用户名: 密码: 验证码:
不确定性连续体结构的拓扑优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际工程结构系统中,由于存在着大量的误差和不确定性,使得结构的物理参数、几何参数以及载荷等具有不确定性,从而导致结构的响应也具有不确定性。因此,考虑这些不确定性因素的情况下进行结构拓扑优化设计,被众多学者提出且越来越受到学术界及工程界的关注和重视。然而迄今所见到的关于连续体结构拓扑优化问题的研究,绝大多数属于确定性模型,即将连续体结构参数及其作用载荷等均视为确定值,没有考虑不确定性因素的影响。显然,确定性模型是无法反映出结构参数或作用载荷的不确定性对结构设计性能的影响。因此,开展不确定性连续体结构拓扑优化设计的研究具有重要的理论意义、学术价值和工程实际背景。本文对不确定性连续体结构的拓扑优化设计进行了研究,主要内容如下:
     1、研究了几何参数和物理参数均为随机变量的平面连续体结构在结构总应变能约束下的拓扑优化设计问题。以结构总质量均值极小化为目标函数,以结构的形状拓扑信息为设计变量,以结构总应变能概率可靠性指标为约束条件,构建了随机结构的拓扑优化设计数学模型。利用随机因子法和代数综合法,导出了应变能的均值和均方差的计算表达式,提出了相应的求解策略。
     2、在考虑结构几何和物理参数均具有随机性的情况下,建立了以质量均值极小化为目标函数,以结构的形状拓扑信息为设计变量的基于频率概率可靠性约束的平面应力薄板结构的动力特性拓扑优化设计模型。同理,研究了物理参数为随机变量的三维结构的频率拓扑优化设计。利用代数综合法,导出了随机参数结构的动力特性数字特征计算表达式,并采用渐进结构优化法进行求解。
     3、考虑结构的物理参数和作用载荷均具有模糊性的平面连续体结构的拓扑优化设计问题,利用信息熵将模糊变量转换为等效的随机变量,构建了随机载荷作用下的随机参数连续体结构的拓扑优化设计数学模型,以结构的形状拓扑信息为设计变量,结构总质量均值极小化为目标函数,以单元应力可靠性为约束条件,并对应力可靠性约束进行了等价显式化处理。基于随机因子法,利用代数综合法导出了单元应力数字特征的计算表达式,采用双方向渐进结构优化方法求解。
     4、研究结构物理参数和作用载荷均为区间变量的平面连续体结构的拓扑优化设计问题。以结构的形状拓扑信息为设计变量,结构总质量均值极小化为目标函数,单元应力(结构应变能)非概率可靠性为约束条件,构建了区间载荷作用下区间参数连续体结构的拓扑优化设计数学模型。基于区间因子法和区间运算规则,导出了单元应力(应变能)的均值和离差的计算表达式。采用双方向渐进结构优化法的求解策略。
     5、考虑结构的物理参数和作用载荷具有随机性或区间不确定性,利用3σ准则实现随机变量和区间变量之间的相互转换。利用区间因子法和区间运算规则,导出区间参数结构节点位移、单元应力和单元应变能的均值和离差的计算表达式;利用随机因子法和代数综合法,导出随机参数结构静力响应的均值和均方差,进而解决具有随机-区间参数结构的静力分析问题。
     6、根据上面的成果,研究混合参数平面连续体结构的静力拓扑优化问题。首先研究了位移可靠性约束下的模糊-区间参数连续体结构的拓扑优化问题。利用3σ准则和信息熵分别将区间变量和模糊变量近似转换为随机变量,构建了随机参数平面连续体结构的拓扑优化模型;利用代数综合法导出了位移的数字特征的计算表达式;通过单位虚载荷计算位移灵敏度然后采用双方向渐进结构优化方法求解。其次,研究了随机-区间结构的拓扑优化设计问题。利用3σ准则将区间变量近似转换为随机变量,建立了一个以质量均值极小化为目标函数,以结构的形状拓扑信息为设计变量,以满足单元应力可靠性为约束条件的数学模型。
There are a large number of errors and uncertainties in practical engineering structures, which cause the physical parameters, geometrical parameters and loads to be uncertain. Therefore, topological optimization designs with these uncertainties are put forward by numerous scholars, and get more and more attentions in academic and engineering kingdom. However, most of topology optimization designs for continuum structures belong to determinate structural optimization design, that is, all the structural parameters are regarded as determinate without considering influence of uncertainties. Obviously, the deterministic models are unable to reflect the influence of uncertain structural parameters on design performances. Consequently, topology optimization designs of continuum structures with uncertainties have wide engineering background, important theoretical meanings and academic values. Studies on topology optimization design of continuum structures with uncertainty parameters are made in this dissertation. The main research work can be described as follows:
     1. Topology optimization design problem for planar continuum structure with randomness of both geometry and physical parameters under the structural total strain energy constraint is studied. Mathematical model of topology optimization design of random structure is established, in which the minimum mean of structural weight is taken as objective function, the structural shape topology information is taken as design variables, and the probabilistic reliability index of structural total strain energy is taken as constraint condition. The computational expressions for mean value and mean variance of the structural strain energy response are presented by the random factor method and algebra method. The corresponding solving method is proposed.
     2. Dynamic characteristic topology optimization of continuum structure with randomness of both geometry and physical parameters is researched based on natural frequency probability constraints. Mathematical model of topology optimization design about plain stress thin plate is established, in which the minimum mean of structural weight is taken as objective function, structural shape topology information is taken as design variables, and the probabilistic reliability index of structural natural frequency is taken as constraint condition. Similarly, topology optimization design problem for three dimensional structures with randomness of physical parameters under structural frequency constraints is studied. The numerical characteristics of structure with random parameters are deduced by the algebra method. Meanwhile, the evolutionary structural optimization method is used in the optimization.
     3. Topology optimization designs of planar continuum structure with fuzzy parameters under fuzzy loads are discussed. Fuzzy variables are transformed into random variables by information entropy. Mathematical model of topology optimization of continuum structures with random parameters under random loads is established. The minimum mean of structural weight is taken as objective function; the structural shape topology information is taken as design variables; and the probabilistic reliability index of structural natural frequency is taken as constraint condition. The element stress constraints are transformed into equivalent normal constraints. The computational expressions of numerical characteristics of stress responses are presented based on random factor method. Bi-directional evolutionary structural optimization method is used in the optimization.
     4. Topology optimization design of planar continuum structure under interval loads is discussed considering interval uncertainties of physical parameters. The topology optimization mathematical models with stress (structural strain energy) constraints of planar continuum structures under interval loads are established. The minimum mean of structural weight is taken as objective function, the structural shape topology information is taken as design variables, and the non-probabilistic reliability index is taken as constraint condition. Computational expressions of numerical characteristics of stress (strain energy) based on interval factor method and interval arithmetic rule are deduced. Bi-directional evolutionary structural optimization method is also used in the optimization.
     5. In consideration of structural physical parameters and applied loads being random or interval, random variables and interval variables are transformed into each other by 3σcriteria. For interval parameters structures, the computational expressions of numerical characteristics of node displacement, element stress and strain energy responses are deduced based on the interval factor method. For random parameters structures, the computational expressions of numerical characteristics of element stress, node displacement and strain energy responses are presented based on the random factor method and interval arithmetic rules. Then the static analysis problem of random-interval parameters continuum structures is solved.
     6. According to the above results, topology optimization design of planar continuum structure with mixed parameters is studied. Firstly, the optimization problem of fuzzy-interval parameters structures under displacement constraints is discussed. Interval and fuzzy variables are transformed respectively into random ones by the 3σcriteria and information entropy. Mathematical model of topology optimization of continuum structures with random parameters is established. The computational expressions of numerical characteristics of displacement responses are presented based on the algebra method. Displacement sensitivity is obtained by unit void load. Bi-directional evolutionary structural optimization method is used in the optimization. Secondly, the optimization problem of random-interval parameters structures under stress constraints is discussed. Interval variables are transformed into random ones by the 3σcriteria. The topology optimization mathematical model is established, taking the minimum mean of structural weight as objective function, the structural shape topology information as design variables, and the stress probabilistic reliability index as constraint condition.
引文
[1]郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述.机械设计, 2007, 24(8):1-6.
    [2]李芳,凌道盛.平面应力问题的结构拓扑优化.浙江工业大学学报, 2000, 28(3):220-223.
    [3] Hassani B, Hinton E. Homogenization and structural topology optimization theory, practice and software. London: Springer, 1999.
    [4] Bendsoe M P, Sigmund O. Topology optimization: theory, methods and applications. New York: Springer, 2003.
    [5] Michell A G M. The limits of economy of material in frame structure. Philosphical Magazine, 1904, 6(8): 589-597.
    [6] Cox H L. The design of structures of least weight. London: Pergamon Press, 1965.
    [7] Rozvany G I N. Some shortcomings in Michell’s truss theory. Structural Optimization, 1996, 12(4):244-250.
    [8] Rozvany G I N. Structural design via optimality criteria—the prager approach to structural optimization. Dordrecht Boston London: Kluwer Academic Publishers, 1989.
    [9] Bendsoe M P, Ben-Tal A, Zowe J. Optimization methods for truss geometry and topology design. Structural Optimization, 1994, 7(3):141-159.
    [10]蔡文学,程耿东.桁架结构拓扑优化设计的模拟退火算法.华南理工大学学报, 1998, 26(9):78- 83.
    [11]高峰,王德俊,胡俏.多工况多约束离散变量桁架拓扑优化的GA算法.东北大学学报, 1999, 20(1): 94-97.
    [12]刘光惠,韦日钰.桁架拓扑和尺寸优化的协同演化算法.广西科学, 2000, 7(2):81-84.
    [13]朱朝艳,刘斌,张延年,等.复合形遗传算法在离散变量桁架结构拓扑优化设计中的应用.四川大学学报, 2004, 36(5):6-8.
    [14]孙焕纯,柴山,王跃方.离散变量结构优化设计的发展、现状及展望.力学与实践, 1997, 19(4):7-11.
    [15]柴山,石连栓,孙焕纯.包含两类变量的离散变量桁架结构拓扑优化设计.力学学报, 1999, 31(5):574- 583.
    [16]陈建军,曹一波,段宝岩.基于可靠性的桁架结构拓扑优化设计.力学学报, 1998, 30(3):277- 284.
    [17] Zhang W H, Domaszewski M, Bassir H. Developments of sizing sensitivity analysis with ABAQUS code. International Journal of Structural Optimization, 1999, 17(2-3): 219-225.
    [18]周克民,李俊峰,李霞.结构拓扑优化研究方法综述.力学进展, 2005, 35(1):69 - 76.
    [19]程耿东,张东旭.受应力约束的平面弹性体的拓扑优化.大连理工大学学报, 1995, 35(1): 1-9.
    [20]郭东明,王晓明,贾振元等.新型材料零件数字化设计和制造的理论和方法.中国机械工程, 1999, 10(6): 601-604.
    [21]隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法.计算力学学报, 2000, 17(1): 28-33.
    [22]隋允康,于新.平面膜结构拓扑优化的有无复合体方法.力学学报, 2001, 33(3): 357-364.
    [23]袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计.中国科学技术大学学报, 2001, 31(6): 694-699.
    [24]袁振,吴长春.采用非协调元的连续体拓扑优化设计.力学学报, 2003, 35(2): 176-180.
    [25] Zhang W H, Duysinx P. Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization. Computers and Structures, 2003, 81(22-23): 2173-2181.
    [26]左孔天,陈立平,钟毅芳等.基于人工材料密度的新型拓扑优化理论和算法研究.机械工程学报, 2004, 40(12): 31-37.
    [27]郭旭,赵康.基于拓扑描述函数的连续体结构拓扑优化方法.力学学报, 2004, 38(5):520-526.
    [28]荣见华,姜节胜,颜东煌等.基于人工材料的结构拓扑渐进优化设计.工程力学, 2004, 21(5):64-71.
    [29]荣见华,姜节胜,徐飞鸿等.一种基于应力的双方向结构拓扑优化算法.计算力学学报, 2004, 21(3): 322-328.
    [30] Zhi Jun Yang, Su Huan Chen, Xiao Ming Wu. A method for modal reanalysis of topological modifications of structures. International Journal for Numerical Methods in Engineering, 2006, 65(13):2203-2220.
    [31]蔡坤,陈飙松,张洪武.二维连续体结构的拓扑和材料一体化设计.应用基础与工程科学学报, 2008, 16(1):92-102.
    [32] Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224.
    [33] Jog CS, Bendsoe M P. Topology design with optimized, self-adaptive materials. Computer Methods in Applied Mechanics and Engineering, 1994, 37(8):1323 -1350.
    [34] Bendsoe M P. Optimization of structural topology, shape and material. Berlin: Springer, 1995.
    [35] Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 93(3):291-318.
    [36] Diaz A R, Kikuchi N. Solutions to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for Numerical Methods in Engineering, 1992, 35(7):1487-1502.
    [37] MA Z D, Kikuchi N, Cheng H C. Topological design for vibrating structures. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4):259-280.
    [38] Tenek L H, Hagiwara I. Static and vibrational shape and topology optimization using homogenization and mathematical programming. Computer Methods in Applied Mechanics and Engineering, 1993, 109(1-2): 143-154.
    [39] Tenek L H, Hagiwara I. Optimization of material distribution within isotropic and anisotropic plates using homogenization. Computer Methods in Applied Mechanics and Engineering, 1993, 109(1-2):155-167.
    [40] Rozvany GIN, Bendsoe MP, Kirsch U. Layout optimization of structures. Applied Mechanics Reviews, 1995, 42(2):41-119.
    [41] Yang R J, Chuang C H. Optimal topology design using linear programming. Computers and Structures, 1994, 52(2):265 -275.
    [42] Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers and Structures, 1993, 49(5): 885-896.
    [43] Querin O M, Steven G P, Xie YM. Evolutionary structural optimisation using an additive algorithm. Finite Elements in Analysis and Design, 2000, 34(3-4):291-308.
    [44] Il Yong Kim, Byung Man Kwak. Design space optimization using a numerical design continuation method. International Journal for Numerical Methods in Engineering, 2002, 53(8):1979-2002.
    [45] X. Huang, Y. M. Xie. Optimal design of periodic structures using evolutionary topology optimization. Structural and Multidisciplinary Optimization, 2008, 36(6):597-606
    [46] X. Huang, Y. M. Xie. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Computational Mechanics, 2009, 43(3):393-401
    [47] Wang SY, Tai K. Structural topology design optimization using genetic algorithms with a bit-array representation. Computer Methods Applied Mechanics and Engineering, 2005, 194(36-38):3749-3770.
    [48]易伟建,刘霞.遗传演化结构优化算法.工程力学, 2004, 21(3):66-71.
    [49] Mattheck C. Design in nature: learning from trees. Berlin: Springer-Verlag, 1997.
    [50] Mlejnek H P, Schirrmascher R. An engineer’s approach to optimal material distribution and shape finding. Computer Methods Applied Mechanics and Engineering, 1993, 106(1-2):1-26.
    [51] Xie Y M, Steven G P. Evolutionary structural optimization. Berlin: Heidelberg, New York: Springer, 1997.
    [52] Liu JS, Parks GT, Clarkson PJ. Metamorphic development: a new topology optimization method for continuum structures. Structural Multidiscipline Optimization, 2000, 20 (4): 288-300.
    [53] Sigmund O. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 2001, 21(2):120-127.
    [54] Chongbin Zhao, P. Hornby, G.P. Steven, Y.M. Xie. A generalized evolutionary method for numerical topology optimization of structures under static loading conditions. Structural Optimization, 1998, 15(3-4):251-260.
    [55] Eschenauer H A, Kobelev V V, Schumacher A. Bubble method for topology and shape optimization of structure. Structural and Multidisciplinary Optimization, 1994, 8(1):42-51.
    [56] Cea J, Garreau S, Guillaume P. The shape and topological optimization connection. Computer Methods in Applied Mechanics and Engineering, 2000, 188(4):713-726.
    [57] Wang Y M, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2):227-246.
    [58] Fernandes P, Guedes J M, Rodrigues H. Topology optimization of three-dimensional linear elastic structure with a constraint on“perimeter”. Computer Methods in Applied Mechanics and Engineering, 1999, 73(6): 583-594.
    [59] Fujii D, Kikuchi N. Improvement of numerical instabilities in topology optimization using the SLP method. Structural and Multidisciplinary Optimization, 2000, 19(2):113-121.
    [60] Guedes J M, Kikuchi N. Preprocessing and post processing for materials based on the homogenization method with adaptive finite element method. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2):143-198.
    [61] Bendsoe M P, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999, 69(9-10):635-654.
    [62] Stolpe M, Svanberg K. An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization, 2001, 22(2):116-124.
    [63] Oleinik O A. On homogenization problems. In: Trends and application of pure mathmatics in mechanics. Springer: Berlin, 1984.
    [64]刘书田,程耿东.复合材料应力分析的均匀化方法.力学学报, 1997, 29 (3):306-313.
    [65]刘书田,陈晓霞,常崇义.复合材料弹性性能尺度效应.大连理工大学学报, 2004, 44 (2):200-205.
    [66] Hassani B, Hinton E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Computers and Structures, 1998, 69(6):707-717.
    [67] Hassani B, Hinton E. A review of homogenization and topology optimization II—analytical and numerical solution of homogenization equations. Computers and Structures, 1998, 69(6):719-738.
    [68] Hassani B, Hinton E. A review of homogenization and topology optimization III—topologyoptimization using optimality criteria.Computers and Structures, 1998, 69(6):739-756.
    [69] Bulman S, Sienz J, Hinton E. Comparisons between algorithms for structural topology optimization using a series of benchmark studies. Computers and Structures, 2001, 79(6):1203-1218.
    [70]袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计.固体力学学报, 2003, 24(1): 40- 45.
    [71] Rietz A. Sufficiency of a finite exponent in SIMP (power law) method. Structural and Multidiscipline Optimization, 2001, 21(2): 159-163.
    [72]朱继宏,张卫红,田军,等.基于连续密度变量的结构支撑布局优化设计.机械科学与技术, 2004, 23(9):1113-1116.
    [73] Baumgartner A, Harzheim L, Mattheck C. SKO soft kill option: the biological way to find an optimum structure topology. International Journal of Fatigue, 1992, 14(6):387-393.
    [74] Hinton E, Sienz J. Full stressed topological design of structures using an evolutionary procedure. Engineering. Computations, 1995, 49(5): 229-244.
    [75]郭中泽,陈裕泽,张卫红,等.基于单元材料属性更改的结构渐进拓扑优化方法.机械科学与技术, 2006, 25 (8):928-931.
    [76]傅建林,荣见华,杨振兴.一种基于Ishai应力准则的双方向结构拓扑优化方法.长沙交通学院学报, 2005, 21(1):21- 27.
    [77]罗志凡,荣见华,杜海珍.一种基于主应力的双方向渐进结构拓扑优化方法.应用基础与工程科学学报, 2003, 11(1):98- 105.
    [78]杜海珍,荣见华,傅建林,等.基于应变能的双方向结构渐进优化方法.机械强度, 2005, 27(1):072- 077.
    [79] Sokolowski J, Zochowski A. On the topological derivative in shape optimization. SIAM Journal of Control Optimization, 1999, 37(4):1251-1272.
    [80] Garreau S, Guillaume P, Masmoudi M. The topological asymptotic for PDE systems: the elasticity case. SIAM Journal of Control Optimization, 2001, 39(6):1756-1778.
    [81]程耿东.关于桁架结构拓扑优化设计中的奇异最优解.大连理工大学学报, 2000, 40(1): 379-383.
    [82] Jog C S, Haber R B. Stability of finite element models for distributed parameter optimization and topology design. Computer Methods in Applied Mechanics and Engineering, 1996, 130(3- 4): 203-226.
    [83] Harber R B, Jog C S, Bendsoe M P. A new approach to variable topology shape design using constraint on perimeter. Structural and Multidisciplinary Optimization, 1996, 11(1): 1-12.
    [84] Petersson J, Sigmund O. Slope constrained topology optimization. International Journal for Numerical Methods in Engineering, 1998, 41(8): 1417-1434.
    [85]程耿东.工程结构优化设计基础.北京:水利电力出版社, 1983.
    [86]闻邦椿,刘树英,何琼.振动机械的理论与动态设计方法.北京:机械工业出版社, 2001.
    [87] Chen J J, Che J W, Sun H A, et al. Probabilistic dynamic analysis of truss structures. Structural Engineering & Mechanics, 2002, 13(2): 231-239.
    [88] Dai J, Chen J J, Li Y G. Dynamic response optimization design for engineering structures based on reliability. Applied Mathematics and Mechanics, 2003, 24(1): 43-52.
    [89]王光远.论不确定性结构力学的进展.力学进展, 2002, 32(2): 205-211.
    [90]邱志平.非概率集合理论凸方法及其应用.北京:国防工业出版社, 2005.
    [91] Zhao L, Chen Q. Neumann dynamic stochastic finite element method of vibration for structures with parameters to random excitation. Computers and Structures, 2000, 77(6):651-657.
    [92] Fang Z. Dynamic analysis of structures with uncertain parameters using the transfer matrix method. Computers and Structures. 1995, 55(6):1037-1044.
    [93] Chen S H, Liu Z S, Zhang Z F. Random vibration analysis of large-scale structures with random parameters. Computers and Structures, 1992, 43(4): 681-685.
    [94] Gao W, Chen J J, Ma J, Liang Z T. Dynamic response analysis of stochastic frame structures under non-stationary random excitation. AIAA Journal, 2004, 42(9): 1818-1822.
    [95] Rao S S, Sawyer J P. Fuzzy finite element approach for the analysis of imprecisely defined systems. AIAA Journal, 1995, 33(12): 2364-2370.
    [96]吕恩琳.结构模糊有限元平衡方程的一种新解法.应用数学和力学, 1997, 18(4): 361-369.
    [97] Elishakoff I. Three versions of the finite element method based on concept of either stochasticity, fuzziness, or anti-optimization. Applied Mechanics Review, 1998, 51(3): 209-218.
    [98] Moens D, Vandepitte D. Fuzzy finite element method for frequency response function analysis of uncertain structures. AIAA Journal, 2002, 40(1):126-136.
    [99] Huang Hongzhong, Li Haibin. Perturbation finite element method of structural analysis under fuzzy environments. Engineering Applications of Artificial Intelligence, 2005, 18(1):83-91.
    [100]Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis. AIAA Journal, 1997, 35(4):725-735.
    [101]Qiu Z P, Gu Y X. Interval parameter perturbation method for evaluation the bounds on natural frequencies of structures with interval parameters. Acta Mechanica Solida Sinica, 1998, 11(1):56-62.
    [102]Guo Shuxiang, Lu Zhenzhou. Interval arithmetic and static interval finite element method. Applied Mathematics and Mechanics, 2001, 20(12):1390-1396.
    [103]Elishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from A M Freudenthal’s criticisms to modern convex modeling. Computers and Structures, 1995, 56(6): 871-895.
    [104]梁震涛.不确定性结构的分析方法研究.西安电子科技大学博士学位论文, 2007.
    [105]Li Jie, Chen Jianbing. Dynamic response and reliability analysis of structures with uncertain parameters. International Journal for Numerical Methods in Engineering, 2005, 62(2): 289-315.
    [106]赵雷,陈虬.随机有限元动力分析方法的研究进展.力学进展, 1999, 29(1): 9-18.
    [107]Gao W, Chen J J, Hu T B, et al. Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation. Structural Engineering and Mechanics, 2004, 18(2): 137-150.
    [108]Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in analysis and Design, 2000, 34(1): 75-88.
    [109]Elishakoff I. Possible limitations of probabilistic methods in engineering. Applied Mechanics Review, 2000, 53(2): 19-36.
    [110]Rao S S, Cao L. Fuzzy boundary element method for the analysis of imprecisely defined system. AIAA Journal, 2001, 39(9): 1788-1797.
    [111]Zhenyu Lei, Qiu Chen. A new approach to fuzzy finite element analysis. Computer Methods in Applied Mechanics and Engineering, 2002, 191(45):5113-5118.
    [112]Liu Qing, Rao Singiresu S. Fuzzy finite element approach for analysis of fiber-reinforced laminated composite beams. AIAA Journal, 2005, 43(3):651-661.
    [113]Qiu Z P, Chen S H, Elishakoff. Natural Frequencies of Structures with Uncertain-but-non-random Parameters. Journal of Optimization Theory and Applications, 1995, 86 (3): 669-683.
    [114]Qiu Z P, Chen S H, Elishakoff I. Bounds of Eigenvalues for Structures with An Interval Description of Uncertain-but-non-random Parameters. Chaos, Soliton, and Fractral, 1996, 7(3): 425-434.
    [115]乔心州.不确定结构可靠性分析与优化设计研究.西安电子科技大学博士学位论文, 2009.
    [116]Coenell C A. A probability-based structural code. Journal of the American Concrete Institute, 1969, 66(12): 974-985.
    [117]Hasofer A M, Lind N C. Exact and invariant second-moment code format. Journal of Engineering Mechanics, 1974, 100(l): 111-121.
    [118]Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computers and Structures, 1978, 9(5):489-494.
    [119]Hohenbichler M, Rackwitz R. Improvement of second-order reliability estimations by importance sampling. Journal of Engineering Mechanics, ASCE, 1988, 114 (12): 2195-2199.
    [120]Cai G Q, Elishakoff I. Refined second-order reliability analysis. Structural Safety, 1994, 14(4): 267-276.
    [121]刘书田, Grandhi R V.基于快速傅立叶变化的二阶可靠度分析方法.固体力学学报, 2001,22(4): 387-393.
    [122]吕震宙,冯蕴雯.结构可靠性问题的若干进展.力学进展, 2000, 30(1): 21-28.
    [123]Mori Y, Kato T. Multi-normal integrals by importance sampling for series system reliability. Structural Safety, 2003, 25(4): 363-378.
    [124]张崎,李兴斯.结构可靠性分析的模拟重要抽样方法.工程力学, 2007, 24(1): 33-34.
    [125]Guan X L, Melchers R E. Eeffect of response surface parameter variation on structural reliability estimates. Structural Safety, 2001, 23(4): 429-444.
    [126]金伟良,唐纯喜,陈进.基于SVM的结构可靠度分析响应面方法.计算力学学报, 2007, 24(6): 713-718.
    [127]刘成立,吕震宙.结构可靠性分析中考虑高次项修正的组合响应面法.航空学报, 2006, 27(4): 594-599.
    [128]Kaymaz I. Application of Kriging method to structural reliability problems. Structural Safety, 2005, 27(2): 133-151.
    [129]谢延敏,于沪平,陈军等.基于Kriging模型的可靠度计算.上海交通大学学报, 2007, 41(2): 177-180.
    [130]Deng Jian, Gu Desheng, Li Xibing, et al. Structural reliability analysis for implicit performance functions using artificial neural network. Structural Safety, 2005, 27(1): 25-48.
    [131]吕震宙,杨子政.基于神经网络的可靠性分析新方法.机械强度, 2006, 28(5): 699-702.
    [132]马超,吕震宙.结构可靠性分析的支持向量机分类迭代算法.中国机械工程, 2007, 18(7): 816-819.
    [133]Kaufmann A. Introduction to the theory of fuzzy subsets. New York: Academic Press, 1975.
    [134]Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the probability context. Fuzzy Sets and Systems, 1990, 37(1): 161-172.
    [135]Cai K Y, Wen C Y, Zhang M L. Fuzzy variables for a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems, 1991, 42(2): 145-172.
    [136]蔡开元,文传源,张明廉.模糊可靠性理论中的基本概念.航空学报, 1993, 14(7): A388-A398.
    [137]Chen S M. Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets and Systems, 1994, 64(1): 31-38.
    [138]Lu Z Z, Yue Z F, Feng Y W. General failure probability simulation an application for multi-modes. Applied Mathematics and Mechanics, 2000, 21(4): 425-432.
    [139]Cremona C, Gao Y. The possibilistic reliability theory: theoretical aspects and applications. Structural Safety, 1997, 19(2): 173-201.
    [140]郭书祥,张陵,吕震宙.机械结构的能度可靠性分析方法.西北工业大学学报, 2004, 22(5): 572-575.
    [141]黄洪钟.关于机械系统的模糊随机可靠度理论的研究.机械科学与技术, 1992, 42(1): 1-6.
    [142]黄洪钟,孙占全,郭东明,等.随机应力模糊强度时模糊可靠度的计算理论.机械强度, 2001, 23(3): 305-307.
    [143]董玉革,陈心昭,赵显德,等.模糊可靠性的一种计算方法.机械科学与技术, 2003, 22(1): 15-17.
    [144]江涛,陈建军,拓耀飞.随机应力模糊强度时模糊可靠性计算理论的等价性研究.机械强度, 2006, 28(1): 61-65.
    [145]江涛,陈建军,马孝松.两种模糊随机干涉可靠度公式的等价性研究.机械设计与研究, 2005, 21(1): 8-11.
    [146]雷震宇,陈虬.模糊结构有限元分析的一种新方法.工程力学, 2001, 18(6):47-53.
    [147]Chakraborty S, Sam P C. Probabilistic safety analysis of structures under hybrid uncertainty. International Journal for Numerical Methods in Engineering, 2006, 70(4): 405-422.
    [148]赵彦,张新锋,施浒立.模糊随机混合不确定性结构系统可靠度计算.机械强度, 2008, 30(1): 72-77.
    [149]Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety, 1994, 14(4): 227-245.
    [150]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex model. Structural Safety, 1995, 17(2): 91-109.
    [151]Ben-Haim Y. Robust reliability of structures. Advances in Applied Mechanics, 1997, 33: 1-41.
    [152]李永华,黄洪钟,刘忠贺.结构稳健可靠性分析的凸集模型.应用基础与工程科学学报, 2004, 12(4): 383-391.
    [153]]邱志平,陈山奇,王晓军.结构非概率鲁棒可靠性准则.计算力学学报, 2004, 21(1): 1-6.
    [154]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报,2001, 18(1): 56-60.
    [155]郭书祥,吕震宙.结构体系的非概率可靠性分析方法.计算力学学报, 2002, 19(3): 332-335.
    [156]屠义强,王景全,江克斌.基于区间分析的结构系统非概率可靠性分析.解放军理工大学学报, 2003, 4(2): 48-51.
    [157]曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究.计算力学学报, 2005, 22(5): 546-549.
    [158]Wang X J, Qiu Z P, Elishakoff I. Non-probabilistic set-theoretic model for structural safety measure. Acta Mechanica Sinaca, 2008, 198(1-2): 51-64.
    [159]吕震宙,冯蕴雯,岳珠峰.改进的区间截断法及基于区间的非概率可靠性分析方法.计算力学学报, 2002, 19(3): 260-264.
    [160]孙海龙,姚卫星.结构区间可靠性分析的可能度法.中国机械工程, 2008, 19(12): 1483-1488.
    [161]Elishakoff I. Discussion on: a non-probabilistic concept of reliability. Structural Safety, 1995, 17(3): 195-199.
    [162]Qiu zhiping, Di Yang, Elishakoff I. Combination of structural reliability and interval analysis. Acta Mechanica Sinica, 2008, 24(1): 61-67.
    [163]Qiu zhiping, Di Yang, Elishakoff I. Probabilistic interval reliability of structural systems. International Journal of solids and Structures, 2008, 45(10): 2850-2860.
    [164]郭书祥,吕震宙.结构非概率可靠性指标的求解方法.计算力学学报, 2005, 22(2): 227-221.
    [165]张建国,陈建军,江涛等,关于不确定结构非概率可靠性计算的研究.机械强度, 2007, 29(1): 58-62.
    [166]江涛,陈建军,张驰江.区间模型非概率可靠性指标的仿射算法.机械强度, 2007, 29(2): 251-255.
    [167]苏永华,何满潮,赵明华等.基于区间变量的响应面可靠性分析方法.岩土工程学报, 2005, 27(12): 1408-1413.
    [168]徐可君,江龙平,陈景亮等.叶片振动的非概率可靠性研究.机械工程学报, 2002, 38(10): 17-19.
    [169]赵明华,蒋冲,曹文贵.基于区间理论的挡土墙稳定性非概率可靠性分析.岩土工程学报, 2008, 30(4): 467-472.
    [170]宋笔锋,李为吉,吉国明等.大型结构可靠性优化设计的大系统方法.力学进展, 2000, 30(1): 29-36.
    [171]Rao S S. Multi-objective optimization in structural design with uncertain parameters and stochastic processes. AIAA Journal, 1984, 22(11): 1670-1678.
    [172]Kwark B M, Lee T W. Sensitivity analysis for reliability-based optimization using an AFOSM method. Computers and Structures, 1987, 27(3): 399-406.
    [173]Nakib R, Frangopol D M. RESA and RBSA-OPT: two computer programs for structural system reliability analysis and optimization. Computers and Structures, 1990, 36(1): 13-17.
    [174]Li W J, Li Yang. An effective optimization procedure based on structural reliability. Computers and Structures, 1994, 52(5): 1061-1067.
    [175]陈建军,段宝岩,王德满等.我国结构可靠性优化研究综述.计算力学学报. 1997, 14(增): 477-482.
    [176]Frangopol D M.,刘东.基于可靠性结构优化概念和方法.力学进展, 1988, 18(4): 541- 549.
    [177]陈建军,曹一波,孙怀安.多工况下具有体系可靠性约束的桁架结构拓扑优化设计.固体力学学报, 2000, 21(1): 11-18.
    [178]徐斌,姜节胜,闫云聚.具有频率约束的桁架结构可靠性拓扑优化.应用力学学报, 2001, 18(增): 45-49.
    [179]Jung H S, Cho S. Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties. Finite Elements in Analysis and Design, 2004, 41(3): 311-331.
    [180]崔明涛,陈建军,姜培刚.随机参数连续体结构的动力学拓扑优化.应用力学学报, 2005, 22(2): 237-243.
    [181]陈建军,杜雷,崔明涛.基于概率的平面连续体结构拓扑优化.应用力学学报, 2006, 23(2): 203-207.
    [182]陈建军,杜雷,崔明涛.基于频率概率约束的连续体结构拓扑优化.固体力学学报, 2006, 27(1): 90-95.
    [183]Chwail Kim, Semyung Wang, Kyoung-ryun Bae, et al. Reliability-based topology optimization with uncertainties. Journal of Mechanical Science and Technology, 2006, 20(4):494-504.
    [184]Chen J J, Wang F L. A method of optimum design based on reliability for antenna structures. Structural Engineering and Mechanics, 1999, 8(4): 401-410.
    [185]黄文波,张圣坤,蔡萌林.工字型截面构件的船体板架结构可靠性优化.上海交通大学学报, 2000, 34(1): 67-71.
    [186]段鹏文,刘玉洪,李俊海.塔式起重机塔头结构的可靠性优化设计.辽宁工程技术大学学报, 2001, 20(2): 222-224.
    [187]刘家学,郑昌义.战术导弹结构可靠性优化问题研究.系统工程与电子技术. 2002, 24(5): 106-108.
    [188]王向阳,陈建桥,罗成.基于遗传算法的层合板结构的可靠性优化设计.华中科技大学学报, 2004, 32(1): 10-12.
    [189]郭书祥,吕震宙,冯立富.基于可能性理论的结构模糊可靠性方法.计算力学学报, 2002, 19(1): 89-93.
    [190]郭书祥,吕震宙,张陵.基于能度可靠性的结构优化设计方法.计算力学学报, 2004, 21(1): 21-24.
    [191]吴卫东,黄洪钟,古莹奎,等.机械系统可靠性模糊多目标优化设计的综合协调法.应用科学学报, 2003, 21(3):263-267.
    [192]马成业,黎锁平,杨胜良.模糊多目标可靠性优化设计的遗传算法.兰州理工大学学报, 2009, 35(1):156-158.
    [193]邹龙庆,付海龙.过油管防喷器胶芯的模糊可靠性优化设计.润滑与密封,2008, 33(11):93-95.
    [194]宋茂福,赵勇.基于Matlab遗传算法工具箱的圆柱螺旋弹簧模糊可靠性优化设计.设计与研究,2008, 35(8):1-5.
    [195]Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty optimization with anti-optimization. Computers and Structures, 1994, 53(6): 1401-1406.
    [196]Lombardi M, Haftka R T. Anti-optimization technique for structural design under load uncertainties. Computer Methods in Applied Mechanics and Engineering, 1999, 157(1-2): 19-31.
    [197]郭书祥,吕震宙.基于非概率模型的结构可靠性优化设计.计算力学学报, 2002, 19(2): 198-201.
    [198]曹鸿钧,段宝岩.基于非概率可靠性的结构优化设计研究.应用力学学报, 2005, 22(3): 381-385.
    [199]亢战,罗阳军.基于凸模型的结构非概率可靠性优化.力学学报, 2006, 38(6): 807-815.
    [200]亢战,罗阳军.桁架结构非概率可靠性拓扑优化.计算力学学报, 2008, 25(5): 589-594.
    [201]崔明涛,陈建军,宋宗凤.区间参数平面连续体结构频率非概率可靠性拓扑优化.振动与冲击, 2007, 26(8): 55-59.
    [202]李永华,黄洪钟,马启明.轴静强度的非概率可靠性设计.可靠性设计与工艺控制, 2003, (3): 24-27.
    [203]程远胜,曾广武.非概率不确定性及其对船舶坐墩配墩优化的影响.工程力学, 2003, 20(3): 129-133.
    [204]罗阳军,亢战.连续体结构非概率可靠性拓扑优化.力学学报, 2007, 39(1): 125-131.
    [205]周克民,胡云昌.用可退化有限单元进行平面连续体拓扑优化.应用力学学报, 2002, 19(1): 23-27.
    [206]隋允康,张学胜,龙连春.应力约束处理为应变能集成的连续体结构拓扑优化.计算力学学报, 2007, 24(5): 602-608.
    [207]崔明涛,陈建军,马孝松等.基于概率的柔性铰链机构的优化设计.西安电子科技大学学报(自然科学版), 2006, 33(5): 725-729.
    [208]崔明涛.不确定性连续体结构拓扑优化和柔性机构设计研究.西安电子科技大学博士学位论文, 2007.
    [209]陈建军.机械与结构系统的可靠性.西安电子科技大学出版社, 1994.
    [210]杨振兴,荣见华,傅建林.窄带随机激励下的结构动力学拓扑优化设计.振动与冲击, 2005, 24(6): 85-94.
    [211]Zhao C, Steven G P, Xie Y M. Simultaneously evolutionary optimization of several natural frequencies of a two dimensional structure. Structural Engineering and Mechanics, 1999, 7(5): 447-456.
    [212]Meske R, Lauber B, Schnack E. A new optimality criteria method for shape optimization of natural frequency problems. Struct. Multidisc. Optim, 2006, 31(4): 295-310.
    [213]庄才傲,荣见华,李东斌.三维结构多频拓扑优化设计研究.长沙交通学院学报, 2007, 23(2): 65-68.
    [214]邢晓娟,荣见华,邓果.一种变频率约束限的结构拓扑优化方法.振动与冲击, 2008,27(10): 56- 60.
    [215]Dai J, Chen J J, Li Y G. Dynamic response optimization designs for engineering structures based on reliability. Applied Mathematics and Mechanics, 2003, 24(1): 43-52.
    [216]王小兵,陈建军,李金平等.基于随机因子法的随机结构动力特性分析研究.振动与冲击, 2008, 27(2): 4-7.
    [217]荣见华.渐进结构优化方法及其应用研究.合肥:国防科技技术大学, 2006.
    [218]郭书祥.模糊运算和模糊有限元静力控制方程的求解.应用数学和力学, 2002, 23(9): 936-942.
    [219]陈建桥,魏俊红,葛锐.模糊约束下复合材料的可靠性优化设计.武汉理工大学学报, 2006, 28(8): 20-22.
    [220]隋允康,于欣.平面膜结构的拓扑优化的有无复合体方法.力学学报, 2001, 33(3): 357-364.
    [221]Kharmanda G, Olhoff N. Reliability-based topology optimization. Structural and Multidisciplinary Optimization, 2004, 26(5): 295-307.
    [222]范九伦,裴继红,谢维信.聚类有效性函数:熵公式.模糊系统与数学, 1998, 12(3): 68-74.
    [223]Achintya H, Rajasekhar K R. A Random-Fuzzy of Existing Structures. Fuzzy Sets and Systems, 1992, (48): 201-210.
    [224]陈善志,方宗德,吉强等.基于各向正交惩罚材料密度法的汽车控制臂的优化设计.机械科学与技术, 2008, 27(7): 963-966.
    [225]马娟,陈建军,张建国等.不确定性桁架结构区间有限元分析的区间因子法.机械设计与研究, 2005, 21(6): 6-9.
    [226]Gao W. Interval natural frequency and mode shape analysis for truss structures with interval parameters. Finite Elements in Analysis and Design, 2006, 42(6): 471-477.
    [227]Moon Byung-Young, Kang Gyung-Ju, Kang Beom-Soo. Dynamic and reliability analysis of stochastic structure system using probabilistic finite element method. Structural Engineering and Mechanics, 2004, 18(1): 125-135.
    [228]郭书祥,吕震宙.区间运算和静力区间有限元.应用数学和力学, 2001, 22(12): 1249-1254.
    [229]郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型.机械强度, 2002, 24(4): 524-526.
    [230]Du Xiaoping, Sudjianto Agus, Huang Beiqing. Reliability-based design with the mixture of random and interval variables. Journal of Mechanical Design, 2005, 127(6): 1068-1076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700