用户名: 密码: 验证码:
信号特征提取方法与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号特征提取是从信号中获取信息的过程,是模式识别、智能系统和机械故障诊断等诸多领域的基础和关键。动态信号的复杂性和特征提取的多学科交叉融合特性使得信号特征提取方法一直是人们广为关注的重要研究方向。本文以把握学术前沿为前提,以多学科知识的相互渗透和紧密结合工程应用为主要思路,探讨信号特征提取方法的研究途径,研究具有工程实用意义的信号特征提取方法。主要研究工作如下:
     1.研究了离散Fourier变换中存在的谱泄漏效应对多频信号的频率、幅值和相位估计精度的影响。结合插值快速Fourier变换,并考虑了长程泄漏的影响,提出了一种迭代插值FFT方法。方法可有效地消除长程泄漏效应,提高估值精度。与著名的Grandke的IFFT和Liguori的IFFTc方法的比较结果表明,在信号存在噪声干扰以及信号参数不同的情况下,该方法获得的结果有最好的估计精度,有最好的综合性能。
     2.分析了机械系统动态响应的波形特点,提出用指数衰减正弦波作为字典原子来分解信号,并结合匹配追踪和遗传算法给出了一种自适应信号分解方法。方法能有效地提取平稳的周期波形和非平稳的冲击衰减响应。与著名的Gabor原子的比较表明,该方法对提取机械冲击响应比用Gabor字典原子更有效,提取的结果有更为明确的物理解释,可以获得更为稀疏的信号表示。方法已成功应用于往复机械的故障诊断。
     3.研究了基于非参数波形原子的特征波形提取方法。将具有先验知识的模板信号通过滤波器组得到一组不需要用任何参数表达的基函数,由此构造出非参数特征波形原子。模板信号的引入使得提取的特征波形具有物理可解释的特点;应用滤波器组形成的特征波形原子具备了形状和位置可调的能力,因此具有很宽的适应性。仿真和实验信号验证了方法的有效性,尤其是在噪声和信号频带重叠的情况下,也能将信号分离和提取出来。
     4.研究了由微弱的随机激励引起的瞬态波形的提取方法。从理论上证明了周期干扰成分的存在对提取的随机减量特征信号的影响,结合数字滤波技术和随机减量技术,提出了一种从周期干扰环境中提取随机减量特征信号的简便方法。用该方法实现了旋转机械油膜涡动的在线监测和稳定性裕度的趋势分析与预测,解决了这一应用难题,获得了满意的结果。
     5.针对感应电动机系统无传感器监测与诊断中存在的特征信息微弱、易受环境噪
Signal feature extraction is a process that obtains information from signals and a foundational and key technique for many fields such as pattern recognition, intelligent system and machinery fault diagnosis. Feature extraction method has been a research direction followed with interest duo to the complexity of signals and the combinability of multidisciplinary knowledge for feature extraction. Following the latest progress of signal processing techniques, this dissertation explores ways of studying feature extraction methods and develops feature extraction methods by closely combining multidisciplinary knowledge with specific engineering applications. The research work is introduced as follows:
     1.Effect of spectral leakage in discrete Fourier transform on frequency, amplitude and phase estimates of multifrequency signals is studied. Based on the interpolated fast Fourier transform (IFFT), and considering the long-range leakage effect, an iterative IFFT algorithm is proposed. The novel method can eliminate the long-range leakage effect and improve the accuracy of the parameter estimates effectively. A comparative study of the proposed method with the well-known Grandke’s IFFT and Liguori’s IFFTc is presented. It is found that, in the noise circumstance and with the diverse frequency, amplitude and phase parameters, the proposed method outperforms the other ones, and provides the best estimates.
     2.Exponentially decayed sinusoidal function is suggested as a dictionary atom after having a good understanding of machinery impulse response waveforms. A method of adaptive signal representation with the atom is proposed based on the matching pursuit and the genetic algorithms. By using the proposed method, both the periodic and the impulse response waveforms can be separately extracted from the signal. Experimental results of machinery dynamic signal decompositions show that the proposed method can efficiently yield representation which is sparser and physically more interpretable than using the well-known Gabor atom.
     3.A nonparametric method for extracting feature waveform from signal is studied. Using template signal that contains prior information, a set of nonparametric basis functions is obtained firstly by means of a filter bank, and then a feature waveform atom that is described without any parameters is constructed. The feature waveforms extracted from signal using the method is physically interpretable duo to the employ of template signal. The filter bank makes the dictionary atom shape adaptive. Simulated and experimental results
引文
[1] Webb A R. Statistical Pattern Recognition. Second Edition. West Sussex, England: John Wiley & Sons Ltd, 2002
    [2] 焦李成,侯彪,刘芳. 基函数网络逼近:进展与展望. 工程数学学报, 2002,19(1): 21-35
    [3] Qian S, Chen D. Joint time-frequency analysis. Englewood Cliffs: Prentice Hall, 1996
    [4] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. On Signal Processing, 1993, 41(12): 3397-3415
    [5] Natarajan B K. Sparse approximate solutions to linear systems. SIAM J. Computing, 1995, 24: 227-234
    [6] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit, SIAM J. Sci. Computing, 1999, 20(1): 33-61
    [7] Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases, IEEE Trans On Inform. Theory, 2002, 48(9): 2558-2567
    [8] Gribonval R, Nielsen M. Sparse representations in unions of bases. IEEE Trans On Inform. Theory, 2003, 49(12): 3320-3325
    [9] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition. IEEE Trans. On Inform. Theory, 2001, 47(11): 2845-2862
    [10] Coifman R R, Wickerhauser M V. Entropy-based algorithms for best-basis selection. IEEE Trans. On Inform. Theory, 1992, 38(3): 713-718
    [11] Feuer A, Nemirovsky A. On sparse representation in pairs of bases. IEEE Trans. On Inform. Theory, 2003, 49(6): 1579-1581
    [12] Tropp J A. Greed is good: algorithmic results for sparse approximation. IEEE Trans On Information Theory, 2004, 50 (10): 2231 - 2242
    [13] Qian S, Chen D. Signal representation using adaptive normalized Gaussian functions. Signal Processing, 1994, 36: 329-355
    [14] Davis G.. Mallat S G, Zhang Z. Adaptive time-frequency decompositions. Opt. Eng., 1994, 33(7): 2183-2191
    [15] Gribonval R, Nielsen M. On the Strong Uniqueness of Highly Sparse Representations from Redundant Dictionaries. Lecture Notes in Computer Science, 2004: 3195:201-208
    [16] Mattera D, Palmieri F, Monte M D. A Comparison of Signal Compression Methods by Sparse Solution of Linear Systems. Lecture Notes in Computer Science, 2002, 2486: 146-151
    [17] Jaggi S, Kerl W C, Mallat S G, Willsky A S. High Resolution Pursuit for FeatureExtraction. Applied and Computational Harmonic Analysis, 1998, 5:428-449
    [18] Silva A F da. A Pursuit Architecture for Signal Analysis. Lecture Notes in Computer Science, 2001, 2037: 307-316
    [19] 孟庆丰,费晓琪,焦李成等. 周期和冲击混合特征信号的自适应波形分解. 西安交通大学学报,2003,37(3):237~240
    [20] Ferrando S E, Doolittle E J, Bernal A J, Bernal L J. Probabilistic matching pursuit with Gabor dictionaries. Signal Processing, 2000,80: 2099-2120
    [21] Goodwin M M, Vetterli M. Matching Pursuit and Atomic Signal Models Based on Recursive Filter Banks. IEEE Trans On Signal Processing, 1999, 47(7): 1890-1902
    [22] Davis G M, Mallat S G, Avelanedo M. Greedy Adaptive approximations. J. Constr. Approx., 1997, 13: 57-98
    [23] Karmarkar N. A new polynomial-time algorithm for linear programming. Combinatorica, 1984, 4: 373–395,
    [24] Brito A E, Villalobos C, Cabrera. Interior-Point Methods in l1 Optimal Sparse Representation Algorithms for Harmonic Retrieval. Optimization and Engineering, 2004, 5: 503–531
    [25] Cohen L. Time-frequency analysis. New Jersey: Prentice Hall PTR, 1995
    [26] 李浙生. 数学科学与辩证法. 北京:首都师范大学出版社,1995
    [27] Gabor D. Theory of communication. J. Inst. Elec. Eng., 1946, 93(Ⅲ): 429~457
    [28] Daubechies I. Where do wavelets come from? — A personal point of view. Proceedings of the IEEE, 1996, 84(4):510-513
    [29] Grossmann A and Molert J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math., 1984, 15: 723~736
    [30] Mallat S G. A wavelet tour of signal processing, Second edition. San Diego, CA: Academic, 1998
    [31] Stromberg J. A modified Haar system and higher orderspline systems on R nas unconditional bases for hardy spaces. Conference inharmonic analysis in honor of Antoni Zygmund H, W., Beckner et al. (Eds.), Wadsworth, Belmont, California, 1981: 475~493
    [32] Meyer Y. Principe d incertitude bases hilbertiennes et algebres d operateurs. Bourbaki Seminar, 1985~1986, No. 662(27): 1271~1283
    [33] Lemarie P G. Ondelettes a localization exponentiells. J. Math. Pure. Appl., 1988: 227~236
    [34] Battle G. A block spin construction of undulates, Part I: Lemarie Function. Comm. Math. Phys., 1987, (110): 601~615
    [35] Mallat S G. Multiresolution representation and wavelet. Ph. D. Thesis, University ofPennsylvania, Philadelphia, PA, 1988
    [36] Mallat S G. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12): 2091~2110
    [37] Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693
    [38] Mallat S G. Multiresolution approximations and wavelet orthonormal bases of L2 (R). Transactions on the American Mathematical Society, 1989, 315(1): 68~87
    [39] Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1988, Vol. XII: 909~996
    [40] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 1990, 36(5): 961~1006
    [41] Chui C K and Wang J Z. An analysis of cardinal spline-wavelet. CAT Report #231, Texas A&M University, 1990
    [42] Chui C K. An Introduction to Wavelets. Boston, Academic Press, 1992
    [43] Chui C K. Wavelets: A Tutorial in Theory and Applications. Boston, Academic Press, 1992
    [44] Cohn A, Daubechies I, Feauveau J-C. Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math., 1992, Vol. XLV:485-560
    [45] Kovacevic J, Vetterli M. Perfact reconstruction filter banks with rational sampling factors. IEEE Trans. On Signal Processing, 1993, 41(6): 2047-2066
    [46] Coifman R R, Meyer Y, Quake S and Wickerhauser M V. Signal Processing and Compression with wavelet packets, Proceedings of the Conference on Wavelets, 1989
    [47] Wickerhauser M V. Lecture on wavelet packet algorithms. Math. Depart. Washington Univ., St. Lowis Missouri, U. S., 1991
    [48] Sweldens W. The lifting scheme: a construction of second generation wavelets. Technical report, Bell-Labs., 1995
    [49] 赵纪元,何正嘉,孟庆丰等. 基于小波包特征提取的模糊诊断网络建立及应用. 振动与冲击,1997, 16(3): 30~34
    [50] 程正兴. 小波分析算法与应用. 西安:西安交通大学出版社,1998
    [51] Coifman R R and Wickerhauser M V. Entropy-based algorithm for best basis selection. IEEE Transactions on Information Theory, 1992, Vol. 38: 313~318
    [52] 崔锦泰著,程正兴译. 小波分析导论. 西安:西安交通大学出版社,1995
    [53] 张贤达,保铮. 非平稳信号分析与处理. 北京:国防工业出版社,1998
    [54] 何正嘉,訾艳阳,孟庆丰等. 机械设备非平稳信号的故障诊断原理及应用. 北京:高等教育出版社,2003
    [55] 张贤达. 现代信号处理. 北京:清华大学出版社, 1994
    [56] 杨福生. 小波变换的工程分析与应用. 北京:科学出版社,1999
    [57] 赵纪元, 何正嘉,孟庆丰等. 小波包—自回归谱分析及在振动诊断中的应用. 振动工程学报, 1995, 8(3): 198~203
    [58] He Zhengjia, Meng Qingfeng,Zhaojiyuan,et al. Time-frequency(scale) analysis and diagnosis for nonstationary dynamic signal of machinery. International Journal of Plant Engineering and Mana-gement,1996,1(1):40~47
    [59] 秦前清,杨宗凯. 实用小波分析. 西安:西安电子科技大学出版社,1994
    [60] 赵纪元,何正嘉,孟庆丰等. 小波包模糊聚类诊断网络建立及应用. 西安交通大学学报, 1997, 32(2):15~20
    [61] Wigner E. On the quantum correction for thermodynamic equilibrium. Phys. Rev.,1932,40: 749~759
    [62] Ville J. Theorie et applications de la notion de signal analytique. Cables et Transmissions, 1948, 20A: 61~74
    [63] Mark W D. Spectral analysis of the convolution and filtering of non-stationary stochastic processes. J. Sound Vib., 2970, 11(1): 19~63
    [64] Claasen T A C M and Mecklenbr?ker W F G. The Wigner distribution - A tool for time-frequency signal analysis - Part I: Continuous-time signals. Philips J. Res., 1980, 35: 217~250
    [65] Claasen T A C M and Mecklenbr?ker W F G. The Wigner distribution - A tool for time-frequency signal analysis - Part II: Discrete time signals. Philips J. Res., 1980, 35: 276~300
    [66] Claasen T A C M and Mecklenbr?ker W F G. The Wigner distribution - A tool for time-frequency signal analysis - Part III: Relations with other time-frequency signal transformations. Philips J. Res., 1980, 35: 372~389
    [67] Janse C P, Kaizer A J M. Time-frequency distribution of loudspeekers: the application of Wigner distribution. J. Audio Eng. Soc., 1983, 31: 198~222
    [68] Rioul O, Flandrin P. Time-scale energy distributions: A general class extending wavelet transforms. IEEE Trans. On Signal Processing, 1992, 40: 1746~1757
    [69] Cohen L. Generalized phase-space distribution functions. J. Math. Phys., 1966, 7: 781~806
    [70] Chio H, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. On Acoustics, Speech, Signal Processing, 1989, 37(6):862~871
    [71] Zhao Y, Atlas L E, Marks R J. The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals. IEEE Trans. On Acoustics, Speech, Signal Processing, 1990, 38(7):1048~1091
    [72] Papandreou and Boudreaux-Bartels G F. A generalization of the Choi-Willims and the Butterworth time-frequency distributions. IEEE Trans. On Signal Processing, 1993, 41: 463~472
    [73] Sattar F, Salomonsson G. The use of a filter bank and the Wigner-Ville Distribution for time-frequency representation. IEEE Trans. On Signal Processing, 1999, 47(60: 1776~1783
    [74] Barkat B, Boashash B. A high-resolution quadratic time-frequency distribution for multicomponent signals analysis. IEEE Trans. On Signal Processing, 2001, 49(10): 2232~2239
    [75] Cohen I, Raz S, Malah D. Adaptive suppression of Wigner interference-terms using shift-invariant wavelet packet decompositions. Signal Processing, 1999, 73: 203~223
    [76] Pries D, Georgopoulos V C. Wigner distribution representation and analysis of audio signals: An illustrated tutorial review. J. Audio Eng. Soc. 1999, 47(12): 1043~1053
    [77] Djurovi? I, Stankovi? L. Time-frequency representation based on the reassigned S-method. Signal Processing, 1999, 77:115~120
    [78] 孟庆丰,屈梁生.Wigner 分布及其在机械故障诊断中的应用. 信号处理, 1990,6(3):155~162
    [79] Meng Qingfeng, Qu Liangsheng. Rotating machinery fault diagnosis using Wigner distribution. Mechanical Systems and Signal Processing, 1991, 5(3), 155~166.
    [80] 孟庆丰,何正嘉,赵纪元. 调制信号的时频分布特征及应用. 振动、测试与诊断,1994,14(4):7~14
    [81] 孟庆丰,焦李成. 回转机械低频振动的时频域识别. 2004,17(3):374-376
    [82] Daubechies I. Time-frequency localization operators: A geometric phase space approach. IEEE Trans. On Inform. Theory, 1988, 34(4): 605-612
    [83] Rao B, Delgado K. An affine scaling methodology for best basis selection. IEEE Trans. On Signal Processing, 1999, 47: 187-200
    [84] Goodwin W. Adaptive signal models: Theory, algorithms, and audio applications. Boston, MA: Kluwer Academic Publishers, 1998
    [85] Silva A F da. Atomic decomposition with evolutionary pursuit. Digital Signal Processing, 2003: 317-337
    [86] Liu B, Ling S-F. On the selection of informative wavelets for machinery diagnosis. Mechanical Systems and Signal Processing, 1999, 13(1): 145-162
    [87] 费晓琪、孟庆丰. 基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术[J]. 振动与冲击,2003,22(2): 26-29
    [88] 孟庆丰,范虹,王琪,何正嘉. 匹配追踪信号分解与往复机械故障特征提取技术研究. 西安交通大学学报,2001,7:696-699
    [89] S. Sardy, A. G. Bruce, and P. Tseng, “Block coordinate relaxation methods for nonparametric wavelet denoising,” Comp. and Graph. Statist., 2000, 9(2)
    [90] Fuchs J. On Sparse Representations in Arbitrary Redundant Bases. IEEE Trans On Inform. Theory, 2004, 50(6): 1341-1344
    [91] Friedman J H, Stuetzle W. Projection pursuit regressions. J. Amer. Statist. Soc., 1981, 76: 817-823
    [92] Huber P J. Project pursuit. The Annals of Statistics, 1985, 13(2):435~475
    [93] Jones L K. On a conjection of huber concerning the convergence of projection pursuit regression. Ann. Statist., 1987, 15(2):880~882
    [94] Gersho A, Gray R M. Vector quantization and signal compression. Boston MA: Kluwer Academic Publishers, 1992
    [95] Schmid-Saugeon P, Zakhor A. Dictionary Design for Matching Pursuit and Application to Motion-Compensated Video Coding. IEEE Trans On Circuits and Systems for Video Technology, 2004, 14960: 880-886
    [96] Vleeschouwer C D, Macq B. New dictionary for matching pursuits video coding. In Proc. ICIP, 1998, 1: 764-768
    [97] Redmill D W, Bull D R, Czerepiriski P. Video coding using a fast nonseparable matching pursuits algorithm. In Proc. ICIP, 1998, 1: 769-773
    [98] Chou Y–T, Hwang W–L, Huang C-L. very low-bit video coding based on gain-shape VQ and matching pursuits. In Proc. ICIP, 1999, 1: 76-80
    [99] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: A strategy employed by VI?. Vis. Res., 1997, 37(23): 3311-3325
    [100] Cole H A. Method and apparatus for measuring the damping characteristics of a structure. US Patent No. 3-620-069, 1971
    [101] Cole H A. On-line failure detection and damping measurement of aerospace structures by random decrement signatures. NASA CR-2205, 1973.
    [102] Yang J C S, CALDWELL D. Measurement of damping and the detection of damages in structures by the random decrement technique. Shock and vibration Bulletin, 1976, 46(4): 129-136
    [103] Yang J C S, CALDWELL D. A method for detecting structural deterioration in piping systems. ASME Probabilistic Analysis and Design of Nuclear Power Plant Structures Manual, 1978, PVB-PB-03: 97-117.
    [104] Yang J C S, TSAI T, PAVLIN V, et al. Structural damage detection by the system identification technique. Shock and Vibration Bulletin, 1985, 55: 57-66
    [105] Yang J C S, QI G Z, DURELLI A J, et al. In-situ determination of soil damping in the lake deposit area of Mexico City. Soil Dynamics and Earthquake Engineering, 1989, 8(1): 43-52
    [106] Vandiver J K, Dunwoody A B, Campbell R B, Cook M F. A mathematical basis for the random decrement vibration signature analysis technique. ASME Trans. Journal of Mechanical Design, 1982,104(4): 307~313
    [107] Bedewi N E. The mathematical foundation of the auto and cross-random decrement techniques and the development of a system identification technique for the detection of structural deterioration. Ph.D. Dissertation, Department of Mechanical Engineering, University of Maryland, College Park, U.S.A., 1986
    [108] Huang C S,Yeh C H. Some properties of randomdec signatures. Mechanical Systems and Signal Processing, 1999, 13(3): 491-507
    [109] Ibrahim S R. Random decrement technique for modal identification of structures. Journal of Spacecraft, 1977, 14: 696-700
    [110] Ueng J-M, Lin C-C, Lin P-L. System identification of torsionally coupled buildings. Computers and Structures, 2000, 74: 667-686
    [111] Li H C H, Weis M, Herszberg I, Mouritz A P. Damage detection in a fibre reinforced composite beam using random decrement signatures. Composite Structures, 2004, 66: 159–167
    [112] Ibrahim S R, Asmussen J C, Brincker R. Theory of the vector random decrement technique. In Proceedings of the 15th International Modal Analysis Conference, 1997, I: 502-510
    [113] Asmussen J C, Ibrahim S R, and Brincker R. Application of the vector triggering random decrement technique. In Proceedings of the 15th International Modal Analysis Conference, 1997 I: 502-510.
    [114] Asmussen J C, Brincker R. Statistical theory of the vector random decrement technique. Journal of Sound and Vibration, 1999, 226(2): 329-344
    [115] Huang N E, Shen Z, Long S R. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of Royal Society, London, 1998, 44: 903-995
    [116] 丁康,陈健林,苏向荣. 平稳和非平稳振动信号的若干处理方法的研究. 振动工程学报, 2003, 16(1): 1-10
    [117] 钟佑明,秦树人,汤宝平. Hilbert-Huang 变换中的理论研究. 振动与冲击, 2002,21(4):13-18
    [118] Loutridis S J. Damage detection in gear systems using empirical mode decomposition. Engineering Structures, 2004, 26: 1833–1841
    [119] Veltcheva A D, Soares C G. Identification of the components of wave spectra by the Hilbert Huang transform method. Applied Ocean Research, 2004, 26: 1–12
    [120] Nunes J C, Bouaoune Y, Delechelle E, Niang O, Bunel Ph. Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing, 2003, 21: 1019–1026
    [121] Douka E, Hadjileontiadis L J. Time–frequency analysis of the free vibration response of a beam with a breathing crack. NDT&E International, 2005, 38: 3–10
    [122] Yu D, Cheng J, Yang Y. Application of EMDmethod and Hilbert spectrum to the fault diagnosis of roller bearings. Mechanical Systems and Signal Processing, 2005, 19: 259–270
    [123] 王鹏飞,侯新国,夏立,吴正国. 基于 Park 变换的感应电机故障诊断. 武汉科技学院学报,2002,15(5):87-90
    [124] Marques Cardoso A J, Cruz S M A. Rotor cage fault diagnosis in three-phase induction motors, by Park's vector approach.IEEE Transactions on Industry Application. 1995,1(1):642-646
    [125] Marques Cardoso A J, Cruz S M A, Fonseca D S B.Inter-turn stator winding fault diagnosis in three-phase induction motors, by Park's vector approach.IEEE Transaction on Energy Conversion.1999,14(3): 595 - 598
    [126] Nejjari H, Benbouzid M E H. Monitoring and diagnosis of induction motors electrical faults using a current Park's vector pattern learning approach.IEEE Transactions on Industry Application. 2000, 36(3):730-736
    [127] Cruz S M A, Marques Cardoso A J.Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park's vector approach.IEEE Transactions on Industry Application.2001, 37(5):1227-1233
    [128].Mainer R.Protection of squirrel-cage induction motor utilizing instantaneous power and phase information.IEEE Transactions on Industry Application.1992,28(2): 376-380
    [129] Marques Cardoso A J. On-line detection of airgap eccentricity in 3-phase induction motors, by Park's Vector approach. Fifth International Conference on Electrical Machines and Drives. 1991, Conf. Publ. (341):61-66
    [130] Marques Cardoso A J, Saraiva E S. Predicting the level of Airgap Eccentricity in Operating Three-Phase Induction Motors,by Park's vector approach.IEEE Transactions on Industry Application.1(1):132-135
    [131] 邱阿瑞. 提取感应电动机转子故障特征的新方法.清华大学学报.1997,37(1):35-37
    [132] 吴永红. 无传感器技术在鼠笼式感应电动机故障诊断的应用研究与监测诊断系统开发. [硕士学位论文]. 西安:西安交通大学,2005
    [133] Szu H H, Kadambe S. Neural network adaptive wavelets for signal representation and classification. Optical Engineering, 1992, 31(9): 1907~1916
    [134] 倪振华. 振动力学. 西安:西安交通大学出版社, 1989
    [135] 周明,孙树栋. 遗传算法原理及应用. 北京:国防工业出版社,2000
    [136] 王小平,曹立明. 遗传算法—理论、应用与软件实现. 西安:西安交通大学出版社,2002
    [137] 费晓琪. 机械设备故障特征提取方法与基于资源节点的设备检测诊断网络系统. [硕士学位论文]. 西安:西安交通大学,2004
    [138] 孟庆丰. 基于应用内涵研究故障特征提取技术. 振动工程学报,2000, 13(S): 97~101.
    [139] 孟庆丰,范虹,王琪,何正嘉. 匹配追踪信号分解与往复机械故障特征提取技术研究. 西安交通大学学报,2001,7:696-699
    [140] 孟庆丰,费晓琪,焦李成等. 周期和冲击混合特征信号的自适应波形分解. 西安交通大学学报,2003,37(3):237-240
    [141] 范虹,孟庆丰,张优云. 用混合编码遗传算法实现匹配追踪算法. 西安交通大学学报, 2005, 39(3):295-299
    [142] Cadzow J A. Signal processing via least squres error modeling. IEEE Trans. On Acoust., Speech, Processing Maag., 1990, 10
    [143] Scharg L L. Statistical signal processing: Detection, estimation, and time series analysis. Reading MA: Addson-Wesley, 1991.
    [144] Sattar F, Slomonsson G. Nonparametetric waveform estimation using filter bank. IEEE Trans. On Signal Processing, 1996, 44(2): 240-247
    [145] Sattar F, Slomonsson G. On detection using filter banks and higher order statistics. IEEE Trans. On Aerospace and Electronic System, 2000, 36(4): 1179-1189
    [146] 陈德成,姜节胜. 随机减量技术的方法与理论. 振动与冲击,1984,12(4):31~39
    [147] 吴家驹. 随机减量特征矩阵和相关函数矩阵的关系. 应用力学学报,1987,4(3):1~10
    [148] 孟庆丰,何正嘉,赵纪元.数字滤波在机械故障诊断方法中的应用技术.动态分析与测试技术,1994,4:5 ~10
    [149] 张优云.流体动压润滑轴承转子系统参数识别的研究.[博士学位论文],西安:西安交通大学,1989
    [150] Musynska A. Tracking the mystery of oil whirl. Sound and Vibration, 1987, 2:8~12
    [151] 孟庆丰,蒋晓玲,何正嘉. 回转机械支撑油膜稳定性在线监测. 振动、测试与诊断,1997,17(4):25~29
    [152] 胡广书. 数字信号处理—理论、算法与实现. 北京:清华大学出版社,1997
    [153] Bently D E. Forward subrotative speed resonance action of rotating machinery. Proc. Of the 4th Turbomachinery Symposium. Texas A&M University, College Station, Texas: 1975, 103-113
    [154] Stroh C G. Rotordynamic stability—a simplied approach. Proc. Of the 14th Turbomachinery Symposium. Texas A&M University, College Station, Texas: 1985, 3-10
    [155] Bently D E. Parameters and measurements of the destabilizing actions of rotating machines, and the assumptions of the 1950’s. NASA Conference Publication 2133, Texas: 1980, 95-105
    [156] Muszynska A. Tracking the mystery of oil whirl. Sound and Vibration, 1987, 2: 8-12
    [157] Kliman G B, Premerlani W J, et al. Sensorless, online motor diagnostics. IEEE Trans. on Computer Applications in Power, 1997, 4: 39~43
    [158] Ferrah A, Bradley K G, Asher G M.Sensorless speed detection of invert fed induction motor using rotor slot harmonics and fast Fourier Transform.Proceedings of the International Conference on Electric Machines.1992,279-286
    [159] Blasco R, Sumner M, Asher G M. Speed measurement of invert fed induction motor using the FFT and the rotor slot harmonics. Proc. of 5th International Conference on Electronics and Variable-speed Drives.1994,90-95
    [160] Hurst K D, Habetler T G. Sensorless speed measurement using current harmonics spectral estimation in induction machines drives . IEEE Transactions on Power Electronics.1996,11(1):66-73
    [161] Ferrah A, Bradley K J, Hogben-laing P J.A speed identifier for induction motor drives using realtime adaptive digital filtering.IEEE Transactions on Industry Application.1998,34(1):156-162
    [162] Yazici B, Kliman G B. An adaptive statistical time-frequency method for detection of broken bars and beering fault in motors using stator current. IEEE Trans. On Industry Applications. 1999, 35(2): 442-452
    [163] Trzynadlowski A M. Diagnostics of Mechanical Abnormalities in Induction Motors Using Instantaneous Electric Power.IEEE Transaction on Energy Conversion.1999,14(4):652-658
    [164] Cruz S M A, Cardoso A J M.Stator winding fault diagnosis in three-phase synchronous and asynchronous motors, by the extended Park's vector approach.IEEE Transactions on Industry Application.2001, 37(5):1227-1233
    [165] Cruz S M A, Cardoso A J M,Toliyat H A. Diagnosis of Stator, Rotor and Airgap Eccentricity Faults in Three-Phase Induction Motors Based on the Multiple Reference Frames Theory. Proc. of The 4th International Power Electronics and Motion Control Conference, 2004, 2:603 - 609
    [166] Douglas H, Pillay P Ziarani, A K. A New Algorithm for Transient Motor Current Signature Analysis Using Wavelets. IEEE Trans. On Industry Applications, 2004, 40(5): 1361-1368
    [167] Williamson S, Smith A C. Steady-state analysis of 3-phase cage motors with rotor-bar and end-ring faults. Conference Record of the IEEE-IAS Annual Meeting. 1983. 31~37
    [168] Smith A C. Harmonic field analysis for slip-ring motors including general rotor asymmetry. Conference Record of the IEEE-IAS Annual Meeting. 1989: 201~207
    [169] Angrisani L, Baccigalupi A, Pietrosanto A. A digital signal-processing instrument for impedance measurement. IEEE Trans. On Instrumentation and Measurement. 1996, 45(6): 930~934
    [170] Jian V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT. IEEE Transactions on Instrumentation and measurement. 1979, IM-28(2): 113~121
    [171] Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals. IEEE Trans. On Instrumentation and Measurement. 1983, IM-32: 350~355
    [172] 徐龙祥. 高速旋转机械轴系动力学设计. 北京:国防工业出版社,1994
    [173] Nandi S, Bharadwaj R M, Toliyat H A. Mixed eccentricity in three phase induction machines: analysis, simulation and experiments. Conference Record of the 1999 IEEE Industry Applications Conference. New York: IEEE Industry Application Society, 2002. 1525-1632
    [174] 孟庆丰、何正嘉. 基于谐波阻抗的感应电机系统无传感器监测方法研究. 振动、测试与诊断,2001,21(2):90~94
    [175] Dorrell D G, Thomson W T, Roach S. Analysis of airgap flux, current, vibration signals as a function of the combination of static and dynamic airgap eceentricity in 3-phase induction motors. IEEE Transactions on Industry Applications. 1997, 33(1): 23~34
    [176] Page C H. Instantaneous power spectrum. J. Appl. Phys., 1952, 23: 103~106
    [177] Papandreou and Boudreaux-Bartels G F. A generalization of the Choi-Willims and the Butterworth time-frequency distributions. IEEE Trans. On Signal Processing, 1993, 41: 463~472
    [178] Rihaczek W. Signal energy distribution in time and frequency. IEEE Trans. On Inst. Tadio Engineering (IRC), 1968, IT-14: 369~374
    [179] Muszynska A. partial lateral rotor to stator rubs. Vibration in Machinery. Texas: I.Mech.E., 1984; 327~335
    [180] 何正嘉,訾艳阳,孟庆丰等. 机械设备非平稳信号的故障诊断原理及应用. 北京:高等教育出版社。
    [181] Straussa D J, Steidl G, Delb W. Feature extraction by shape-adapted local discriminant bases. Signal Processing, 2003, 83: 359 – 376
    [182] Saito N, Ciofman P R. Local discriminant bases and their applications, J. Math. Imaging Vision, 1995, 4: 337-358
    [183] Vaidyanathan P P. Multirate systems and filter banks. Upper Saddle River, NJ: Prentice-Hall, Inc., 1993
    [184] Kundu D, Mitra A. Estimating the parameters of exponentially damped or undamped sinusoids in noise: A non-iterative approach. Signal Processing, 1995, 46: 363-368
    [185] Cadzow J A. signal processing via least squares error modeling. IEEE Trans. On Acoust., Speech, Signal Processing Mag., 1990, 10: 12-32
    [186] 程熊. 系统阻尼实验报告. 西安:西安交通大学科技报告,1982
    [187] 屈梁生,何正嘉. 机械故障诊断学. 上海:科学技术出版社,1989
    [188] 孟庆丰,焦李成. 回转机械低频振动的时频域识. 振动工程学报. 2004,17(3):374-376
    [189] 孙即祥. 现代模式识别. 长沙:国防科技大学出版社,2002
    [190] 863 SIMS 主 题 专 家 组 . 国 家 高 技 术 研 究 发 展 计 划 课 题 《 验 收 意 见 书(2001AA413330)》. 北京:科技部高新司,2004 年 6 月
    [191] 中国石化总公司济南分公司. 国家高技术研究发展计划课题《典型用户应用与效益报告》. 北京:科技部高新司,2004 年 4 月
    [192] 孟庆丰,孙敬远,吴永红等. RN-EMDS 开放式设备监测诊断系统软件.计算机软件著作权,国家版权局,2004SR02332,2004 年 3 月 17 日
    [193] Tufts D W, Kumaresan. Estimation of frequencies of multiple sinusoids making linear prediction perform like maximum likelihood. Proc. IEEE, Dept 1982, 70(9): 975-985
    [194] Kay S M, Marple S L. Spectrum analysis – a modern perspective. Proc. IEEE, 1981,69: 1380-1419
    [195] Rife D C, Vincent G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones. Bell Syst. Tech. J., 1970, 49: 197-228
    [196] Agrez D. Weighted multipoint interpolated DFT to improve amplitude estimation of multifrequency signal. IEEE Trans. On Instrumentation and Measurement. 2002, 51(2): 287-292
    [197] Bertocco M. Offelli C. Petri D. Analysis of damped sinusoidal signals via afrequency-domain interpolation algorithm. IEEE Trans. On Instrumentation and Measurement. 1994, 43(2): 245-250
    [198] Liguori C. Paollio P. Pignotti. An intelligent FFT analyzer with harmonic interference effect correction and uncertainty evaluation. On Instrumentation and Measurement. 2004, 53(4): 1125-1131
    [199] Liguori C. Paollio P. Pignotti. Estimation of signal parameters in the frequency domain in the presence of harmonic interference: a comparative analysis. On Instrumentation and Measurement. 2006, 55(2): 562-569
    [200] Schoukens J. Pintelon R. Hugo V H. The interpolated fast Fourier transform:a comparative study. IEEE Trans. On Instrumentation and Measurement. 1992, 41(2): 226-232
    [201] Gough P T. A fast spectral estimation algorithm based on the FFT. IEEE Trans. On Signal Processing, 1994, 42(6): 1317-1322
    [202] Shi D. Peter J U. Robert X G. Sensorless speed measurement of Induction motor using Hilbert transform and interpolated fast Fourier transform. IEEE Trans. On Instrumentation and Measurement. 2006, 55(1): 290-299
    [203] Santamaria I. Pantaleon C. Ibanez J. Acomparative study of high-accuracy frequency estimation methods. Mechanical Systems and Signal Processing. 2000, 14(5): 819-834
    [204] Offelli C, Petri D. Interpolation techniques for real-time multifrequency waveform analysis. IEEE Trans. On Instrumentation and Measurement. 1990, 39(1): 106-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700