用户名: 密码: 验证码:
生物浅表组织电特性三维重建及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物医学工程是目前发展最快的技术领域之一,已经取得了令人震惊的成就,并仍旧具有更广阔的发展前景。在生物医学工程众多的研究领域中,生物医学成像是一个重要分支,在病情诊断及身体检查中发挥着重要的作用。研究表明,高含水正常组织与低含水正常组织的介电常数和电导率差异很大,而病变组织与正常组织的介电常数和电导率差异也非常大,这为利用电磁技术探测不同的组织、以及检测病变组织的存在,尤其是癌症的早期发现提供了有利的依据。癌症的早期发现对提高治愈率有着至关重要的作用。
     电磁成像技术中微波成像和低频电阻抗成像技术复杂、系统庞大,对浅表组织中的皮肤等薄层结构分辨率不足,只能提供该区域内多种组织的等效复介电常数,而利用各种探头直接测量生物组织介电特性时,只能测量均匀组织或不均匀组织总体等效复介电常数。针对这些缺点,本文提出了基于分层均匀生物组织模型,利用体表测量信息对浅表生物组织的电特性进行三维重建的方法。本文完成的主要工作有:提出了从体表电磁测量结果重建浅表生物组织三维电特性的方法;优化设计了适用于分层均匀生物组织的测量探头;研究了遗传算法在本文逆问题求解中的应用;分析了生物组织中的血管及血液流动对探头测量结果的影响;利用本文设计的测量探头与重建方法实现了人体背部浅表三层组织电特性与厚度的重建。
     本文针对浅层皮下生物组织电特性的重建提出了基于分层均匀组织结构,从体表测量信息获得浅表生物组织三维电特性的方法。首先把复杂的生物浅表组织简化为由皮肤、脂肪、肌肉等组成的分层均匀组织,既考虑了生物体包含
    
    中文摘要
    皮肤这种薄层结构的实际,又在一定程度上进行了简化,这为本文问题的求解
    带来了极大的方便。然后利用测量探头与皮肤接触时测得的反射系数,重建皮
    肤、脂肪等薄层组织的电导率和介电常数。通过对一个区域的扫描测量,可以
    获得该区域生物浅表组织电特性的三维分布。使用分层均匀组织模型的重要前
    提是进行局部区域测量,所以测量探头具有辐射近场可以透入生物组织内部、
    分布集中,反射系数对较深层组织的电特性变化敏感的特点。针对以往同轴探
    头的不足,本文提出了同轴激励的微带贴片天线探头。
     生物组织电特性的三维重建包括正问题求解和逆问题求解两部分。为了获
    得宽频带测量探头的反射系数,正问题采用时域有限差分法(FDTD)求解生
    物组织内电磁场分布并获得探头的反射系数。逆问题为非线性的病态问题,在
    FDTD求解正问题的基础上,采用基于遗传算法(GA)的优化方法重建分层生物
    组织的三维电特性。
     通过利用FDTD与小种群遗传算法(MGA)相结合对同轴激励贴片探头的
    尺寸进行了优化。优化后的探头具有轴对称结构,可以大幅度缩短正问题计算
    时间。在ZGHo7GHz的频带范围内,该探头在分层生物组织中的近场透入深,
    反射系数的频率响应特性好,而且反射系数对组织结构及电特性的变化敏感。
    实验数据表明数值计算模拟结果与实验测量结果相吻合。
     在传统遗传算法(CGA)的基础上设计了适用于本文逆问题求解的遗传算
    子,即改进的GA,并且采用MGA(Miero一GA)对分层生物组织电特性的重建
    进行了尝试。研究结果表明:无论是采用改进后的遗传算法还是MGA都可以
    重建出分层生物组织的电特性与结构,对分层生物组织的厚度的重建非常精确,
    对分层生物组织的电特性重建存在一定误差。
     对改进遗传算法参数的分析研究中发现,对于类似逆问题的求解,种群规
    模控制为100左右比较合适。采用均匀交叉算子、复制与联赛相结合的选择算
    子,以及基于共享机制的小生境技术可以大大提高遗传算法的性能,加快算法
    向最优结果的收敛。
     测量信息对重建结果影响的研究表明:如果测量误差低于10%时,可以重
    建分层组织的电特性及结构。测量结果并非越多越好,如果测量值个数过多,
    则相邻频点的反射系数差别不大,再加上一定的测量误差,使能同时满足条件
    的解不存在,搜索结果反而偏离真实解。但测量个数过少,不能提供足够的信
    Il
    
    四川大学博士学位论文
    息,病态问题存在非唯一解,搜索出的结果不一定是真实解。分析结果表明,
    对本文的重建问题,测量数据的个数应在20与50之间比较合适。实验表明,
    采用该方法可以实现分层介质电特性的重建。
     考虑到实际生物组织中分布有血管,有些情况下血管并非毛细血管,如挠
    静脉、颈动脉等,其存在不能忽略。本文建立了有血管存在的生物分层组织模
    型,在此基础上首次分析了血液的存在及流动对测量探头反射系数的影响。模
    拟结果表明:1)如果有血管存在,在建模时考虑血管与否对测量探头反射系数
    的模拟计算会产生很大的影响,而且随频率变化呈现较大的波动。如果在生物
    组织的建模中不考虑血管的存在,反射系数的这种变化必将影响到分层生物组
    织电特性的重建。2)血管管径的变化及血管位置在一定范围内的改变对测量探
    头反射系数模拟计算的影响不大。3)血液流动速度低产生的感应电流非常小,
    因此血液的流动对测量探头反射系数几乎没有影响。
One of the fastest growing fields of technology-a field of astounding recent achievements and even more ambitious hopes-is biomedical engineering. Medical imaging, one of the research branches in biomedical engineering, plays an important role in improving medical diagnosis and treatment.
    Measurements indicate that the relative dielectric constant and conductivity of high-water-content tissues are about an order of magnitude greater than those of low-water-content tissues. Moreover, the dielectric constant and conductivity of tumors are quite different from those of normal tissues, which makes the tumor detection possible by using electromagnetic means.
    Microwave imaging (MI) and electrical impedance tomography (BIT) have been developed for many years. However, their resolutions are limited and not suitable to determine the electric properties of thin tissues, such as skin. Moreover, the techniques of MI and BIT are much complicated, and the equipments are either complex or expensive.
    A 3-dimensional (3D) reconstruction method of electric properties of superficial tissues by noninvasive measurement of human body is presented in this paper. By this reconstruction method, the dielectric constant and conductivity of each tissue in multi-layered superficial structure, especially of very thin tissues, such as skin, can be obtained.
    
    
    
    
    In the reconstruction based on a stratified uniform tissues model, a patch-antenna probe excited by coaxial line is designed and optimized by MGA (Micro Genetic Algorithm) combined with FDTD (Finite Difference Time Domain). Near fields established by the optimized probe are concentrated in a small region and able to penetrate into deeper layers of the tissues. Thus, the complex superficial tissues can be described by a multi-layered-uniform tissues model.
    The reconstruction of dielectric constant and conductivity of tissues at each layer is a nonlinear and ill-posed problem. Both GA and MGA methods are used to solve the inverse problem. Simulation results indicate that not only the dielectric constant and conductivity of each tissue can be reconstructed, but also the thickness of first two layers can be achieved.
    The appropriate population size of GA is about 100 for this problem. Some techniques, such as niching technology based on sharing scheme, tournament selection with elitism, and uniform crossover, are used to improve the performance of GA and MGA.
    The influences of measurement data on reconstruction results are investigated in this paper. The reconstruction results are no longer reliable when the measurement error is larger than 10%. The appropriate number of measurement data should be between 20 and 50 when the number of unknown parameters is 14 in this problem. Simulated results are also in agreements with experimental results, which shows the validity of this reconstruction method.
    There always exist some blood vessels in superficial tissues. Sometimes these blood vessels are large and cannot be ignored in modeling. Therefore, the impacts of blood vessels and flowing blood on the reflection coefficient are studied. Simulation results show that: a) The blood vessels in layered tissues may have a great influence on the reflection coefficient. The influence on reflection coefficient depends much on frequency, which will also definitely affect the reconstruction of the electric properties of tissues, b) The change of reflection coefficient resulted from the variation of diameter and position of blood vessel is not dramatic, c) The change of reflection resulted from the flowing blood can hardly be noticed.
    
    
    The dielectric constants and conductivities of skin, fat and muscle, as well as thickness of the skin and fat on the back of a human body are reconstructed using the above method. The reconstructed thicknesses of skin and fat are in good agreements with the specimen, and the electric properties of tissues are in agreement with the literature results. Both experimental results and reconstructed results show that the distribution of electric properties o
引文
[1]. Frederik Nebeker, Golden Accomplishments in Biomedical Engineering, IEEE Engineering in Medicine and Biology, magazine, 2002, Vol.21, No.3, pp. 17-47
    [2].张昌盛,沈海燕,齐红星等,电磁能在人体不同组织中的积蓄及其影响因素,华东师范大学学报(自然科学版),2000,No.3,42-46
    [3].李缉熙,牛中奇,生物电磁学概论,西安电子科技大学出版社,1990年6月第一版
    [4]. C. Gabriel, S. Gabriel, and E.Ccorthout, The dielectric properties of biological tissues Ⅰ: Literature survey, Phys. Med. Biol., 1996, 41 (11), 2231-2249
    [5]. S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues Ⅱ: Measurements on the frequency range 10Hz to 20GHz, Phys. Med. Biol., 1996, 41(11), 2251-2269
    [6]. S. Gabriel, R. W. Lau, and C. Gabriel, The dielectric properties of biological tissues Ⅲ: Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol., 1996, 41(11),2271-2293
    [7]. Elise C. Fear, Susan C. Hagness, Paul M. Meaney, Michal Okoniewski, Maria A. Stuchly, Enhancing breast tumor detection with near-field imaging, IEEE microwave magazine, March 2002, p48-p56
    [8]. SJ Barter and IP Hicks, Electrical impedance imaging of the breast (TranScan TS 2000): initial UK experience, Bedfordshire and Hertfordshire Breast Screening Unit, Luton, UK, Symposium Mammographicum 2000, York, UK. 4-6 October 2000
    [9]. W. T. Joines, Y. Z. Dhenxing, and R.L.Jirtle, The measured electrical properties of normal and malignant human tissues from 50 to 900MHz, Med. Phys., 1994, 21(4), pp547-550
    [10].S.S. Chaudhary, R. K. Mishra, A. Swamp, and J. M. Thomas, Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies, Indian J. Biochem., Biophys., 1984, 21(2), 76-79
    [11]. Smith, D.G., H.W. Ko, B.R.Lee etc, Electromagnetic holographic imaging of bioimpedance, SPIE photon. West, 188-192, Jan. 1998.
    
    
    [12].Long, D.M. and H.W. Ko, Quantification of brain edema by measurement of brain conductivities, Brain Edema, Sringer, New York, 1985.
    [13].K.R. Foster and J. L. Schepps, Dielectric properties of tumor and normal tissue at radio through microwave frequency, J Microwave Power, 1981, vol.16, 107-119
    [14].J. A. Rogers, R. J. Shepard, E. H. Grant, N. M. Bleehen, and D. J. Honess, The dielectric properties of normal and tumor mouse tissue between 50MHz and 10GHz, Br. J. Radiol., 1983, vol56, 335-338
    [15].R. Peloso, D. Tuma, and R. K. Jain, Dielectric properties of solid tumors during normothermia and hyperthermia, IEEE Trans. Biomed. Eng., 1984, 31(5), 725-728
    [16].A.S. Swarup, S. S. Stuchly, J. R. Barr, and A. Awarup, Dielectric properties of mouse MCAI fibrosarcoma at different stages of development, Bioelectromagn., 1991, vol. 12, 1-8
    [17].A.J. Surowiec, S. S. Stuchly, J. R.Barr, and A. Swarup, Dielectric properties of breast carcinoma and the surrounding tissues, IEEE Trans. Biomed. Eng., 1988, 35(4), 257-263
    [18].Andrzej J. Surowiec, Stanislaw S. Stuchly, and J. Robin Barr and Arvind Swarup, Dielectric properties of breast carcinoma and the surrounding tissues, IEEE trans. Biomed. Eng., 1988, 35(4), 257-263
    [19].Jeffrey G. Astbury, Michael H. Goldschmidt, et al., The dielectric properties of canine normal and neoplastic splenic tissues, pp. 107-108, 1988, IEEE, CH 2666-6/88/0000-0107
    [20].孙国杰,盛若灿,严洁等,针灸学(供中医类专业用),上海科学技术出版社,1997
    [21].Julia J. Tsuei, The science of acupuncture——theory and practice, IEEE Engineering in Medicine and Biology, magazine, 1996, 15(3), 52-57
    [22].韩济生.美国国立卫生研究院(NIH)举办针灸听证会.中国针灸,1998;18(3):187
    [23].Terry Qloson, Oringings of auriculotherapy in Asia and Europe, IccAAAM'99 conference manual, 1999, 4
    [24].Y. Nakatani, An aspect of the study of ryodoraku, Clinic Chin. Med. 1956,Vol.3, p54
    [25].M. Reichmanis, A. Marino, K. Becker, Electrical correlates of acupuncture points, IEEE Trans. Biomed. Eng.,1975, vol.22, p.553
    [26].W.A. Lu, J. J. Tsuei, and K. G. Chen, Preferential direction and symmetry of electric conduction of human meridians, IEEE Eng. Med. Biol. Mag., 1999, 18(1), 76-78
    [27].K.G. Chen, Electrical properties of meridians, IEEE Eng. Med. Bio. Mag., 1996, 15(3),
    
    58-63
    [28]. H.M. Johng, J. H. Cho, H. S. Shin, et al, Frequency dependence of impedances at the acupuncture point quze (PC3), IEEE Eng. Med. Bio. Mag., 2002, 21(2), 33-36
    [29].朱兵,陈巩荪,许瑞征,耳郭穴位电学特性的研究,中国针灸,1999,19(6),pp355-358
    [30].朱兵,陈巩荪,许瑞征,仲远明,耳穴的电学特性及其特异性,中国针灸,2001 21(12),731-734
    [31].俞明,徐定,朱兵等,耳穴电特性反应食道癌病变的特异性,南京中医药大学学报(自然科学版),2002,18(6),357-359
    [32].韩兆亮,人体双侧对称经络电阻抗失衡与疾病的相关研究,中国医学物理学杂志,1999,16(2),112-114
    [33]. K. L. Carr, Microwave radiometry: its importance to the detection of cancer, IEEE trans. MTT, 1989, 37(12), 1862-1869
    [34].李莹,宋黎君,癌症治疗功能评价系统—乳腺癌生存质量测评量表,中国临床康复,2002,6(22),3318-3320
    [35].韩苏夏,HPV致宫颈癌分子机理研究,国外医学妇幼保健分册,2003,14(1),20-22
    [36].郑莹,北美的癌症早期发现,上海预防医学杂志,2002,14(1),21-23
    [37]. Susan C. Hagness, Allen Taflove, and Jack E. Bridges, Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors, IEEE trans. Biomed. Eng. 1998, 45(12), 1470-1479
    [38]. C. Boetes, R. D. M. Mus, R. Holland, et al. Breast tumors: Comparative accuracy of MR imaging relative to mammography and U.S. for demonstrating extent, Radiol., 1995, 197(3), 743-747
    [39]. F.M. Hall, J. M. Storella, D. Z. Silverstone, and G. Wyshak, Nonpalpable breast-lesions: Recommendation for biopsy based on suspicion of carcinoma at mammography, Radiol., 1988, 167(2), 353-358
    [40].[美]道格拉斯(Douglas,K.S.)凯文(Kevin,M.R.)等主编 史浩等译,美国最新临床医学问答——影像学,2000,1
    [41].美研制出微型磁共振成像仪,中国医疗器械信息,2000,6(3),13
    [42]. J. Ch. Bolomey, L. Jofre, Ch. Pichot, and G. Peronnet, Microwave diffraction tomography for biomedical applications, IEEE trans. MTT, 1982, 30(11), 1988-2000
    
    
    [43].J. Ch. Bolomey, Recent European development in active microwave imaging for industrial scientific and medical applications, IEEE trans. MTT, 1989, 37(12), 2109-2117
    [44].E.C.Burdette, P.G.Griedrich, R.L.Seaman, and L.E. Larsen, In situ permittivity of canine brain: regional variations and post-mottera changes, IEEE trans. MTT, 1986, 340,38-50
    [45].L. Jofre, M. S. Hawley, A. Broquctas, et al. , Medical imaging with a microwave tomographic scanner, IEEE Trans. Biomed. Eng., 1990, 37(3), 303-312
    [46].J.M. Rius, C. Pichot, L. Jofre, et al. Planar and cylindrical active microwave temperature imaging: Numerical simulation, IEEE trans. Med. Imag. 1992, 11(4), 457-469
    [47].M. Slaney, A. C. kak, and L. E. Larsen, Limitations of imaging with first-order diffraction tomography, IEEE trans. MTT, 1984, 32(8), 860-874
    [48].Paul M. Meaney, Keith D. Paulsen, Alexander Hartov, Robert K. crane, An active microwave imaging system for reconstruction of 2-D electrical property distributions, IEEE trans. Biomed. Eng., 1995, 42(10), 1017-1026
    [49].Paul M. Meaney, Keith D. Paulsen, Brian W. Pogue, and Michael Ⅰ. Miga, Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery, IEEE trans., Med. Imag., 2001, 20(2), 104-116
    [50].J.C. Bolomey and C. Pichot, Some applications of diffraction tomography to electromagnetics—The particular case of microwaves, in Inverse Problems in Scattering and Imaging, M. Bertero and E. K. Pike, Eds. New York: Adam Hilger, 1992, pp. 319-344.
    [51].P. M. Meaney, K. D. Pauisen, A. Hartov, and R. C. Crane, Microwave imaging for tissue assessment: Initial evaluation in multitarget tissue equivalent phan, toms, IEEE Trans. Biomed. Eng., 1996, 43(9), 878-890
    [52].F.C. Chen and W. C. Chew, Experimental verification of super resolution in nonlinear inverse scattering, Appl. Phys. Lett., 1998, 72(23), 3080-3082
    [53].Serguei Y. Semenov, Robert H. Svenson, Alexander E. Bulyshev, et al. Spatial Resolution of Microwave Tomography for Detection of Myocardial Ischemia and Infarction-Experimental Study on Two-Dimensional Models, IEEE trans. MTT, 2000, 48(4), 538-544
    [54].A. Broquetas, J. M. Rius, et al. Cylindrical geometry: a further step in active microwave tomography, IEEE trans. MTT, 1991, 39(5), 836-844
    [55].S.Y. Semenov, R. H. Svenson, A. E. Bulyshev, A. E. Souvorov, et al. Microwave
    
    tomography: Two-dimensional system for biological imaging, IEEE Trans. Biomed. Eng., 1996, 43(9), 869-877
    [56].S.C. Hagness, A. Taflove, and J. E. Bridges, Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., 1998, 45(10), 1470-1479
    [57].Susan C. Hagness, Allen Taflove, and Jack E. Bridges, Three-Dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element, IEEE trans. AP., 1999, 47(5), 783-790
    [58].Paul M. Meaney, Margaret W. Fanning, Dun Li, Steven P. Poplack, and Keith D. Paulsen, A Clinical Prototype for Active Microwave Imaging of the Breast, IEEE trans. MTT, 2000, 48(11), 1841-1853
    [59].S. Caorsi, G. L. Gragnani, and M. Pastorino, An electromagnetic imaging approach using a multi-illumination technique, IEEE trans. Biomed. Eng., 1994, 41(4), 406-409
    [60].S. Y. Semenov, R. H. Svenson, and A. E. Boulyshev et al., Three-dimensional microwave tomography: Experimental prototype of the system and vector Born reconstruction method, IEEE trans. Biomed. Eng., 1999, 46(8), 937-946
    [61].E.C. Fear, and M. A. Stuchly, Microwave Detection of Breast Cancer, IEEE trans. MTT, 2000, 48(11), 1854-1863
    [62].Elise C. Fear, Xu Li, Susan C. Hagness, and Maria A. Stuchly, Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions, IEEE Trans. Biomed. Eng., 2002, 49(8), 812-822
    [63].Dun Li, Paul M. Meaney, and Keith D. Paulsen, Conformal Microwave Imaging for Breast Cancer Detection, IEEE trans. MTT, 2003, 51 (4), 1179-1186
    [64].Essex J. Bond,, Xu Li, Susan C. Hagness, and Barry D. Van Veen, Microwave imaging via space-time beamforming for early detection of breast Cancer, IEEE trans. AP., 2003, 51(8), 1690-1705
    [65].E.C. Fear, and M. A. Stuchly, Microwave System for Breast Tumor Detection, IEEE microwave and guided wave letters, 1999, 9(11), 470-472
    [66].D. C. Barber, B. H. Brown, and I. L. Freeston, Imaging spatial distributions of resistivity using applied potential tomography, Electron. Lett., 1983, 19(22), 933-934
    
    
    [67]. E. C. Fear, Paul M. Meaney, and Maria A. Stuchly, Microwave for breast cancer detection, IEEE potentials, 2003, Feb./Mar., 12-18
    [68]. S. Barkashli and R. G. Lauzenheiser, An iterative method for inverse scattering problems based on an exact gradient search, Radio Science, 1994, 29(4), 1119-1130
    [69]. M.M. Ney, A. M. Smith and S. S. Stuchly, A solution of electromagnetic imaging using pseudoinverse transformation, IEEE trans. Med. Imaging, 1984, 3(4), 155-162
    [70]. Qing Huo Liu, Zhong Qing Zhang, Tonghui T. Wang et al., Active microwave imaging I——2-D forward and inverse scattering methods, IEEE trans. MTT, 2002, 50(1), 123-133
    [71]. S. Y. Semenov, A. E. Bulyshev, A. E. Souvorov, et al. Microwave tomography: Theoretical and experimental investigation of the iteration reconstruction algorithm," IEEE Trans. MTT., 1998, 46(2),133-141
    [72]. Alexandre E. Souvorov, Alexander E. Bulyshev, Serguei Y. Semenov, et al., Microwave tomography: a two-dimensional Newton iterative scheme, 1EEE trans. MTT, 1998, 46(11),1654-1659
    [73]. D.S. Weile and E. Michielssen, Genetic algorithm optimization applied to electromagnetics: A review, IEEE trans. AP., magazine, 1997, 45(3), 343-353
    [74]. S. Caorsi and M. Pastorino, two-dimensional microwave imaging approach based on genetic algorithm, IEEE trans. AP., 2000, 48(3), 370-373
    [75]. Chien-Ching Chiu and Wei-Ting Chen, Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm, IEEE trans. MTT, 2000, 48(11), 1901-1905
    [76]. Ioannis T. Rekanos, Neural-network-based inverse-sacttering technique for online microwave medical imaging, IEEE trans, Mag., 2002, 38(2), 1061-1064
    [77]. S. Caorsi and P. Gamba, Electromagnetic detection of dielectric cylinders by a neural network approach, IEEE trans. Geosci remote sensing, 1999, 37(3), 820-827
    [78]. Andreas Kirsch, An introduction to the mathematical theory of inverse problems, Springer-Verlag, 1996
    [79].卿安永,李敬,任朗,自由空间中理想介质柱的微波成像,电子学报,1997,25(12),25-29
    [80].卿安永,李敬,任朗,自由空间中二维介质柱微波成像的变分迭代法,电子学报,1998,26(9),86-89
    [81].卿安永,李敬,任朗等,多导体柱微波成像的连续编码遗传算法,地球物理学报,1999,
    
    42(6),841-848
    [82].程崇虎,张业荣,圆柱面分层介质结构的微波成像,电波科学学报,2003,18(1),38-42
    [83].袁渊,二维共形微波成像系统,四川大学1999年硕士论文
    [84].赵翔,基于矩量法和伪逆技术的二维微波成像,四川大学1997年硕士论文
    [85].陈星,微波成像中基于伪逆的分解算法的研究,四川大学1999年硕士论文
    [86]. Yongmin Kim, John G. Webster and Wills J. Tompkins, Electrical impedance tomography imaging of the thorax, J. Microwave Power, 1983, 18(3), 245-257
    [87]. Wenxin Ruan et al. Experimental evaluation of two iterative reconstruction methods for induced current electrical impedance tomography, IEEE Trans. Med. Imag., 1996, 15(2),180-187
    [88]. Lian Gong, Keqian Zhang and Rolf Unbehauen, 3-danisotropic electrical impedance imaging, IEEE trans. Magnetics, 1997, 33(2), 2120-2122
    [89]. Margaret Cheney and David Isaacson, Distinguishability in impedance imaging, IEEE trans. Biomed. Eng.. 1992, 39(8), 852-860
    [90]. Kuo-Sheng Cheng, et al. Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. IEEE trans. Biomed. Eng., 1990, 37(1), 60-65
    [91]. W.R.Purvis, R.C.Tozer, D.K.Anderson, and I.L Freeston. Induced current impedance imaging, IEE Proc. pt.A.1993, vol.140, 135-141.
    [92]. J.C.Newell, et al. An electric current tomograph, IEEE trans. Biome. Eng. 1988, 35(10),828-832
    [93]. Peter M.Edic, Gary J.Saulnier, Jonathan C.Newell, and David lsaacson, A real-time electrical impedance tomograph. IEEE trans. Biome. Eng. 1995, 42(9), 849-859
    [94]. Nevzat G.Gencer et al.. Electrical impedance tomography: indued-current imaging achieved with a multiple coil system. IEEE trans. Biomed. Eng., 1996, 43(2), 139-149
    [95]. Alex Hartov, Robert A. Mazzarese, et al. A mutichannel continuously selectable mutifrequency electrical impedance spectroscopy measurement System, IEEE Trans. Biomed. Eng., 2000, 47(1), 49-57
    [96]. Raymond D. Cook et al.. ACT3: a high-speed, high-pression Electrical Impedance Tomograph. IEEE Trans. Biomed. Eng., 1994, 41 (8), 713-721.
    [97]. Robert W.M. Smith et al. , A Real-Time Electrical Impedance Tomography System for
    
    Clinical Use——Design and Preliminary Results. IEEE Trans. Biom. Eng., 1995, 42(2),133-140
    [98].任超世,EIT——一种诱人的医学成像新技术,电子科技导报,1996,No.5,9-13
    [99]. Hemant Jain, David Isaacson, Peter M. Edic and Jonathan C. Newell, Electrical impedance tomography of complex conductivity distributions with noncircular boundary, IEEE trans., Biom. Eng. 1997, 46(11), 1051-1060
    [100]. Robert Guardo, et al., An experimental study in electrical impedance tomography using backprojection reconstruction, IEEE trans. Med. Imag., 1993, 12(2), 137-146
    [101]. Tadakuni Murai and Yukio Kagawa, Electrical impedance computed tomography based on a finite element model, IEEE trans. Biomed. Eng. 1985, 32(3), 177-184
    [102]. Thomas J. Yorkey, John G. Webster and Willis J. Tompkins, Comparing Reconstruction algorithm for electric impedance tomography, IEEE trans. Biomed. Eng., 1987, 34(11), 843-852
    [103]. Eung Je Woo, Ping Hua, John G Webster and Willis J. Tompkins, A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography, IEEE trans. Med. Imag., 1993, 12(2), 137-146
    [104]. Wenxin Ruan, Robert Guardo and Andy Adler, Experimental evaluation of two iterative reconstruction methods for induced current electrical impedance tomography, IEEE trans. Med. Imag., 1996, 15(2), 180-187
    [105]. Kuo-Sheng Cheng et al., Electrical impedance image reconstruction using the genetic algorithm, 18th Annal Intel. Conf. IEEE Engineering in Medicine and Biology Scociety, 1996, Amsterdam, 768-769
    [106]. A. Nejatali and I. R. Ciric, An iterative algorithm for electrical impedance imaging using neural networks, IEEE trans. Magnetic, 1998, 34(5), 2940-2943
    [107]. Paivi J.Vauhkonen,et al. Three-Dimensional Electrical Impedance Tomography Based on the Complete Electrode Model, IEEE Trans. Biomed. 1999, 46(9), 1150-1160
    [108]. E.C. Burdette, F. L. Cain, and J. Seals, In vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies, IEEE Trans. MTT., 1980, 28(4), 414-427
    [109]. M.A. Stuchly and S. S. Stuchly, Coaxial line reflection method for measuring dielectric propertites——A review, IEEE Trans. Instrum. Meas., 1980, 29(9), 176-182
    
    
    [110]. T.W. Athey, M. A. Stuchly, and S. S. Stuchly, Measurement of radio-frequency permittivity of biological tissues with an open-ended coaxial line: Part Ⅰ, IEEE Trans. MTT, 1982, 30(1), 82-86
    [111]. M.A. Stuchly, A.W. Athey, G. M. Samars, and G. E. Taylor, Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part Ⅱ-experimental results, IEEE Trans. MTT, 1982, 30(1), 87-92
    [112]. L.L. Li, B. Ismail, L.S. Taylor, and C. C. Davis, Flanged coaxial microwave probes for measuring thin moisture layers, IEEE Trans. Bio-Med. Eng., vol.39, pp. 49-57, No.1, 1992
    [113]. Jian-Zhong Bao, Shin-Tsu Lu, and William D.Hurt, Complex dielectric Measurement and Analysis of Brain Tissues in the Radio and Microwave Frequencies, IEEE Trans. MTT, 1997, 45(10), 1730-1740,
    [114]. Karunanayake P.A.P. Essenle, S.S. Stuchly, Capacitive sensors for in-vivo measurement of the dielectric properties of biological materials, IEEE Trans. Instrum. Meas., 1988, 37(1), 101-105
    [115]. A W Preece, R H Johnson, A A Craig, J L Green, R N Clarke and A P Gregory, Dielectric measurement of reference liquid and tissue equivalent material with non-invasive sensors, IEEE MTT-S digest, 1994, WE3F-36, 1061-1064
    [116]. Nobby Stevens and Luc Martens, Dimensioning of open-ended coaxial probes for the dielectric characterization of thin-layered materials, IEEE instrument and measurement technology/conference, Budapest, Hungary, May, 21-23, 2001, 1288-1290
    [117]. P.Delanghe, L. Martens, and D. De Zutter, Design rules for an experimental setup using an open-ended coaxial probe based on theoretical modeling, IEEE Trans. Instrum. Meas., 1994, 43(10), 810-817
    [118]. S.Hoshina, Y. Kanai, and M. Miyakawa, A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement, IEEE Trans. Magn.,2001, 37(9), 3311-3314
    [119]. Dina M. Fagl, Dijana Popovic, Susan C. Hagness, John H. Booske, and Michal Okoniewski, Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies, IEEE Trans. MTT, 2003, 51 (4), 1194-1205
    [120]. M.Okoniewski, J.Anderson, E. Okoniewska, K. Caputa, and S.S. Stuchly, Further
    
    analysis of open-ended dielectric sensors, IEEE Trans. MTT, 1995, 43(8), 1985-1989
    [121]. S. Bringhurst and M. E Iskander, open-ended metallized ceramic coaxial probe for high-temperature dielectric properties measurement, IEEE Trans. MTT, 1996, 44(6), 926-935
    [122]. Dijana Popovic, and Michal Okoniewski, Effects of mechanical flaws in open-ended coaxial probes for dielectric spectroscopy, IEEE microwave and wireless components letters, 2002, 12(10), 401-403
    [123]. J. Baker-Jarvis, M. D. Janezic, P. D. Domich, and R. G. Geyer, Analysis of an open-ended coaxial probe with lift-off for nondestructive testing, IEEE Trans. Instrum. Meas. 1994, 43(10)., 711-718.
    [124]. Yoon, R.S., etc., Changes in the complex permittivity during spread depression in rat cortex, IEEE Trans., Biomed., 1999, 46(11), 1330-1338
    [125]. K.-M. Huang, X.-B. Xu, L.-P. Yan and M. Zhang, A new noninvasive method for determining the conductivity of tissue embedded in multiplayer biological structure, J. of Electromagn. Waves and Appl., 2002, 16(6), 851-860
    [126]. Gideon Kantor, Donald M. Witters, JR., and John W. Greiser, The performance of a new direct contact applicator for microwave diathermy, IEEE trans. MTT, 1978, 26(8), 563-568
    [127]. Gideon Kantor, and Donald M. Witters, JR., A 2450-MHz slab-loaded direct contact applicator with choke, IEEE trans. MTT, 1980, 28(12), 1418-1422
    [128]. Yoshio Nikawa, Makoto Kikuchi, and Shinsaku Mori, Development and testing of a 2450-MHz lens applicator for localized microwave hyperthermia, IEEE trans. MTT, 1985, 33(11), 1212-1216
    [129]. J.Carl Kumaradas and Michael D. Dherar, Finite element method aided design of a beam shaping hyperthermia microwave app. licator, pp. 284-286, Proceeding of the 22nd annual EMBS international Conference, July 23-28,2000, Chicago IL.
    [130]. Jan Vrba, Jr., Cafiero Franconi, Francesco Montecchia, and Italo Vannucci, Evanescent-mode app. licators (EMA) for superficial and subcutaneous Hyperthermia, IEEE trans. Biomed., 1993, 40(5), 397-407
    [131]. Xiangying Wu, Shoujun Wang, Fei Ji, and Shengli Lai, Early detection of subcutaneous tumor through microwave reflection measurement, pp. 45-48, 1997 Asia Pacific Microwave Conference, 2A 16-2.
    
    
    [132]. Svein Jacobsen and Paul R. Stauffer, Multifrequency radiometric determination of temperature profiles in a lossy homogeneous phantom using a dual-mode antenna with integral water bolus, IEEE trans. MTT, 2002, 50(7), 1737-1746
    [133]. P.R. Stauffer, F. Rossetto, M. Leoncini, and G. Biffi Gentilli, Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia, IEEE Trans. Biomed., 1998, 45(5), 605-613
    [134]. F. Rossetto and P. R. Stauffer, Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators, IEEE Trans. Biomed. Eng., 1999, 46(11), 1310-1319
    [135]. P. Queffelec and P. Gelin, Influence of higher order modes on the measurements of complex permittivity and permeability of materials using a microstrip discontinuity, IEEE Trans. MTT, 1996, 44(6), 816-824
    [136]. Mirjana Bogosanovich, Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials, IEEE Trans. Instrum. Meas., 2000, 49(5), 1144-1148
    [137]. Michael D. Janezic, Dylan F. Williams, Volker Blaschke, Arun Karamcheti, and Chi Shih Chang, Permittivity characterization of low-k thin films from transmission-line measurements, IEEE trans., MTT, 2003, 51(1), 132-136
    [138].人体解剖与生理学,[美]K.M.范德赫拉夫,R.沃德里斯,高秀来,张茂先等译,科学出版社,2002年8月,第一版
    [139].郑荣琴,张嗣汶,林骅杰等,正常人体皮肤15M Hz声像研究,中华超声影像学杂志,1997,6(2),85-87
    [140].李蓉孙,朱艳平,李有秋,人体解剖生理学,1998年7月第1版
    [141]. Michal Mrozowski and Maria A. Stuchly, Parameterization of media dispersive properties for FDTD, IEEE trans. AP, 1997, 45(9), 1438-1439
    [142]. Camelia Gabriel, Sami Gabriel, Compilation of the dielectric properties of body tissues at RF and microwave frequencies, Physics Department, King's College London, London WC2R 2LS, UK. Legal Documentation from http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric
    [143]. Paolo Bemardi, Franco Giannini, and Roberto Sorrentino, Effects of the surroundings on electromagnetic-power absorption in layered-tissue media, IEEE trans. MTT, 1976, No.9,
    
    621-625
    [144]. Lin-Kun Wu and William K. Nieh, FDTD analysis of the radiometric temperature measurement of a bilayered biological tissue using a body-contacting waveguide probe, IEEE trans. MTT, 1995, 43(7), 1576-1583
    [145]. K.S. Nikita and N. K. Uzunoglu, Analysis of the power coupling from a waveguide hyperthermia applicator into a three-layered tissue model, IEEE trans. MTT, 1989, 37(11),1794-1800
    [146]. P.A. Cudd, A. P. Anderson, M. S. Hawley, and J. Conway, Phased-array design considerations for deep hyperthermia through layered tissue, IEEE trans. MTT, 1986, 34(5),526-531
    [147]. K.S. Nikita, G. D. Mitsis, and N. K. Uzunoglu, Analysis of focusing of pulsed baseband signals inside a layered tissue medium, IEEE trans. MTT, 2000, 48(1), 30-39
    [148]. G.B. Gentili, M. Leoncini, B. S. Trembly, and S. E.Schweizer, FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators, IEEE trans. Biomed., 1995, 42(10),973-980
    [149]. B. M. Najafabadi, and A. F. Peterson, Focusing and impedance properties of conformable phased array antennas for microwave hyperthermia, IEEE trans. MTT, 1996,44(10), 1795-1802
    [150].赵翔,黄卡玛,同轴线中分层媒质电特性重建的病态性问题研究,电子学报,2003,31(6),911-914
    [151]. P.Y. Cresson, C. Michel, L. Dubois, et al, Complete three-dimensional modeling of new microstrip-microslot applicators for microwave hyperthermia using the FDTD method, IEEE trans. MTT, 1994, 42(12), 2657-2666
    [152]. Paul R. Stauffer, Francesca Rossetto, Marco Leoncini, and Guido Biffi Gentilli, Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia, IEEE trans. Biomed., 1998, 45(5), 605-613
    [153]. Frank Gustrau, Achim Bahr, Matthias Rittweger, Sigurd Goltz, and Siegfried Eggert, Simulation of induced current densities in the human body at industrial induction heating frequencies, IEEE trans. EMC, 1999, 41(4), 480-486
    [154]. Qishan Yu, Om E Gandhi, Magnus Aronsson, and Ding Wu, An automated SAR
    
    measurement system for compliance testing of personal wireless devices, IEEE trans. EMC., 1999, 41(3), 234-245
    [155]. Nobby Stevens and Luc Martens, Comparison of averaging procedures for SAR distributions at 900 and 1800 MHz, IEEE trans. MTT, 2000, 48(11), 2180-2184
    [156]. G. Emili, A. Schiavoni, M. Francavilla, L. Roselli, and R. Sorrentino, Computation of electromagnetic field inside a tissue at mobile communications frequencies, IEEE trans. MTT, 2003, 51(1), 178-186
    [157]. K.S.Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagat., Vol.AP-14, pp. 302-307, 1966.
    [158]. Taflove A, Brodwin M E. Numerical solutions of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations. IEEE Trans. On MTT, 1975,23(8), 623-630
    [159].葛德彪,闫玉波,电磁波时域有限差分方法,西安电子科技大学出版社,2002年4月,36-45
    [160]. Berenger J P. A perfectly matched layer for the absorption of Electromagnetic waves, J.Comput. Phys., 1994, 114(2), 185-200
    [161]. Berenger J E Perfectly matched layer for the FDTD solution of wave-structure interaction problem. IEEE trans. Antennas Propogat., 1996, AP-44(1), 110-117
    [162]. Stephen D. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattices, IEEE trans. Antennas Propogat., 1996, AP-44(12), 1630-1639
    [163]. C.M. Furse, J. Y. Chert, and On E Gandi, The use of the frequency-dependent finite-difference time-domain method for induced current and SAR calculations for a heterogeneous model of the human body, IEEE trans. EMC, 1994, 36(2), 128-133
    [164]. Om E Gandi, Ben-qing Gao, Jin-Yuan Chen, A frequency-dependent finite-difference time-domain formulation for general dispersive media, IEEE trans. MTT, 1993, 41(4), 658-665
    [165]. Holland J H., Adaptive in nature and artificial systems, the University of Michigan Press, 1975, MIT Press, 1992
    [166]. Daniel S. Weile and Eric Michielssen, Genetic algorithm optimization applied to electromagnetics: a review,, IEEE trans. AP, 1997, 45(3), 343-353
    [167]. J. M. Johnson and Y. Rahmat-Samii, Genetic algorithm in engineering
    
    electromagnetics,, IEEE AP mag., 1997, 7-21
    [168]. K. E Man, K. S. Tang, and S. Kwong, Genetic algorithm: concepts and applications, IEEE trans. Industrial electronics, 1996, 43(5), 519-534
    [169].陈国良,王煦法,庄镇泉,王东生,遗传算法及其应用,1996,人民邮电出版社
    [170].周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.19
    [171]. De Jong, K.A. An analysis of the behavior of genetic adaptive systems, Dissertation abstracts international. 1975, 41(9), 3503B
    [172]. Grefenstette J. J., Optimization of control parameters for genetic algorithm. IEEE Trans. Systems, Man and Cybernetics, 1986, SMC-16(1), 122-128
    [173]. Sourav Chakravarty, Raj Mittra, Neil Rhodes Williams, Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics. IEEE trans. Antenna and Propaga. 2002, AP-50(3),284-296
    [174]. Sourav Chakravarty, Synthesis of spatial filters and broadband microwave absorbers using micro-genetic algorithms, Ph.D dissertation, The Pennsylvania State University, 2001, Source: Dissertation Abstracts International, Volume: 62-05, Section: B, page: 2427.;Adviser: Raj Mittra
    [175]. J.M. Johnson and Y. Rahmat-Samii, Genetic algorithms in electromagnetics, Proc. Int. Symp. IEEE Antennas Propagat., Baltimore, MD, 1996, 1480-1483.
    [176]. Sourav Chakravarty and Raj Mittra, Application of the micro-genetic algorithm to the design of spatial filters with frequency-selective surfaces embedded in dielectric media, IEEE trans. EMC, 2002, 44(2), 338-346
    [177]. Yinchao Chen, Raj Mittra, and Paul Harms, Finite-difference time-domain algorithm for solving Maxwell's equations in rotationally symmetric geometries, IEEE Trans. On MTT, 1996, 44(6), 832-839
    [178]. Prescott, D.T. and Shuley, N.V., Reducing Solution Time in Monochromatic FDTD Waveguide Simulation [J], IEEE Trans., 1997, MTT-42(8): 1582-1584.
    [179].王长清,祝西里,电磁场计算中的时域有限差分法,北京大学出版社,
    [180]. D.E. Goldberg and K. Deb, "A comparative analysis of selection schemes used in genetic algorithms," in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San Mateo, CA:
    
    Morgan Kaufmann, 1991, pp. 69-93.
    [181].章珂,刘贵忠,交叉位置非等概率选取的遗传算法,信息与控制,1997,26(1),53-60
    [182]. K.Krishnakumar, Micro-genetic algorithms for stationary and nonstationary function optimization, SPIE: Intelligence control and adaptive systems, vol. 1196, Philadelphia, PA, 1989
    [183]. David L. Carroll, Genetic algorithms and optimizing chemical oxygen-iodine lasers, Developments in Theoretical and Applied Mechanics, Vol. ⅩⅧ, eds. H. Wilson, R. Batra, C. Bert, A. Davis, R. Schapery, D. Stewart, and E Swinson, School of Engineering, The University of Alabama, 1996, pp. 411-424.
    [184]. Shinichiroh Hoshina, Yasushi Kanai, and Michio Miyakawa, A numerical study on the measurement region of an open-ended coaxial probe used for complex permittivity measurement, IEEE trans. Mag., 2001, 37(5), 3311-3314
    [185]. A.Stogryn, Equations for calculating the Dielectric Constant of Saline water, IEEE, Trans. MTT, 1971,No.8, 733-736
    [186].黄光远,刘小军,数学物理反问题,山东科学技术出版社,1993,36-38
    [187].陈星,黄卡玛,袁渊等,微波生物医学成像算法中的病态及伪逆问题,电波科学学报,2000,15(1),65-69
    [188].邓乃扬等,无约束最优化计算方法,科学出版社,1982,259-279
    [189].王小平,曹立明,遗传算法——理论、应用与软件实现,西安交通大学出版社,2002
    [190]. Torres. F., and Jecko. B, Complete FDTD Analysis of Microwave Heating Processes in Frequency-Dependent and Temperature-Dependent Media [J], IEEE Trans. MTT, 1997, 45(1):108-117.
    [191].夏强,《医学生理学》,2002年3月第一版
    [192].邢贵庆,人体解剖生理学,中国医药科技出版社,1999年
    [193].张镜如,生理学,人民卫生出版社,2000年
    [194].丁报春,安志庆,《医学生理学》,1994年1月第一版
    [195].朱思明,《医学生理学》,1998年第一版
    [196].孙庆伟 刘锡仪 胡尚嘉 李东亮,《医学生理学》,1999年8月第1版
    [197].闫丽萍,黄卡玛,刘长军等,微波对流体加热过程的数值分析,电子学报,2003,
    
    31(5), 667-670
    [198]. Jones D S., The theory of electromagnetism, Oxford, London, Pergamon Press, 1964,736-738
    [199].吴瑞技,何晓峡,叶勤,阿尔采木病经颅多普勒检查的研究,临床精神医学杂志,1995,5(5),267-269
    [200].陈燕玲,赵振军等,彩色多普勒超声对肢端硬皮病外治法的研究,疑难病杂志,2002,1(2),84-86
    [201].高敏,冯延昌等,超声对门静脉高压症断流术前后腹腔动脉及其分支的血流动力学测定,中国超声医学杂志,2001,17(7),516-518
    [202].史世勇,胡小琴,卿恩明,颈动脉血流监测在心内直视手术中的应用,中国循环杂忠,1996,11(11),674-677

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700