ⅱ kind of crude oils derived from the middle-upper part source rocks of Shahezi formation in the deep sag in the southwest region, migrated towards northeast region.
     The formation of hydrocarbon accumulation in Lishu fault depression had three stages:Denglouku formation period, Quantou formation period and the end of Quantou formation to Nenjiang formation. The oil reservoirs of Delouku formation in Qinjiatun area formed mainly in the end of Quantou formation period, and the oil and gas reservoir of Yingcheng formation accumulated mainly in the end of Quantou formation, and the hydrocarbon reserviors of Shahezi formation formed mainly in the early stage of Quantou formation; the major accumulation stage of the oil reserviors of Yingcheng formation of Bawu area is in Quantou formation period, hydrocarbon reserviors of Shahezi formation accumulated in the end of Denglouku formation and the Quantou formation period; the reservoir forming stage of Yingcheng formation in the northern slope zone is mainly in Quantou formation period; and the hydrocarbon reserviors of Denglouku formation in Shuanglong area are mainly formed in the end of Quantou formation to Nenjiang formation period; the main accumulation stage of the oil and gas reserviors of Denglouku formation in Houwujiahu area is Quantou formation period, and reserviors of Yingcheng formation accumulated mainly in Denglouku formation period.
引文
1.李君,等.松辽盆地南部烃源岩生烃时效性及天然气富集.新疆石油地质,2010(01):p.17-19.
    2.张俊.松辽盆地南部梨树断陷营城组烃源岩评价.石油天然气学报,2010(06):p.45-48.
    3.张婷婷,韩娇艳,遇运良.松辽盆地梨树断陷油气富集规律.科技创新导报,2011(09):p.44-45.
    4.周磊.梨树断陷十屋油田营城组物源体系、沉积特征及储层特征研究.2010,硕士学位论文,中国石油大学.
    5.卜翠萍.松辽盆地南部十屋断陷油气成藏规律研究.2007,博士学位论文,中国地质大学(北京)
    6.覃素华,袁智广,刘福春.松南盆地十屋断陷油气成藏条件分析.天然气勘探与开发,2003(02):p.77-84.
    7.刘福春,等.松辽盆地东南隆起区十屋断陷油气聚集规律.油气地质与采收率,2001(02):p.14-17.
    8.刘小平,等.松辽盆地十屋断陷深层油气成藏过程与模式.现代地质,2010(06):p.1132-1139.
    9.张玉明,松辽盆地南部十屋断陷北部深层油气成藏条件.石油天然气学报(江汉石油学院学报),2006(03):p.53-56.
    10.赵勇刚,等.松南十屋断陷深层油气成藏条件与模式研究.海洋石油,2009(01):p.21-25.
    11.温升福.松辽盆地南部十屋断陷火山岩储层油气成藏规律.甘肃科技,2007(03):p.107-109.
    12.冯昌寿.松南地区十屋断陷非构造圈闭特征.天然气工业,2004(03):p.40-43.
    13.卜翠萍,等.松辽盆地南部十屋断陷成藏期次研究.成都理工大学学报(自然科学版),2007(02):p.147-151.
    14.陈发景,汪新文,陈昭年,杨杰等.伸展断陷盆地分析.地质出版社,2004.
    15.谯汉生,于兴河,裂谷盆地石油地质.石油工业出版社,2004.
    16.田在艺,裂谷系与含油气盆地.地球科学进展,1992(03):p.64-68.
    17.李德生,渤海湾含油气盆地的地质和构造特征.石油学报,1980(01):p.6-20.
    18.朱夏.中国中新生代盆地构造和演化.科学出版社,1983.
    19.刘和甫,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制,地学前缘,2000(04):p.477-486.
    20.叶连俊,等.沉积盆地的分类.石油学报,1980(03):p.1-6.
    21.李德生.中国含油气盆地的构造类型.石油学报,1982(03):p.1-12.
    22.朱夏.试论古全球构造与古生代油气盆地.石油与天然气地质,1983(01):p.1-33.
    23.朱夏,等.中国大陆边缘构造和盆地演化.石油实验地质,1982(03):p.153-160.
    24.胡见义,黄第藩,徐树宝,等.中国陆相石油地质理论基础.石油工业出版社,1991.
    25.田在艺,中国含油气沉积盆地导论.石油工业出版社,1996.
    26.陆克政,含油气盆地分析.石油大学出版社,2003.
    27.张永刚,许卫平,王国力,等.中国东部陆相断陷盆地油气成藏组合体.石油工业出版社,2006.
    28.刘和甫,等.伸展构造与裂谷盆地成藏区带.石油与天然气地质,2005(05):p.537-552.
    29.窦立荣.陆内裂谷盆地的油气成藏风格.石油勘探与开发,2004.vol 31(2):p.29-31.
    30.李国玉,金之钧等.新编世界含油气盆地图集.石油工业出版社,2005.
    31.常峰.断陷盆地烃类流体运动的非均一性.油气地质与采收率,2009(04):p.30-33.
    32.张恺.渤海湾盆地深部壳--幔结构和大地热流场对油气分布、富集规律控制的探讨.石油勘探与开发,1993(06):p.1-7.
    33. Kabyshev, B., et al., Hydrocarbon habitat of the Dniepr-Donets Depression. Marine and Petroleum Geology,1998.15(3):p.177-190.
    34. Rice, D.D., C.N. Threlkeld, and A.K. Vuletich, Character, origin and occurrence of natural gases in the Anadarko basin, southwestern Kansas, western Oklahoma and Texas Panhandle, U.S.A. Chemical Geology,1988.71(1-3):p.149-157.
    35. Gerald M, F., Textures of sandstones and carbonate rocks in the world's deepest wells (in excess of 30,000 ft or 9.1 km):Anadarko Basin, Oklahoma-reply. Sedimentary Geology,1983.35(2):p. 156-157.
    36. Jones, P.J. and R.P. Philp, Oils and source rocks from Pauls Valley, Anadarko Basin, Oklahoma, U.S.A. Applied Geochemistry.1990.5(4):p.429-448.
    37.刘政,等.北海盆地大油气田形成条件及分布特征.中国石油勘探,2011(03):p.31-43.
    38.叶德燎,易大同.北海盆地石油地质特征与勘探实践.石油工业出版社,2004.
    39. Katz, B.J., C.R. Robison, and A. Chakhmakhchev, Aspects of hydrocarbon charge of the petroleum system of the Yamal Peninsula, West Siberia basin. International Journal of Coal Geology,2003. vol 54(1-2):p.155-164.
    40. Artyushkov, E.V. and M.A. Baer, Mechanism of formation of hydrocarbon basins:the West Siberia, Volga-Urals, Timan-Pechora basins and the Permian Basin of Texas. Tectonophysics, 1986.vol 122(3-4):p.247-281.
    41.姜忠尽,利比亚锡尔特盆地石油工业地域体系的形成.南京大学学报(自然科学版),1992(02):p.302-309.
    42.田纳新,等.利比亚锡尔特盆地油气地质特征及有利区带预测.石油与天然气地质,2008(04):p.485-490.
    43. Mohamed, A.Y., et al., Petroleum maturation modelling, Abu Gabra Sharaf area, Muglad Basin, Sudan. Journal of African Earth Sciences,2002.35(2):p.331-344.
    44.叶先灯,苏丹Melut盆地构造、沉积和油气成藏研究.2006,博士学位论文,中国科学院研究生院(广州地球化学研究所).
    45.童晓光,等.苏丹迈卢特盆地石油地质特征及成藏模式.石油学报,2006(02):p.1-5.
    46.欧阳文生,等.苏丹Muglad盆地大型油气藏储集特征.资源·产业,2006(02):p.67-70.
    47. Mann, A.E.a.P., An overview of the petroleum system of Maracaibo Basin AAPG Bulletin, 2006. v.90; no.4:p. p.657-678.
    48. S, A.A..Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt[J] AAPG Bulletin,2003.87(1):p.143-180.
    49.杨磊.中苏门答腊盆地石油地质特征与油气勘探潜力.新疆石油地质,2011(03):p.329-331.
    50.许凡,等.中苏门答腊盆地油气成藏分析与勘探潜力预测.特种油气藏,2010(01):p.41-44.
    51. Hwang, R.J., et al., Correlation and migration studies of North Central Sumatra oils. Organic Geochemistry,2002.vol 33(12):p.1361-1379.
    52.白国平,殷进垠.中亚卡拉库姆盆地油气分布特征与成藏模式.古地理学报,2007(03):p.293-301.
    53.黄正吉,珠江口盆地陆相烃源岩与油气生成.中国海上油气地质,1998(04):255-261.
    54.李晓燕,等.东濮凹陷濮卫洼陷沙三段盐湖相烃源岩特征与评价.油气地质与采收率, 2009(02):p.12-16.
    55.文志刚,等.中国东部断陷盆地富油气凹陷评价体系探讨.石油天然气学报,2011,vol 2:p.1-5.
    56.杨子成.惠民凹陷深层油气成藏机理研究.博士学位论文.2008.中国海洋大学.
    57.李美俊,孟元林,顾雪琴.深层烃源岩成烃理论研究进展.特种油气藏,2002.vol 9(4):p.1-5.
    58. MaKCHMOBC.Π著,胡征钦译.深层油气藏的形成与分布.石油工业出版社,1988.
    59. Price L C, C.J.L.a.R.L.L., Organic geochemistry of the 9.6km Bertha Rogers No.l well, Oklahoma. Organic Geochemistry.,1981. vol 3:p.59-77.
    60. Price L C, a.W.L.M., The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis. Organic Geochemistry.,1992. vol 19:p.141-159.
    61.谯汉生,方朝亮,牛嘉玉等,中国东部深层石油地质,石油工业出版社,2002.
    62.毕海龙,八屋油气田深层油气藏精细描述.2007,硕士学位论文,吉林大学.
    63.李春光,试论松辽盆地深层油气藏分布与形成.油气地质与采收率,2004(03):p.31-33.
    64.刘成林,等.松辽盆地深层天然气成藏研究.油气地质与采收率,2009(01):p.1-4.
    65.罗霞,等.松辽盆地深层煤型气与气源岩地球化学特征.石油勘探与开发,2009(03):p.339-346.
    66.王立武,等.松辽盆地深层天然气富集条件的特殊性探讨.中国石油勘探,2009(04):p.6-12.
    67.仲维维,英台断陷龙深1井区深层成藏条件分析.2010,硕士学位论文,大庆石油学院.
    68.任延广,等.松辽盆地北部深层地质特征与天然气勘探方向.中国石油勘探,2004(04):p.12-18.
    69.罗群,刘为付,郑德山.深层火山岩油气藏的分布规律.新疆石油地质,2001(03):p.196-198.
    70. haiping Huang, J.y., Yufeng yang, Xiujuan Du. Geochemistry of natural gases in deep strata of Songliao basin, NE China. International Journal of Col geology,2004.58:p.231-244.
    71.李涛,等.十屋断陷下白垩统营城组储层物性特征及评价.重庆科技学院学报(自然科学版),2009(03):p.5-7.
    72.沈安江,等.松辽盆地南部白垩纪层序地层与岩性地层油气藏勘探.石油工业出版社,2006.
    73.肖德铭.松辽盆地北部向斜区岩性油藏勘探认识与实践.石油工业出版社,2005.
    74.迟元林.松辽盆地深部结构及成盆动力学与油气聚集.石油工业出版社,2002.
    75.俞凯,等.松辽盆地南部断陷层系石油天然气地质.石油工业出版社2002..
    76.俞凯,等.十屋断陷构造格架演化与油气的关系.天然气工业,2000(05):p.32-35.
    77.杨立英,等.松辽盆地南部十屋断陷构造特征研究.地球物理学进展,2005(03):p.775-779.
    78. Hunt, J.M., Petroleum geochemistry and geology. New York:W.H. Freeman,1979.
    79.卢双舫,张敏等,油气地球化学.石油工业出版社.2008.
    80. D.H., T.B.P.W., Petroleum formation and occurrence,2nd ed, Springer Verlag,1984.
    81.张彩明,杜学斌.陆相湖盆有效烃源岩识别及其石油地质意义.青海石油,2008(02):p.5-10.
    82.秦建中,等.中国烃源岩.科学出版社,2004.
    83.黄第藩,李晋超.干酪根类型划分的X图解.地球化学,1982(01):21-30.
    84.邬立言,王立明,李杨.用人工热演化模拟法计算生油岩的生油量.石油勘探与开发,1982(06):p.17-25.
    85.熊波,等.全岩显微组分定量统计及其在烃源岩评价中的应用.江汉石油学院学报,2001(03):p.16-20.
    86.王铁冠.树脂生源未成熟烃源岩的生物标志物组合及其地质意义.中国科学(B辑化学生命科学地学),1992(07):p.751-758.
    87.侯读杰,张善文,肖建新,张林晔.陆相断陷盆地湖盆优质烃源岩形成机制与成藏贡献-以济阳坳陷为例.地质出版社,2008.
    88.张子枢.有机质成熟度的物化指标.地质地球化学,1980(07):44-51.
    89. Peters K. E., W.C.C., Moldowan J. M., The biomarker guide. Cambridge University press,2005.
    90. Ten haven H L, d.L.J.W., Rullkotter J., Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator, nature,1987. vol 330(6149):p.641-643.
    91. Weston, R.J., et al., Sesquiterpanes, diterpanes and other higher terpanes in oils from the Taranaki basin of New Zealand. Organic Geochemistry,1989.14(4):p.405-421.
    92. Alexander, R., et al., Identification of some bicyclic alkanes in petroleum. Organic Geochemistry,1984. vol 6:p.63-72.
    93.张春明,等.双环倍半萜的分布特征及其意义.江汉石油学院学报,2002(02):p.30-32.
    94.张春明,等.秦皇岛32-6油田双环倍半萜的分布及其意义.中国海上油气,2005(04):p.228-230.
    95. Moldowan, J.M., W.K. Seifert, and E.J. Gallegos, Identification of an extended series of tricyclic terpanes in petroleum. Geochimica et Cosmochimica Acta,1983.47(8):p.1531-1534.
    96.包建平,马安来,黄光辉,等.三塘湖盆地原油地球化学特征及其成因类型.石油勘探与开发,1999.vol 26(4):p.25-29.
    97.包建平,朱翠山,倪春华.北部湾盆地不同凹陷原油生物标志化合物分布与组成特征.沉积学报,2007.vol 25(4):p.646-652.
    98. Philp, R.P. and T.D. Gilbert, Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry,1986.10(1-3):p.73-84.
    99.史玉玲,侯读杰,窦立荣,等.乍得H区块Bongor盆地原油母质生源特征.石油地质工程,2011.Vol 25(1):p.5-9.
    100. Sinninghe Damste, J.S., et al., Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta,1995.59(9):p.1895-1900.
    101. Chen, J. and R.E. Summons, Complex patterns of steroidal biomarkers in Tertiary lacustrine sediments of the Biyang Basin, China. Organic Geochemistry,2001.32(1):p.115-126.
    102.宋一涛,吴庆宇,周文,未熟-低熟油的形成与成因机制.石油大学出版社,2004.
    103. Fowler, M.G. and P.W. Brooks, Organic geochemistry as an aid in the interpretation of the history of oil migration into different reservoirs at the Hibemia K-18 and Ben Nevis 1-45 wells, Jeanne d'Arc Basin, offshore eastern Canada. Organic Geochemistry,1990.16(1-3):p.461-475.
    104.王春江,傅家谟,盛国英,等,18a(H)-新藿烷及17a(H)-重排藿烷类化合物的球化学属性与应用.科学通报,2000.vol45(13):p.1366-1372.
    105.黄第藩,等,陆相有机质演化和成烃机理.石油工业出版社,1984.
    106. Li, M. and C. Jiang, Bakken/Madison petroleum systems in the Canadian Williston Basin. Part 1:C21~C26 20-n-alkylpregnanes and their triaromatic analogs as indicators for Upper Devonian-Mississippian epicontinental black shale derived oils? Organic Geochemistry,2001. 32(5):p.667-675.
    107.王作栋,等.烃源岩中C19~C29甾烷系列和25-降藿烷系列的检出及其地质意义.沉积学报,2009(01):p.180-185.
    108.齐跃春,等.漠河盆地依列克得组火山活动间歇期烃源岩有机地球化学特征研究.沉积学报,2011(01):p.164-172.
    109. Huang, W.-Y. and W.G. Meinschein, Sterols as ecological indicators. Geochimica et Cosmochimica Acta,1979.43(5):p.739-745.
    110. J., G., The occurence of unusual C27 and C29 sterane prodominances in two types of Oman crude oil. Organic Geochemistry,1986a. vol 9:p. 1-10.
    111. Sieskind, O., G. Joly, and P. Albrecht, Simulation of the geochemical transformations of sterols: superacid effect of clay minerals. Geochimica et Cosmochimica Acta,1979.43(10):p. 1675-1679.
    112. Moldowan, J.M., P. Sundararaman, and M. Schoell, Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Organic Geochemistry,1986.10(4-6):p.915-926.
    113. van Kaam-Peters, H.M.E., et al., The effect of clay minerals on diasterane/sterane ratios. Geochimica et Cosmochimica Acta,1998.62(17):p.2923-2929.
    114.朱杨明,张春明,张敏,等.沉积环境的氧化还原性对重排甾烷形成的作用.沉积学报,1997.vol 15(4):p.104-108.
    115. R., R.J.a.M., Natural an dartificial matruration of biological markers in a Toarcian shale from northern Germany. Organic Geochemistry,1988. Vol 13:p.639-645.
    116.孟仟祥,等.柴达木盆地石炭系烃源岩和煤岩生物标志物特征及其地球化学意义.沉积学报,2004(04):p.729-736.
    117. Seifert W K, M.J.M.a.D.GJ., Source correlation of biodegradated oils. Organic Geochemistry, 1984. Vol 6:p.633-643.
    118.妥进才.柴达木盆地第三系芳烃的地球化学-二环芳烃与多环芳烃的关系.石油实验地质,1996.18(4):p.406-412.
    119.侯读杰,王铁冠.陆相油气地球化学研究.中国地质大学出版社,1995.
    120.马军,等.芳烃化合物组成及其在油气地球化学中的应用.地质科技情报,2010(06):p.73-79.
    121. Radke, M., J. Rullkotter, and S.P. Vriend, Distribution of naphthalenes in crude oils from the Java Sea:Source and maturation effects. Geochimica et Cosmochimica Acta,1994.58(17):p. 3675-3689.
    122.周佩瑜.石油烃中烷基萘的形成机理及其地球化学意义.地质科技情报,2008.vol 27(5):p.92-96.
    123. Radke M, W.D.H., Willsch H.,Geochimical study on a wellin the Western Canada Basin: relation of the aromatic ditribution pattern to maturity of organic matter. Geochimica et Cosmochimica Acta,1982. vol46:p.1-10.
    124. Bastow T P, R.A., et al., Geosynthesis of organic compounds. Part V- methylation of alkylnaphthalenes. Organic Geochemistry,2000. vol 31(6):p.523-534.
    125. van Aarssen B G K, B.T.P., Alexander R, et al., Distributions of methylated naphthalenes in crude oils:indicators of maturity, biodegradation and mixing Organic Geochemistry,1999. vol 30:p.1213-1227
    126.倪春华,包建平,顾忆.物降解作用对芳烃生物标志物参数的影响研究.石油实验地质,2008. vol 30(4):p.386-389.
    127.包建平,朱翠山.生物降解作用对辽河原油芳烃组成与芳烃成熟度参数的影响.中国科学:D辑,2008. Vol 38(SUPⅡ):p.55-63.
    128.姜乃煌,等,不同沉积环境地层中的芳烃分布特征.石油学报,1994, vol 14(3):p.42-50.
    129.孟仟祥,等.不同沉积环境湖相低熟原油的芳烃分布特征.沉积学报,1998,vol 17(1):p. 112-120.
    130.林壬子,等.矿物燃料中多环芳烃的石油地球化学意义.有机地球化学论文集.,1987:北京: 地质出版社.
    131. Hughes, W.B., A.G. Holba, and L.I.P. Dzou, The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimica et Cosmochimica Acta,1995.59(17):p.3581-3598.
    132. G, J.Z.a.F.M., Carotenoid-derived alkanes in oils from northwestern China. Organic Geochemistry,1986. vol 10:p.831-839.
    133. Koopmans Martin P, d.L.J.W., and Sinninghe damste J S, Novel cyclised and aromatised diagenetic products of carotene in the Green River shale. Organic Geochemistry,1997. vol 26: p.451-466.
    134. Belsky, T. and I.R. Kaplan, Light hydrocarbon gases, C13, and origin of organic matter in carbonaceous chondrites. Geochimica et Cosmochimica Acta,1970.34(3):p.257-278.
    135. Leythaeuser, D., et al., Generation and migration of light hydrocarbons (C2-C7) in sedimentary basins. Organic Geochemistry,1979.1(4):p.191-204.
    136. Schaefer, R.G. and D. Leythaeuser, Analysis of trace amounts of hydrocarbons (C2~C8) from rock and crude oil samples and its application in petroleum geochemistry. Physics and Chemistry of The Earth,1980.12(0):p.149-156.
    137. M., T.K.F., classification and thermal history of petroleum based on light hydrocarbons. Geochim Cosmochim acta,1983. vol 47:p.303-316.
    138. Engel, M.H., et al., Simulated diagenesis and catagenesis of marine kerogen precursors: Melanoidins as model systems for light hydrocarbon generation. Organic Geochemistry,1986. 10(4-6):p.1073-1079.
    139. Frank D, M., The origin of light hydrocarbons. Geochimica et Cosmochimica Acta,2000. 64(7):p.1265-1277.
    140. Frank D, M., The origin of light hydrocarbons in petroleum:Ring preference in the closure of carbocyclic rings. Geochimica et Cosmochimica Acta,1994.58(2):p.895-901.
    141. Frank D, M., The origin of light hydrocarbons in petroleum:A kinetic test of the steady-state catalytic hypothesis. Geochimica et Cosmochimica Acta,1990.54(5):p.1315-1323.
    142. Obermajer, M., et al., Delineating compositional variabilities among crude oils from Central Montana, USA, using light hydrocarbon and biomarker characteristics. Organic Geochemistry, 2002.33(12):p.1343-1359.
    143. Chung, H.M., et al., Mixed signals of the source and thermal maturity for petroleum accumulations from light hydrocarbons:an example of the Beryl field. Organic Geochemistry, 1998.29(1-3):p.381-396.
    144. Peirong, W., et al., Problems with the application of heptane and isoheptane values as light hydrocarbon parameters. Petroleum Exploration and Development.37(1):p.121-128.
    145. Frank D, M., The light hydrocarbons in petroleum:a critical review. Organic Geochemistry, 1997.26(7-8):p.417-440.
    146. Obermajer, M., et al., Light hydrocarbon (gasoline range) parameter refinement of biomarker-based oil-oil correlation studies:an example from Williston Basin. Organic Geochemistry,2000.31(10):p.959-976.
    147. Nuzzo, M., et al., Origin of light volatile hydrocarbon gases in mud volcano fluids, Gulf of Cadiz-Evidence for multiple sources and transport mechanisms in active sedimentary wedges. Chemical Geology,2009.266(3-4):p.350-363.
    148. Kaluarachchi, J.J., J.C. Parker, and R.J. Lenhard, A numerical model for areal migration of water and light hydrocarbon in unconfined aquifers. Advances in Water Resources,1990.13(1): p.29-40.
    149.李广之,尹军红,袁子艳,等,五种赋存状态轻烃在我国相关油气藏上的石油地质意义.物探与化探,2010. vol 34(6):p.772-777.
    150. Akinlua, A., T.R. Ajayi, and B.B. Adeleke, Niger Delta oil geochemistry:Insight from light hydrocarbons. Journal of Petroleum Science and Engineering,2006.50(3-4):p.308-314.
    151. Vieth, A. and H. Wilkes, Deciphering biodegradation effects on light hydrocarbons in crude oils using their stable carbon isotopic composition:A case study from the Gullfaks oil field, offshore Norway. Geochimica et Cosmochimica Acta,2006.70(3):p.651-665.
    152. Capaccioni, B., et al., Source conditions and degradation processes of light hydrocarbons in volcanic gases:an example from El Chichon volcano (Chiapas State, Mexico). Chemical Geology,2004.206(1-2):p.81-96.
    153. Canipa-Morales, N.K., et al., Effect of evaporation on C7 light hydrocarbon parameters. Organic Geochemistry,2003.34(6):p.813-826.
    154. Tassi, R, et al., Light hydrocarbons as redox and temperature indicators in the geothermal field of El Tatio (northern Chile). Applied Geochemistry,2005.20(11):p.2049-2062.
    155. Zhang, C., et al., Applications of Mango light hydrocarbon parameters to petroleum from Tarim basin, NW China. Applied Geochemistry,2005.20(3):p.545-551.
    156.段艳秋,张建伍.轻烃三角图版分析方法在麻黄山地区油气层评价中的应用.石油地质与工程,(04):p.43-46.
    157.黄吉松,瞿伦泉,周庆华.轻烃分析技术在海拉尔盆地储集层含水性评价中的应用.录井工程,2011(01):p.21-24.
    158.胡惕麟,戈葆雄,等.源岩吸附烃和天然气轻烃指纹参数的开发和应用.石油实验地质,1990. vol 12(4):p.375-393.
    159.戴金星.天然气碳氢同位素特征和各类天然气鉴别.天然气地球科学,1993. vol(2-3):p.1-40.
    160.戴金星,裴锡古,戚厚发.中国天然气地质学(卷一).石油工业出版社,1992.
    161.王培荣,等.常用轻烃参数正、异庚烷值应用中的问题.石油勘探与开发,2010(01):p.121-128.
    162.沈平,徐永昌,王先彬.气源岩和天然气地球化学组成特征及成气机理.甘肃科学技术出版社,1991.
    163.秦建中,郭树之,王东良.苏桥煤型气田地化特征及其对比.天然气工业,1991.vol15(5): p.21-26.
    164.米敬奎,张水昌,陈建平,等.塔北地区原油碳同位素组成特征及影响因素.石油勘探与开发.,2010. vol 37(1):p.21-25.
    165.张枝焕,杨永才,李伟.油藏地球化学原理及其在油气勘探与油藏评价中的应用.海相油气地质,2006. vol 11(4):p.39-47.
    166.李丕龙等,陆相断陷盆地油气地质与勘探卷六陆相断陷盆地勘探新技术.石油工业出版社,地质出版社,2003.
    167. Gormly, J.R., S.P. Buck, and H.M. Chung, Oil-source rock correlation in the North Viking Graben. Organic Geochemistry,1994.22(3-5):p.403-413.
    168. Telnaes, N. and B.S. Cooper, Oil-source rock correlation using biological markers, Norwegian continental shelf. Marine and Petroleum Geology,1991.8(3):p.302-310.
    169. Stahl, W.J., Source rock-crude oil correlation by isotopic type-curves. Geochimica et Cosmochimica Acta,1978.42(10):p.1573-1577.
    170. Seifert, W.K., Steranes and terpanes in kerogen pyrolysis for correlation of oils and source rocks. Geochimica et Cosmochimica Acta,1978.42(5):p.473-484.
    171. Himer, A., W. Graf, and P. Hahn-Weinheimer, A contribution to geochemical correlation between crude oils and potential source rocks in the eastern Molasse Basin (Southern Germany). Journal of Geochemical Exploration,1981.15(1-3):p.663-670.
    172. Michael, G.E., et al., Biodegradation of tar-sand bitumens from the Ardmore/Anadarko Basins, Oklahoma--Ⅱ. Correlation of oils, tar sands and source rocks. Organic Geochemistry,1989. 14(6):p.619-633.
    173. Mukhopadhyay, P.K., J.A. Wade, and M.A. Kruge, Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Organic Geochemistry,1995.22(1):p.85-104.
    174. Jinggui, L., et al., Aromatic compounds in crude oils and source rocks and their application to oil-source rock correlations in the Tarim basin, NW China. Journal of Asian Earth Sciences, 2005.25(2):p.251-268.
    175. Stojanovic, K., et al., Hierarchy of maturation parameters in oil-source rock correlations. Case study:Drmno depression, Southeastern Pannonian Basin, Serbia and Montenegro. Journal of Petroleum Science and Engineering,2007.55(3-4):p.237-251.
    176.陈世加,张宇,路俊刚,吴恩伟,冉乙钧.生物标志化合物在油源对比中的局限性.西南石油学院学报,2006. Vol.28, No.5:p.11-14.
    177. Philippi, G.T., Correlation of crude oils with their oil source formation, using high resolution GLC C6-C7 component analyses. Geochimica et Cosmochimica Acta,1981.45(9):p. 1495-1513.
    178. Odden, W., R.L. Patience, and G.W. Van Graas, Application of light hydrocarbons (C4-C13) to oil/source rock correlations::a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway. Organic Geochemistry,1998.28(12):p.823-847.
    179. Chen, J., et al., Mixed oils derived from multiple source rocks in the Cainan oilfield, Junggar Basin, Northwest China. Part Ⅱ:artificial mixing experiments on typical crude oils and quantitative oil-source correlation. Organic Geochemistry,2003.34(7):p.911-930.
    180.熊永强.热模拟实验结合GC-IRMS在有效烃源岩研究中的应用.博士学位论文.2001.中国科学院广州地球化学研究所.
    181.史训知,戴金星,朱家蔚,等.联邦德国煤成气的甲烷碳同位素研究和对我们的启示.天然气工业,1985. vol2:p.1-9.
    182.戴金星.成煤作用中形成的天然气和石油.石油勘探与开发,1979(03):p.10-17.
    183.陶士振,等.无机成因天然气藏形成条件分析.天然气地球科学,2000(01):p.10-18.
    184.戴金星,非生物天然气资源的特征与前景.天然气地球科学,2006(01):p.1-6.
    185.陶士振,等.非生物成因天然气(藏)的构造成因类型及其地球化学特征.大地构造与成矿学,1998(04):p.309-322.
    186.戴金星,等.中国天然气工业发展趋势和天然气地学理论重要进展.天然气地球科学,2005(02):p.127-142.
    187. E.M, G., Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks. Chemical Geology,1988.71(1-3):p.77-95.
    188.刘文汇,徐永昌,雷怀彦.生物-热催化过渡带气及其综合判识标志.矿物岩石地球化学通报,1997(01):51-54.
    189. Yongchang Xu, Xiaofeng Wang and Baoguang Shi. Low-mature gases and their resource potentiality.Chinese Journal of Geochemistry.2009,vol 28:231-238.
    190.刘文汇,等.天然气成因理论与生物-热催化过渡带气,第四届世界华人地质科学研讨会.2002.
    191.徐永昌,等.一种新的天然气成因类型-生物-热催化过渡带气.中国科学B辑,1990(09):976-980.
    192.刘文汇,等.生物-热催化过渡带气形成机制及演化模式.中国科学D辑,1996(06):512-517.
    193.徐永昌,刘文汇,沈平.成岩阶段油气的形成与多阶连续的天然气成因新模式.天然气地
    球科学,1993(06):1-7.
    194.赵文智,等.中国高效天然气藏形成的基础理论研究进展与意义.地学前缘,2005(04):500-506.
    195.赵文智,等.中国天然气高效成藏的内涵及意义.天然气工业,2006(12):6-14.
    196.徐永昌,等.低熟气---煤成气理念的延伸.石油勘探与开发,2009.36(3):408-412.
    197.戴金星,等.无机成因和有机成因烷烃气的鉴别.中国科学D辑:地球科学,2008. vol 38(11): p.1329-1341.
    198.徐永昌,沈平.天然气成因新模式--Ⅰ.多源复合、主源定型.,中国科学B辑,1993. vol 23(6): p.632-636.
    199.徐永昌,沈平.天然气成因新模式--Ⅱ.多阶连续、主阶定名.中国科学B辑,1993. vol 23(7): 751-755.
    200.刘文汇,徐永昌,雷怀彦.生物-热催化过渡带气及其综合判识标志.矿物岩石地球化学通报,1997. vol 16(1):p.51-54.
    201.李君,黄志龙,王海.烃源岩生烃时效性对油气分布的控制作用——以松辽盆地南部东南隆起区梨树断陷为例.天然气工业,2006(09):p.14-16.
    202.秦胜飞,.塔里木盆地库车坳陷异常天然气的成因.勘探家,1999.vol 4(3):p.21-23.
    203. Chung, H.M., J.R. Gormly, and R.M. Squires, Origin of gaseous hydrocarbons in subsurface environments:Theoretical considerations of carbon isotope distribution. Chemical Geology, 1988.71(1-3):p.97-104.
    204.陈安定,李剑锋.天然气运移的地球化学指标研究.天然气地球科学,1994(04):p.38-67.
    205. D, m.F., An invariance in the isoheptaneof petroleum. Science,1987.237:p.514-517.
    206. Ten Haven, H.L., Applications and limitations of Mango's light hydrocarbon parameters in petroleum correlation studies. Organic Geochemistry,1996,vol 24,957-976.
    207.张敏,张俊Mango轻烃参数的开发与应用.石油勘探与开发,1998. vol 25(6):p.26-28.
    208.朱扬明,张春明Mango轻烃参数在塔里木原油分类中的应用.地球化学,1999. vol 28(1): p.26-33.
    209. Lorant, F., et al., Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chemical Geology,1998.147(3-4):p.249-264.
    210. Berner, U. and E. Faber, Maturity related mixing model for methane, ethane and propane, based on carbon isotopes. Organic Geochemistry,1988.13(1-3):p.67-72.
    211. Stahl W J, C.B.D., Source-rock identification by isotope analyses of natural gases from field in the Vaverde and Delaware Basins, West Texas. Chemical Geology,1975. vol 16(4):p.257-267.
    212.陈安定,陕甘宁盆地中部气田奥陶系天然气的成因及运移.石油学报,1994(02):p.1-10.
    213.张士亚,周瑾,我国天然的成因分类.1994.北京:石油与天然气地质文集,第4集,中国天然气研究:p.27-41.
    214. Richard L, P., Where did all the coal gas go? Organic Geochemistry,2003.34(3):p.375-387.
    215. Leythaeuser, D. and J. Ruckheim, Heterogeneity of oil composition within a reservoir as a reflection of accumulation history. Geochimica et Cosmochimica Acta,1989.53(8):p. 2119-2123.
    216. Hwang J R, A.A.S.a.M.J.M., oil compostion variation and reservior cntinuity,Unity field, Sudan. Organic Geochemistry,1994. vol 21(2):p.171-188.
    217. England W A, m.A.S., Mann D M, et al., The movement and entrapment pf petrolem fluids in the subsurface. geological Society,1987. vol 144:p.327-347.
    218.张敏,林壬子,梅博文.油藏地球化学.重庆大学出版社.1996.
    219.陈建渝,刘从印,张树林,毕研鹏,毕义泉.原油中生物标志物的组成是成藏史的反映.地球科学-中国地质大学学报,1997. Vol.22 No.6:p.97-102.
    220. Leythaeuser, D., C. Keuser, and L. Schwark, Molecular memory effects recording the accumulation history of petroleum reservoirs:A case study of the Heidrun Field, offshore Norway. Marine and Petroleum Geology,2007.24(4):p.199-220.
    221.安作相,马纪,庞奇伟.油气运移研究进展.新疆石油地质,2008(06):775-777.
    222.戴金星.碳、氢同位素组成研究在油气运移上的意义.石油学报,1988(04).:27-32.
    223. England W A, m.A.S., Geochemistry of petroleum reservoirs. geologische Rundschau,1989. vol 78:p.214-237.
    224. S. R. Larter, B.F.B., M. Li, M. Chen, D. Brincat, B.Bennett, K. Noke, P. Donohoe, D. Simmons, M. Kohnen, J. Allan, N. Telnaes, Molecular indicators of secondary oil migration distances. Nature,1996. Vol 33:p.593-597.
    225. Mao Li, S.R.L., D. Stoddart, M. Bjoroy, Fractionation of pyrrolic nitrogen compounds in petroleum during migration:derivation of migration-related geochemical parameters. From Cubitt J. M.& Engaland W.A.1995. The Geochemistry of Reservoirs.,1995:p.103-123.
    226.钱一雄,马安来,陈路强,等,塔中西北部中1井区志留系油砂的地球化学特征.石油实验地质,2007.29(3):p.286-290.
    227.罗茂,耿安松,廖泽文,等,四川盆地江油厚坝油砂有机地球化学特征与成因研究.地球化学,2011.vol 40(3):p.280-288.
    228.王铁冠,等.塔河油田奥陶系油藏两期成藏原油充注比率测算方法.石油实验地质,2004(01):p.74-79.
    229. E.Roedder,张兴春,流体包裹体分析-序和跋.地质地球化学,1992(01):1-10.
    230.沈传波,流体包裹体特征在研究油气成藏史中的应用-以渝东建南气藏为例.海相油气地质,2002(02):15-17.
    231.李宏卫,等.油气包裹体在确定油气成藏年代及期次中的应用.中山大学研究生学刊(自然科学、医学版),2008(04):29-35.
    232. Schubert, F., L.W. Diamond, and T.M. Toth, Fluid-inclusion evidence of petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary. Chemical Geology,2007. 244(3-4):p.357-381.
    233. Weiwei, Z., et al., Investigation of oil-pool formation from the homogenization temperatures of fluid inclusions and biomarkers in reservoir rocks:a genetic model for the Deng-2 oil-pool in the Jiyuan Depression. Marine and Petroleum Geology,2002.19(9):p.1141-1150.
    234. George, S.C., et al., Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for>2 billion years. Geochimica et Cosmochimica Acta,2008.72(3):p.844-870.
    235. Baron, M., et al., Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, Clair Field, west of Shetland, UK. Marine and Petroleum Geology, 2008.25(2):p.153-172.
    236. Potter, J. and F.J. Longstaffe, A gas-chromatograph, continuous flow-isotope ratio mass-spectrometry method for 813C and 8D measurement of complex fluid inclusion volatiles: Examples from the Khibina alkaline igneous complex, northwest Russia and the south Wales coalfields. Chemical Geology,2007.244(1-2):p.186-201.
    237. Gong, S., et al., Petroleum charge history in the Lunnan Low Uplift, Tarim Basin, China Evidence from oil-bearing fluid inclusions. Organic Geochemistry,2007.38(8):p.1341-1355.
    238. Cao, J., et al., Petroleum migration and mixing in the northwestern Junggar Basin (NW China): constraints from oil-bearing fluid inclusion analyses. Organic Geochemistry,2006.37(7):p. 827-846.
    239. Dutkiewicz, A., et al., Geochemistry of oil in fluid inclusions in a middle Proterozoic igneous intrusion:implications for the source of hydrocarbons in crystalline rocks. Organic Geochemistry,2004.35(8):p.937-957.
    240. Dubessy, J., et al., Methane-bearing aqueous fluid inclusions:Raman analysis, thermodynamic modelling and application to petroleum basins. Chemical Geology,2001.173(1-3):p.193-205.
    241.于明德,等.焉耆盆地包裹体特征和伊利石测年对油气成藏期次的指示.吉林大学学报(地球科学版),2009(01):45-52.
    242.李艳霞,钟宁宁.川东石炭系原油裂解型气藏成藏史分析.石油与天然气地质,2007(02):274-278.
    243.单秀琴,等.利用流体包裹体分析和计算油气的充注史和古流体势-以鄂尔多斯盆地榆林地区上古生界为例.石油与天然气地质,2007(02):159-165.
    244.张鼐,等.塔中117井储层烃包裹体研究及油气成藏史.岩石学报,2005(05):1473-1478.
    245. George, S.C., H. Volk, and M. Ahmed, Geochemical analysis techniques and geological applications of oil-bearing fluid inclusions, with some Australian case studies. Journal of Petroleum Science and Engineering,2007.57(1-2):p.119-138.
    246.刘德汉,等.石油包裹体研究与地质应用.地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议.2007:38-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700