用户名: 密码: 验证码:
基于高分辨距离像的雷达目标识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪60年代以来,战场感知对信息获取提出越来越高的要求,雷达自动目标识别(ATR)这一新的研究领域应运而生。高分辨率雷达的发展为ATR的研究提供了强有力的技术支持。由于雷达高分辨距离像(HRRP)能够提供目标沿距离方向的几何结构信息,且具有易于获取和处理的独特优势,使得基于HRRP的ATR技术受到越来越多的关注。在前人工作的基础上,本文着重研究HRRP的特征提取和目标分类两个方面的相关理论与技术,主要工作概况如下:
     从散射点模型出发,讨论了高分辨距离像的特性及用于识别时的需要考虑的几个关键问题。比较了利用逆Fourier变换(IFFT)得到的通常意义上的高分辨距离像、利用RELAX超分辨参数估计得到的距离像与利用MUSIC算法从目标回波中得到的超分辨距离像。结合仿真实验,详细分析了MUSIC超分辨距离像用于目标识别时对目标姿态、散射点个数、信噪比的敏感性等问题,说明MUSIC不能作为提高识别性能的超分辨算法用于距离像识别中。
     研究了高分辨距离像识别中的功率谱特征的特征压缩问题。仿真实验说明功率谱低频特征分量之间存在较强的相关性。详细分析了几种现有的特征压缩方法,结合功率谱的统计特性,提出一种基于标准化数据Fisher判决分析(FDA)的特征压缩方法,并分析了其性能提高的机理。基于外场实测数据的识别结果表明,本文给出的方法在降低维数的同时,可以明显提高识别性能,且具有较好的鲁棒性。
     研究了高分辨距离像的平移不变特征—中心矩特征向量的识别方法。考虑到中心矩特征的目标姿态敏感性,由一定方位角内的平均距离像松弛HRRP方位敏感性,然后提取平均像的中心矩特征向量。采用具有良好推广能力的多类支撑向量机进行分类。与基于中心矩特征的MCC方法和基于原始距离像的MCC方法相比较,本文方法减少计算量的同时具有较高的识别率,基于实测数据的仿真实验结果表明本文方法是有效的。
     研究了多次距离像的识别问题。由于距离像的目标方位敏感性,单次距离像的识别性能常常受到限制。在许多雷达系统中,可以得到多个独立距离像样本。本文在生成模板特征和测试特征时均利用了平均像和方差像作为特征,给出一种基于最小Kullback-Leibler(K-L)距离准则的HRRP序列识别方法,使用与识别准则相同的最小K-L距离准则进行平移匹配,并给出了快速算法。与最大似然(ML)准则及AGC方法进行比较,本文方法性能相当但大大降低了平移匹配的计算量。给出了基于实测数据和仿真数据的识别实验,结果表明本文方法是有效的。
     研究了距离像识别中的一个关键问题—目标角域数目的确定及角域划分。雷达高分辨率距离像具有目标姿态敏感性的特点,在识别时的一种解决方法是对目标不同角域建立不同的统计模型。在给定系统参数条件下,选择目标划分角域个数及每个角域覆盖范围是影响识别器运算量及识别性能的关键。本文给出了一种基于数据的自适应学习上述分类器参数的算法,采用联合高斯分布来描述HRRP在目标一个角域内的统计特性,在贝叶斯框架下通过迭代算法来确定数据划分边界,并自动确定目标角域个数,在目标识别中的应用中具有现实意义。基于联合高斯分布的数据模型通过迭代算法来确定数据划分边界,并自动确定目标角域个数。与等间隔数据划分方法相比,本文方法在降低识别运算量的同时,可以提高识别性能。
With the new requirement for radar to get more information from the battlefield, radar automatic target recognition (ATR) as a new research area appeared in the 1960s. The development of high range resolution radar has given strong support to RATR. High range resolution profile (HRRP) contains the target structure signatures and is easy to be acquired, which makes the HRRP ATR to be received intensive attention. The work of this dissertation is focused on feature extraction and target recognition of high range resolution profile. The main content is summarized as follows.
     Starting from the scatters model of high-resolution radar target, the property of HRRP and several key problems of HRRP recognition is discussed. The range profiles obtained by conventional inverse fast Fourier transform (IFFT) is compared with that obtained by the RELAX and multiple signal classification (MUSIC) super- resolution technique. Through simulations, we detail the problems such as the target orientation, the number of scatters and the signal-to-noise ratio sensitivity which should be paid attention to when using MUSIC super-resolution range profile for radar automatic target recognition.
     The dimensionality reduction of power spectrum feature is concerned in HRRP recognition. The stronger correlation between the low frequency bins is shown in simulation results. A concise overview of the linear feature compress methods is given. With the statistical property of power spectrum discussed, a new fisher discriminant analysis feature compress method, which is based on the standard data, is presented for dimensionality reduction of power spectrum feature. And the performance improvement mechanism of the proposed method is discussed. The experimental results based on the measured data show that the proposed technique achieves robust good recognition performance with low feature dimension.
     HRRP recognition based on translation invariant feature—the central moments feature vector is concerned. To handle the target aspect sensitivity of moments feature, the average HRRPs associated with different target aspect sectors are used to extract the central moments feature vector for further recognition. A multi-class support vector machine (SVM) classifier with better generalization is designed to classify airplane objects. Comparing with the moments based MCC method, and the HRRP based MCC, the proposed approach can achieve better recognition performance and reduce the computation complexity and storage requirement. Experiment results based on the measured data are given to show the efficiency of the proposed method.
     The multiples HRRPs recognition problem is concerned. Generally, using single profile can not achieve good recognition performance, because of HRRP's target aspect sensitivity. Actually, a sequence of independent HRRPs can be obtained in many radar systems. The average range profile and the variance profile are extracted together as the feature vectors for both training data and test data representation. A decision rule is established for HRRP sequence recognition based on the minimum Kullback-Leibler (K-L) distance criterion. And the same criterion is used for time-shift compensation of HRRP, with fast algorithm proposed. Comparing with the maximum likelihood criterion and adaptive Gaussian classifier (AGC), the propose method is much more computational efficient but with comparable recognition performance. Experimental results based on both the measured and the simulation data show that the minimum K-L distance classifier is effective.
     Radar High Range Resolution Profile (HRRP) is very sensitive to target aspect variation. To deal with this problem, usually, multiple statistical models are built for different target aspect sector when using HRRP for target recognition. Therefore, how to determine target aspect sector number and how to divide target aspect sector play an important role in classifier training. A data driven adaptive learning algorithm is proposed in this paper, which determines the target aspect sector boundary based on a multivariate Gaussian statistical data model and an iteration algorithm, and the target aspect sector number can be determined simultaneously. Comparing with the traditional equal interval target aspect partition approach, the proposed approach can achieve better recognition performance with lower computation complexity. Experimental results based on the measured data show the efficiency of the proposed method.
引文
[1] Skolnik M. Introduction to radar systems. New York: Mc-Graw-Hill, 1980.
    [2] 向敬成,张明友.雷达系统.北京:电子工业出版社,2001.
    [3] 丁鹭飞.雷达原理.北京:国防工业出版社,1980.
    [4] 黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [5] Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar—Signal Processing Algorithms. Norwood, MA: Arthech House, 1995.
    [6] Sullivan R J. Microwave Radar Imaging and Advanced Concepts, Boston: Artech House, 2000.
    [7] 保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [8] Nebabin V G. Methods and Techniques of Radar Recognition. Boston: Artech House, 1995.
    [9] 柯有安,“雷达目标识别(上)”,国外电子技术,No.4,1978,pp.22-30.
    [10] 柯有安,“雷达目标识别(下)”,国外电子技术,No.5,1978,PP.14-20.
    [11] 郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别.长沙:国防科技大学出版社,1996.
    [12] 保铮.雷达目标识别与分类技术.国防科技预研项目技术报告(高分辨部分).西安电子科技大学雷达信号处理重点实验室,1997.
    [13] 裴炳南等.目标识别技术总体方案.西安电子科技大学雷达信号处理重点实验室.2002.
    [14] 刘宏伟,杜兰,袁莉等.雷达高分辨距离像目标识别研究进展.电子与信息学报.2005,27(8):1328-1334.
    [15] 边肇祺,张学工.模式识别.北京:清华大学出版社,2001.
    [16] Bell M B, Gyubbs R A. JEM modeling and measurement for radar target identification. IEEE trans, on AES. 1993, 29(1): 12-13.
    [17] Zebker H A, Vanzyl J J. Imaging radar palarimetry: A review. Proc. IEEE. 1991, 79(11): 1583-1606.
    [18] 褚扬清.多散射中心雷达目标的极化识别.北京:航天二院硕士学位论文,1993.
    [19] 王雪松.宽带极化信息处理研究.国防科学技术大学博士论文.1999.
    [20] Blaricum M J, Mittra R. A technique for extracting the-poles and residues of a system directly from its transient response. IEEE Trans. AP. 1975, 23(6): 777-781.
    [21] Rothwell E J, Nyquist D P, Chen K M, et al. Radar target discrimination using the Extinction-Pulse technique. IEEE Trans. on AP. 1986, vol.33: 929-937.
    [22] Novak L M, Owirka G J, Weaver A L. Automatic target recognition using enhanced resolution SAR data. IEEE Trans. AES, 1999, 35(1): 157-175.
    [23] Boshra M, Bhanu B. Predicting performance of object recognition. IEEE Trans. Pattern Analysis and Machine Intelligence. 2000, 22(9): 956-969.
    [24] Boshra M, Bhanu B. Predicting an upper bound on SAR ATR performance. IEEE Trans. Aerospace and Electronic Systems. 2001, 37(3): 876-888.
    [25] Smith C R, et al. Radar target identification. IEEE Antennas and Propagation Magazine. 1993, 35(2): 27-38.
    [26] Li H J, Farhat N H, Shen Y, et al. Image understanding and prediction in microwave diversity imaging. IEEE Trans. on AP. 1989, 37(8): 1048-1057.
    [27] Li H J, Liu T Y, Yang S H. superhigh image resolution for microwave imaging. Int. J. Imaging Systems and Technol. 1990, Vol(2): 37-46.
    [28] Li H J, Yang S H, Using range profiles as features vectors to identify aerospace objects, IEEE Trans. A. P. 1993, 41(3): 261-268.
    [29] Hudson S, Psaltis D. Correlation Filters for Aircraft Identification From Radar Range Profiles. IEEE Trans. Aerospace and Electronics System. 1993, 29(3): 741-748.
    [30] Zyweck A, Bogner R E. Radar target classification of commercial aircraft, IEEE Trans. AES. 1996, 32(2): 598-606.
    [31] Li H J, Wang Y D, Wang L H. Matching score properties between range profile of high-resolution radar targets. IEEE Trans. AP. 1996, 44(4): 444-452.
    [32] Rosenbach K, Schiller J. Non co-operative air target identification using radar imagery: Identification rate as a function of signal bandwidth. Rec. IEEE 2000 Int. Radar Conf., Alexandria, VA, May 2000: 305-309.
    [33] Liao X J, Bao Z, Xing M D. On the Aspect Sensitivity of High Resolution Radar Range Profiles and Its Reduction Methods. The Record of IEEE 2000 International Radar Conference. Washing: IEEE, 2000: 310-315.
    [34] 廖学军.基于高分辨距离像的雷达目标识别.西安电子科技大学博士学位论文.1999.
    [35] 邢孟道.基于实测数据的雷达成像方法研究.西安:西安电子科技大学博士学位论文.2002.
    [36] Xing M D, Bao Z, Pei B N, The properties of high-resolution range profiles. Optical Engineering. 2002, 41(2): 493-504.
    [37] 杜兰,保铮,邢孟道.飞机目标的雷达一维距离像特性研究.西安电子科技大学学报.2002,Vol.28(Sup.):14-19.
    [38] 陈凤,杜兰,保铮等.雷达高分辨距离像自动目标识别方法的改进.电子与信息学报,2006,[已录用].
    [39] Mitchell R A, Dewall R. Overview of high range resolution radar target identification. In proceedings of Automatic Target Recognition Working Group, Monterey, CA, 1994.
    [40] Mitchell R A. Robust high range resolution radar target identification using a statistic feature based classifier with feature level fusion. Ph. D. Dissertation. University of Dayton, 1997.
    [41] Mitchell R A, Westerkamp J J. Robust statistical feature based aircraft identification. IEEE Trans. AES. 1999, 35(3): 1077-1094.
    [42] Jacobs S P. Automatic target recognition using high-resolution radar range profiles. Ph. D. Dissertation, Washington University, 1999.
    [43] Jacobs S P, O'sollivan J O. Automatic target recognition using sequences of high resolution radar range-profiles. IEEE Trans. AES. 2000, 36(2): 364-380.
    [44] Webb A R. Gamma mixture models for target recognition. Pattern Recog. 2000, vol.33: 2045-2054.
    [45] Copsey K, Webb A R. Bayesian gamma mixture model approach to radar target recognition. IEEE Trans. AES. 2003, 39(4): 1201-1217.
    [46] Du L, Liu H W, Bao Z. A Two-Distribution Compounded Statistical Model for Radar HRRP Target Recognition. IEEE Trans. on SP. 2006, 54(6): 2226-2238.
    [47] Williams R. 1D HRR data analysis and ATR assessment, In SPIE Conferences on algorithm for SAR imagery (Vol.V), Orlando, Florida, April 1998: 588-596.
    [48] Williams R, Westerkamp J, Gross D. Automatic target recognition of time critical moving targets 1D high range resolution(HRR) radar. IEEE AES Mag. 2000, 15(4): 37-43.
    [49] 杜兰,刘宏伟,保铮.利用目标方位信息改善雷达距离像识别性能.系统工程与电子技术.2004,26(8):1040-1043.
    [50] Yuan L, Liu H W, Bao Z. Radar HRRP recognition based on the minimum Kullback-Leibler distance criterion. Journal of electronics(China). 2006, 24(2).
    [51] Yuan Li, Liu H W, Bao Z. Automatic target recognition using multiple radar high range resolution profiles. CIE International Conference on Radar. Shanghai, China. 2006, 846-894.
    [52] Kim K T, Jeong H R. Identification of multiaspect radar signals based on the feature space trajectory concept. IEEE trans, on AP. 2005, 53(11): 3811-3821.
    [53] Fielding K H, Ruck D W. Spatio-temporal pattern recognition using hidden Markov models. IEEE Trans. AES. 1995, 31(4): 1292-1299.
    [54] Bharadwaj P K, Runkle P R, Carin L. Target identification with wave-based matched Pursuits and hidden Markov Models. IEEE Trans. on AP. 1999, 47(10): 1543-1554.
    [55] Runkle P R, Bharadwaj P K, Couchman L, et al. Hidden Markov models for multiaspect target classification. IEEE Trans. SP. 1999, 47(7): 2035-2040.
    [56] Bharadwaj P, Runkle P R, Carin L, et al. Multiaspect classification of airborne targets via physics-based HMMs and matching pursuits. IEEE Trans. AES. 2001, 37(2): 595-606.
    [57] Liao X J, Runkle P, Carin L. Identification of ground targets from sequential high-range-resolution radar signatures. IEEE Trans. Aerospace and Electronic System. 2002, 38(4): 1230-1242.
    [58] 裴炳南,保铮.基于散射点位置特征和HMM分类的多视角雷达目标识别原理和方法.电子学报.2003,
    [59] Pei B N, Bao Z. Radar target Recognition based on peak location of HRR Profiles and HMM classifier, IEE Radar 2002 Proceeding, U. K. Oct, 2002, 414-418.
    [60] Zhou D, Liu G, Wang J. Spatio-temporal target identification method of high range resolution radar. Pattern Recognition. 2000, 33(1): 1-4.
    [61] Kosir P, Dewall R, Mitchell R. A multiple measurement approach for feature alignment. Proc. IEEE 1995 Nat. Aerospace and Electronics Conf. NAECON 1995: 94-101.
    [62] 杜兰,保铮,刘宏伟.高分辨距离像雷达自动目标识别的模板匹配问题.第九届全国雷达学术论文集.2004,509-512.
    [63] Zwart J, Heiden R, Gelsema S, et al. Fast translation invariant classification of HRR range profiles in a zero phase representation. Inst. Elect. Eng. Proc. Radar Sonar Navig. 2003, 150(6): 411-418.
    [64] 陈渤,刘宏伟,保铮.一种基于零相位表示法的雷达高分辨距离像识别方法.西安电子科技大学学报.2005,32(5):657-662.
    [65] 裴炳南,保铮.用微分复时谱法实现雷达高分辨距离像对齐.电波科学学报.2002,17(2):103-108.
    [66] 裴炳南.高分辨雷达自动目标识别方法研究.西安电子科技大学博士论文.2002.
    [67] 陈渤,刘宏伟,保铮.基于三种不同绝对对齐方法的分类器分析.现代雷达.2006,28(3):59-62.
    [68] Chandran V, Elgar S L. Pattern recognition using invariants defined from higher order spectra—one-dimensional inputs. IEEE Trans. Signal Processing, 1993, 41(1): 205-212.
    [69] Shao Y. Higher order spectra invariants for shape pattern recognition. Ph. D. Dissertation, Ohio University, 2000.
    [70] Tugnait J K. Detection of non-Gaussian signals using integrated polyspectrum, IEEE Trans. Signal Processing. 1994, Vol.42: 3137-3149.
    [71] Hu M K. Visual pattern recognition by moments invariants. IRE Trans. Inform. Theory. 1962, Vol.IT8, 179-187.
    [72] Wong S K. Non-cooperative target recognition in the frequency domain. IEE Proc. Radar Sonar Navig. 2004, 151(2): 77-84.
    [73] Liao X J, Bao Z. Circularly integrated bispectra—novel shift invariant features for high resolution radar target recognition, IEE Electronics Letters. 1998, 34(19): 1879-1880.
    [74] 裴炳南,保铮.用对数双谱识别飞机的原理和方法.电子学报.2002,30(3):354-358.
    [75] Pei B N, Bao Z. Logarithm bispectrum based approach to high radar range profile for automatic target recognition. Pattern Recognition. 2002, 35(11): 2643-2651.
    [76] Zhang X D, Shi Y, Bao Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Processing. 2001, 49(9): 1875-1885.
    [77] Du L, Liu H W, Bao Z. Radar HRRP target recognition based on higher-order spectra. IEEE Trans. Signal Process. 2005, 53(7): 2359-2368.
    [78] Kim K T, Seo D K, Kim H T. Efficient radar target recognitionusing the Music algorithm and invariant features. IEEE Trans. A. P. 2002, 50(3): 325-337.
    [79] 袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别.电子学报.2004,32(12):2078-2081.
    [80] Li J, Stoica P. Efficient mixed-spectrum estimation with application to feature extraction. IEEE Trans. Signal Processing. 1996, 42(2): 281-295.
    [81] Li J. Statistical pattern recognition for synthetic aperture radar (SAR)/automatic target recognition(ATR). AFRL Technical Report. 2001, Vol. 2.
    [82] Shi Y, Zhang X D. A gabor atom network for signal classification with application in radar target recognition. IEEE Trans. Signal Processing. 2001, 49(12): 2994-3004.
    [83] 时宇,张贤达.Gabor原子网络法在雷达目标高分辨距离像识别中的应用.清华大学学报.2001,41(9):98-101.
    [84] Lu R, Morris J M. Gabor expansion for adaptive echo cancellation. IEEE Trans. SP Magazine. March, 1999, 68-80.
    [85] Keller J B. Geometrical theory of diffraction. J. Opt. Soc. Amer. 1962, 55: 116-130.
    [86] Potter L C, Chiang D M. A GTD-based parametric model for radar scattering. IEEE Trans. on AP. 1995, 42(10): 1058-1067.
    [87] Gerry M J, Potter L C, Gupta I J. A parametric model for synthetic aperture radar measurements. IEEE Trans. on AP. 1999, 47(7): 1179-1188.
    [88] Mallat. Matching pursuits with time-frequency dictionaries. IEEE Trans. on SP. 1993, 41(12): 3397-3415.
    [89] Mcclure M R, Carin L. Matching pursuits with a wave-based dictionary. IEEE Trans. on SP. 1997, 45(12): 2912-2927.
    [90] 马建华,刘宏伟,保铮.利用核匹配追踪算法进行雷达HRRP识别.西安电子科技大学学报.2005,32(1):84.88.
    [91] Crouse M S. Wavelet based statistical signal processing using hidden Markov models. IEEE Trans. SP. 1998, 46(4):886-902.
    [92] Rothwell E J, Chen K M, Nyquist D P, et al. A radar target discrimination scheme using the discrete wavelet transform for reduced data storage. IEEE Trans Antennas and Propagation. 1994, 42(7):1033-1037.
    [93] Liu H W, Yang Z, He K, et al. Radar high range resolution profiles recognition based on wavelet packet and subband fusion.
    [94] Nelson D E, Starzyk J A, Ensley D D. Iterated wavelet transformation and signal discrimination for HRR radar target recognition. IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, 2002, 33(1):52-57.
    [95] K. Fukunaga, Introduction to Statistical Pattern Recognition, (2nd)ed. Boston, MA: Academic, 1990.
    [96] Heiden R, Groen F C A. The box-cox metric for nearest neighour Classification improvement. Pattern Recognition. 1997, 273-279.
    [97] 刘宏伟,马建华,保铮.Box-Cox变换提高雷达高分辨距离像识别性能的物理机理分析.第九届全国雷达年会.烟台.2004,8.
    [98] Liu H W, Bao Z, Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel. Berlin, Germany: Springer-Verlag, 2004, Springer Lecture Notes in Computer Science, 531-536.
    [99] 杜兰,刘宏伟,保铮.一种利用雷达目标高分辨距离像幅度起伏特性的特征提取新方法.电子学报.2005,33(3):411-415.
    [100] Du L, Liu H W, Bao Z. A two-distribution compounded statistical model for radar HRRP target recognition. IEEE Trans. SP. 2004, 54(6).
    [101] Inggs M R, Robinson A D. Ship target recognition using low resolution radar and neural networks. IEEE Trans. AES. 1999, 35(2): 386-392.
    [102] Yu X. Neural network directed bayes decision rule for moving target class. IEEE Trans. on AES. 2000, 36(1): 176-188.
    [103] V.N. Vapnik, The Nature of Statistical Learning Theory. Berlin, Germany: Spring-Verlag, 1995.
    [104] Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernal-based learning methods. United Kingdom: Cambridge University Press, 2000.
    [105] Burges C J C. A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 199.8(2): 121-167
    [106] Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition. IEEE Trans. AES. 2001, 37(2): 643-654.
    [107] 陈渤,刘宏伟,保铮等.一种针对雷达高分辨距离像识别的融合核优化算法.电子学报.2006,34(6):1146-1151.
    [108] Chen B, Liu H W, Bao Z. Speeding up SVM in test phase: Application to radar HRRP ATR. ICONIP'06:811-818.
    [109] Chen B, Liu H W, Bao Z. An Efficient kernel optimization method for high range resolution profile recognition, 2006 CIE International Conference on Radar, Shanghai, China: 1440-1443.
    [110] Tipping-M E. Sparse Bayesian learning and relevance vector machine. Journal of Machine Learning Research. 2001 (6): 211-244.
    [1] Skolnik M. Introduction to radar systems. New York: Mc-Graw-Hill, 1980.
    [2] 黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005.
    [3] 向敬成,张明友.雷达系统.北京:电子工业出版社,2001.
    [4] 丁鹭飞.雷达原理.北京:国防工业出版社,1980.
    [5] Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar—Signal Processing Algorithms. Norwood, MA: Arthech House, 1995.
    [6] Sullivan R J. Microwave Radar Imaging and Advanced Concepts, Boston: Artech House, 2000.
    [7] 保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [8] Li H J, Yang S H, Using range profiles as features vectors to identify aerospace objects, IEEE Trans. A.P. 1993,41 (3): 261-268.
    [9] Hudson S, Psaltis D. Correlation Filters for Aircraft identification From Radar Range Profiles. IEEE Trans. Aerospace and Electronics System. 1993, 29(3): 741-748.
    [10] 廖学军.基于高分辨距离像的雷达目标识别.西安电子科技大学博士学位论文.1999.
    [11] Xing M D, Bao Z, Pei B N, The properties of high-resolution range profiles. Optical Engineering. 2002, 41 (2): 493-504.
    [12] 裴炳南.高分辨雷达自动目标识别分发研究.西安电子科技大学博士论文.2002.
    [13] Zyweck A, Bogner R E. Radar target classification of commercial aircraft, IEEE Trans. AES. 1996,32 (2): 598-606.
    [14] Mitchell R A, Dewall R. Overview of high range resolution radar target identification. In proceedings of Automatic Target Recognition Working Group, Monterey, CA, 1994.
    [15] Mitchell R A. Robust high range resolution radar target identification using a statistic feature based classifier with feature level fusion. Ph.D. Dissertation. University of Dayton, 1997.
    [16] Mitchell R A, Westerkamp J J. Robust statistical feature based aircraft identification. IEEE Trans. AES. 1999, 35(3): 1077-1094.
    [17] Jacobs S P. Automatic target recognition using high-resolution radar range profiles. Ph.D. Dissertation, Washington University, 1999.
    [18] Jacobs S P, O'sollivan J O. Automatic target recognition using sequences of high resolution radar range-profiles. IEEE Trans. AES. 2000, 36 (2): 364-380.
    [19] Webb A R. Gamma mixture models for target recognition. Pattern Recog. 2000, vol. 33:2045-2054.
    [20] Copsey K, Webb A R. Bayesian gamma mixture model approach to radar target recognition. IEEE Trans. AES. 2003, 39(4): 1201-1217.
    [21] Du L, Liu-H W, Bao Z. A Two-Distribution Compounded Statistical Model for Radar HRRP Target Recognition. IEEE Trans. on SP. 2006, 54(6): 2226-2238.
    [22] Williams R. 1D HRR data analysis and ATR assessment, In SPIE Conferences on algorithm for SAR imagery (Vol. V), Orlando, Florida, April 1998: 588-596.
    [23] Williams R, Westerkamp J, Gross D. Automatic target recognition of time critical moving targets 1D high range resolution (HRR) radar. IEEE AES Mag. 2000, 15(4): 37-43.
    [24] 杜兰,刘宏伟,保铮.利用目标方位信息改善雷达距离像识别性能.系统工程与电子技术.2004,26(8):1040-1043.
    [25] 刘宏伟,杜兰,袁莉等.雷达高分辨距离像目标识别研究进展.电子与信息学报.2005,27(8):1328-1334.
    [26] Zwart J, Heiden R, Gelsema S, et al. Fast translation invariant classification of HRR range profiles in a zero phase representation. Inst. Elect. Eng. Proc. Radar Sonar Navig. 2003, 150(6): 411-418.
    [27] 陈渤,刘宏伟,保铮.一种基于零相位表示法的雷达高分辨距离像识别方法.西安电子科技大学学报.2005,5.
    [28] 裴炳南,保铮.用微分复时谱法实现雷达高分辨距离像对齐.电波科学学报.2002,17(2):103-108.
    [29] Wong S K. Non-cooperative target recognition in the frequency domain. IEE Proc. Radar Sonar Navig. 2004, 151(2): 77-84.
    [30] Liao X J, Bao Z. Circularly integrated bispectra—novel shift invariant features for high resolution radar target recognition. IEE Electronics Letters. 1998, 34(19):1879-1880.
    [31] Pei B N, Bao Z. Logarithm bispectrum based approach to high radar range profile for automatic target recognition. Pattern Recognition.2002,35(11):2643-2651.
    [32] Zhang X D, Shi Y, Bao Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Processing. 2001, 49(9): 1875-1885.
    [33] Du L, Liu H W, Bao Z. Radar HRRP target recognition based on higher-order spectra. IEEE Trans..Signal Process. 2005, 53 (7): 2359-2368.
    [34] Kim K T, Seo D K, Kim H T. Efficient radar target recognition using the Music algorithm and invariant features. IEEE Trans. A.P. 2002, 50 (3): 325-337.
    [35] Li H J, Wang Y D, Wang L H. Matching score properties between range profile of high-resolution radar targets. IEEE Trans. AP.1996,44 (4): 444-452.
    [36] Carriere R, Moses R L. High resolution radar target modeling using a modified prony estimator. IEEE Trans. Antenna Propagation. 1992,40(1):13-18.
    [37] Li J, Stoica P. Efficient mixed-spectrum estimation with application to feature extraction. IEEE Trans. Signal Processing. 1996, 42(2): 281-295.
    [38] Li J. Statistical pattern recognition for synthetic aperture radar (SAR)/automatic target recognition (ATR). AFRL Technical Report. 2001, Vol. 2.
    [39] Tsao J., Steinberg B D. Reducition of sidelobes and speckle artifacts in microwave imaging. IEEE Trans. AP. 1988, 36(4): 543-556.
    [40] Gough P. T. A Fast spectral estimation algorithm based on the FFT. IEEE Trans. SP. 1994,42(6): 1317-1322.
    [41] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. AP. 1986, vol. 34: 276-280.
    [42] Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. ASSP. 1985, vol.33: 806-811.
    [1] Li H J, Yang S H, Using range profiles as features vectors to identify aerospace objects, IEEE Trans. A.P. 1993,41 (3): 261-268.
    [2] 保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [3] 刘宏伟,杜兰,袁莉等.雷达高分辨距离像目标识别研究进展.电子与信息学报.2005,27(8):1328-1334.
    [4] 裴炳南.高分辨雷达自动目标识别分发研究.西安电子科技大学博士论文.2002.
    [5] Chandran V, Elgar S L. Pattem recognition using invariants defined from higher order spectra—one-dimensional inputs. IEEE Trans. Signal Processing, 1993, 41(1):205-212.
    [6] Tugnait J K. Detection of non-Gaussian signals using integrated polyspectrum, IEEE Trans. Signal Processing. 1994, Vol.42:3137-3149.
    [7] Liao X J, Bao Z. Circularly integrated bispectra—novel shift invariant features for high resolution radar target recognition. IEE Electronics Letters. 1998, 34(19): 1879-1880.
    [8] Pei B N, Bao Z. Logarithm bispectrum based approach to high radar range profile for automatic target recognition. Pattern Recognition.2002,35(11):2643-2651.
    [9] Zhang X D, Shi Y, Bao Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Processing. 2001, 49(9): 1875-1885.
    [10] Du L, Liu H W, Bao Z. Radar HRRP target recognition based on higher-order spectra. IEEE Trans. Signal Process. 2005, 53 (7): 2359-2368.
    [11] Duda R O, Hart P E, Stork D G. Pattern classification. New York: Wiley, 2001.
    [12] Fukunaga K. Introduction to statistical pattern recognition, Boston, MA: Academic, 1990.
    [13] 边肇祺,张学工.模式识别.北京:清华大学出版社,2001.
    [14] Kocsor A, Toth L. Kernel-based feature extraction with a speech technology application. IEEE Trans. on SP. 2004, 52(8): 2250-2263.
    [1] 《现代应用数学手册》编委会.现代应用数学手册.概率论与随机过程卷.北京:清华大小出版社,2000.
    [2] Hu M K. Visual pattern recognition by moments invariants. IRE Trans. Inform. Theory. 1962, Vol. IT8, 179-187.
    [3] Kim K T, Seo D K, Kim H T. Efficient radar target recognition using the Music algorithm and invariant features. IEEE Trans. A.P. 2002, 50 (3): 325-337.
    [4] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. AP. t986, vol. 34: 276-280.
    [5] Duda R O, Hart P E, Stork D G. Pattern classification. New York: Wiley, 2001.
    [6] Fukunaga K. Introduction to statistical pattern recognition, Boston, MA: Academic, 1990.
    [7] 边肇祺,张学工.模式识别.北京:清华大学出版社,2001.
    [8] 保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [9] V.N. Vapnik, The Nature of Statistical Learning Theory. Berlin, Germany: Spring-Verlag, 1995.
    [10] Burges C J C. A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 1998(2): 121-167
    [11] 陈渤,刘宏伟,保铮.基于三种不同绝对对齐方法的分类器分析.现代雷达.2006,28(3):59-62.
    [1] Li H J, Yang S H, Using range profiles as features vectors to identify aerospace objects, IEEE Trans. A.P. 1993,41 (3): 261-268.
    [2] Li H J, Wang Y D, Wang L H. Matching score properties between range profile of high-resolution radar targets. IEEE Trans. AP.1996, 44 (4): 444-452.
    [3] Hudson S, Psaltis D. Correlation Filters for Aircraft Identification From Radar Range Profiles. IEEE Trans. Aerospace and Electronics System. 1993, 29(3): 741-748.
    [4] 廖学军.基于高分辨距离像的雷达目标识别.西安电子科技大学博士学位论文.1999.
    [5] 裴炳南.高分辨雷达自动目标识别分发研究.西安电子科技大学博士论文.2002.
    [6] Du L, Liu H W, Bao Z. Radar HRRP target recognition based on higher-order spectra. IEEE Trans. Signal Process. 2005, 53 (7): 2359-2368.
    [7] Liu H W, Bao Z, Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel. Berlin, Germany: Springer-Verlag, 2004, Springer Lecture Notes in Computer Science, 531-536.
    [8] Jacobs S P. Automatic target recognition using high-resolution radar range profiles. Ph. D. Dissertation, Washington University, 1999.
    [9] Jacobs S P, O'sollivan J O. Automatic target recognition using sequences of high resolution radar range-profiles. IEEE Trans. AES. 2000, 36 (2): 364-380.
    [10] 杜兰,刘宏伟,保铮.一种利用雷达目标高分辨距离像幅度起伏特性的特征提取新方法.电子学报.2005,33(3):411-415.
    [11] Kullback S. Information Theory and Statistics. Wiley, New York, 1959.
    [12] Kullback S, Leibler R. On information and sufficiency. Ann. Math. Star. 1951, 22: 79-86.
    [13] Duda R O, Hart P E, Stork D G. Pattern classification. New York: Wiley, 2001.
    [14] Shirman Y D. Computer simulation aerial target radar scattering recognition, detection and tracking. Boston: Artech House, 2002.
    [15] Gorshkov S A, Leschenko S P, Orlenko V M, et al. Radar target backscattering simulation software and user's manual. Boston, MA: Artech House, 2002.
    [16] 《现代应用数学手册》编委会.现代应用数学手册.概率论与随机过程卷.北京:清华大小出版社,2000.
    [17] 边肇祺,张学工.模式识别.北京:清华大学出版社,2001.
    [18] K. Fukunaga, Introduction to Statistical Pattern Recognition, (2nd)ed. Boston, MA: Academic, 1990.
    [19] Heiden R, Groen F C A. The box-cox metric for nearest neighour Classification improvement. Pattern Recognition. 1997, 273-279.
    [20] Mitchell R A, Westerkamp J J. Robust statistical feature based aircraft identification. IEEE Trans. AES. 1999, 35(3):1077-1094.
    [21] Jacobs S P, O'sollivan J O. Automatic target recognition using sequences of high resolution radar range-profiles. IEEE Trans. AES. 2000, 36 (2): 364-380.
    [22] 刘宏伟,马建华,保铮.Box-Cox变换提高雷达高分辨距离像识别性能的物理机理分析.第九届全国雷达年会.烟台.2004,8.
    [23] Liu H W, Bao Z, Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel. Berlin, Germany: Springer-Verlag, 2004, Springer Lecture Notes in Computer Science, 531-536.
    [24] 陈凤,杜兰,保铮等.雷达高分辨距离像自动目标识别方法的改进.电子学信息学报.[已录用]
    [1] Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar—Signal Processing Algorithms. Norwood, MA: Arthech House, 1995.
    [2] Du L, Liu H W, Bao Z. A Two-Distribution Compounded Statistical Model for Radar HRRP Target Recognition. IEEE Trans. on SP. 2006, 54(6): 2226-2238.
    [3] Li H J, Yang S H, Using range profiles as features vectors to identify aerospace objects, IEEE Trans. A.P. 1993,41 (3): 261-268.
    [4] Jacobs S P. Automatic target recognition using high-resolution radar range profiles. Ph.D. Dissertation, Washington University, 1999.
    [5] Kim K T, Seo D K, Kim H T. Efficient radar target recognition using the Music algorithm and invariant features. IEEE Trans. A.P. 2002, 50 (3): 325-337.
    [6] 陈凤,杜兰,保铮等.雷达高分辨距离像自动目标识别方法的改进.电子与信息学报.2007.
    [7] Hudson S, Psaltis D. Correlation Filters for Aircraft Identification From Radar Range Profiles. IEEE Trans. Aerospace and Electronics System. 1993, 29(3): 741-748.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700