用户名: 密码: 验证码:
不确定性结构的无网格伽辽金法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术和数值计算方法的发展,科学计算在科学与工程中的作用逐渐提升,已由辅助性工具转变为与理论、实验并重的科研手段之一。在工程结构分析和设计模型中,通常建立在确定性物理意义上,即把分析过程中各种因素作为确定的物理量来进行处理。而在工程结构的实际分析中存在着与初始条件、几何参数、材料性质、边界条件、加工装配以及外力载荷相关的误差或不确定性,如果在计算分析时将这些不确定参数简单地视为确定性参数来处理,则可能会得出不尽合理甚至错误的计算结果。随机有限元、区间有限元和模糊有限元等数值模拟算法已经广泛应用在工程结构不确定性分析中,但它们都是由有限元演变而来,受自身缺点的限制,在处理撞击、加工成型、裂纹扩展、材料相变,以及特大变形等问题时遇到了越来越大的困难。无网格法是一种很有发展前途的数值方法,它克服了对网格的依赖,彻底或部分消除了网格的划分,在处理以上问题时具有明显优势,因此受到了越来越多科学工作者的关注。
     无网格法在最近十几年发展颇为迅速,在基础理论和工程应用方面均取得了相当大的进展,主要包括:算法的数学论证、计算效率、边界条件处理、快速稳定的域积分技术、有限元和无网格法的广义化,以及针对有限元求解困难甚至无法求解的难题的算法改进与应用等。这些研究成果都是基于确定性模型的,没有考虑工程结构中普遍存在的不确定性问题。如何将无网格法拓展到不确定性领域,是一个极具理论与现实意义的研究方向。
     基于移动最小二乘近似的无网格伽辽金法容易形成病态方程组,计算复杂,从而限制了其使用。本文基于局部加权正交基函数,对其进行改进,提出了改进无网格伽辽金法。摄动理论、区间数学和模糊集合论等,为不确定性问题分析提供了强大的数学工具,无网格伽辽金法在处理某些问题时较有限元方法更具优势,将无网格伽辽金法与摄动理论、区间数学、模糊集合论相结合,对不确定性问题进行研究是一个有益的探索。基于此,本文提出了摄动随机局部正交无网格伽辽金法、区间局部正交无网格伽辽金法和模糊局部正交无网格伽辽金法,并成功应用到含不确定因素力学问题之中,进一步丰富和发展了无网格法处理不确定性结构力学问题的理论和方法。主要工作有:
     1、建立了基于局部加权正交基函数的改进无网格伽辽金法,使得基函数及其导数的表达式简洁明了,并保持正交基函数的性质,求逆简单,避免矩阵产生奇异,易于编程实现,提高了计算效率。通过数值算例将改进无网格伽辽金法与传统无网格伽辽金法进行比较,验证了该方法的高效性。
     2、通过对改进无网格伽辽金法和摄动法的研究,提出了摄动随机局部正交无网格伽辽金法,并对无网格伽辽金法的随机变分原理和离散方案进行了详细推导,采用罚函数法施加本质边界条件,对含随机参数的杆、梁及带圆孔方板进行了分析,结果表明该方法正确、可行、高效。
     3、通过对区间数学的研究,结合改进无网格伽辽金法提出了区间局部正交无网格伽辽金法,并把裂纹尖端应力场的奇异解析函数引入到局部加权正交基函数中,利用区间数分解方法求解区间平衡方程,详细推导出区间J积分公式,对含裂纹结构的不确定性问题进行了分析,算例结果表明该方法对于含不确定参数问题的求解是正确有效的。
     4、提出了模糊局部正交无网格伽辽金法,给出了模糊最小势能原理,推导出模糊局部正交无网格伽辽金法平衡方程,并可根据输入模糊数的隶属函数,给出结构响应量的可能性分布,利用模糊局部正交无网格伽辽金法求得节点模糊位移值后采用直接位移法计算模糊应力强度因子,提供了一种计算具有不确定参数含裂纹结构的裂纹尖端应力强度因子的新途径。
     5、研究了不确定因素下的含界面裂纹结构的界面端奇异应力场问题,建立了含界面裂纹结构的区间局部正交无网格伽辽金法分析模型,使用增强基函数模拟裂纹尖端应力场的奇异性,采用衍射准则来处理裂纹的不连续性,提供了含界面裂纹结构的应力强度因子的无网格计算方法,为无网格伽辽金法开辟一个新的应用范畴,在变量的概率统计特性未知而其区间范围已知的条件下,有效地给出结构响应的区间范围,这些数据能够为不确定性结构分析和设计提供有益的参考。
With the developments of the computer technique and the numerical computing methods, the effects of numerical simulation in the science and engineering areas are enhanced gradually, the utility of which has been shifted from an assistant tool to an essential means of the scientific research, and plays an important role both in the theoretical and the experimental areas. Generally, we establish a engineering structural analysis model and the design model based on deterministic physical significance. That is, we deal with the factors as deterministic ones during analysis process. However, errors and uncertainties that caused by loads, the initial conditions, the boundary constraints, manufacture and assembling widely exist in the real engineering world. If these uncertain factors are roughly concerned as deterministic parameters, we may receive conflict or unreasonable results on occasion. Some numerical solution, such as the stochastic Finite Element (FE), the interval FE and the fuzzy FE, have been widely used in the uncertain analysis of the engineering structures. However, they are all evolved from the FEM, and they encounter difficulties in dealing with some problems caused by their own drawbacks, such as crashes, shaping, crack propagation, phase change in materials, and super-large deformation. Element-Free Method (EFM) is a promising method, which can overcome the dependency on meshes, and eliminate the mesh partition thoroughly or partly. It possesses an apparent advantage rather than FEM over the above problems, and attracts more and more scientists'interests.
     The EFM has developed so fast in the past decades, many contributions have been made both in basic theoretical research and engineering application, which focused on algorithm proof, efficiency of calculation, boundary constraints application, quick and stable domain integration technique, generalization of FEM and EFM, and improvement and application that overcome the challenge of FEM. But all these results were based on deterministic models; they did not consider the uncertainties which exited comprehensively in engineering structures. Hereby, how to extend the EFM to uncertain problems becomes a significant task.
     The traditional Element Free Galerkin method (EFGM) based on moving least square approximate may lead to ill conditioned system of equations, and will limit its application as a result. Based on the improved local weighted orthogonal basis function, an improved element-free Galerkin method was proposed in this paper, and named as the Local Orthogonal Element Free Galerkin method (LOEFGM). Perturbation theorem, interval mathematics and fuzzy set theorem provide powerful mathematical tools for analysis of uncertain problems. EFGM takes apparent advantage than FEM when dealing with some special problems. It will be a valuable orientation if combine the EFGM with perturbation theorem, interval mathematical, and fuzzy set theorem to solve uncertain problems. We hereby proposed the Perturbation Stochastic Local Orthogonal Element Free Galerkin method (PSLOEFGM), the Interval Local Orthogonal Element Free Galerkin method (ILOEFGM), and the Fuzzy Local Orthogonal Element Free Galerkin method (FLOEFGM). And we also applied the methods mentioned above to solve uncertain problems successfully. This will enrich and develop the EFM theory and method in dealing with structral mechanic problems with uncertainties.
     The main achievements of this dissertation are:
     Based on local weighted orthogonal basis functions, the improved Element Free Galerkin method so called the Local Orthogonal Element Free Galerkin method (LOEFGM) was established. LOEFGM can also preserve the character of the orthogonal basis function, but it makes the formulation simplify, and what's more, it is easy to calculate the inverse matrix and can avoid the singularity of matrix, thus, it takes advantage of programming and promotes the computation efficiency. The numeral example was taken to compare LOEFGM with the traditional EFGM, the results showed that LOEFGM was more efficient than the traditional EFGM.
     By studying the improved EFGM and the perturbation method, the perturbation stochastic local orthogonal EFGM was proposed, and the random variational principle and the discrete scheme of the EFM were deduced in detail. The natural boundary conditions were added by using the penalty function. The numerical examples of bar, the beam and the square plate with circular hole, which include random parameters were studied, respectively. The results showed that the proposed method is correct, feasible and efficient.
     By studying the interval mathematics, combined with the inner product space and the improved EFGM, the interval local orthogonal EFGM was proposed. The singular function of the linear elastic fracture mechanics was added as an enhance function into the local weighted orthogonal basis function of the moving least square approximation. The interval number decomposition method was used to solve the interval equilibrium equations. The interval J-integral formula was deduced in detail. The uncertain problem of the cracked structure was analyzed. From the results of the example, it can be seen that the interval local orthogonal EFGM is correct and effective in solving the uncertain problems.
     The fuzzy local orthogonal EFGM was proposed and the fuzzy minimum potential energy principle was given. Then, the fuzzy local orthogonal element-free equilibrium equations were deduced. According to the membership function of the given fuzzy numbers, the possibility distributions of the structural response quantities can be obtained; the fuzzy local orthogonal EFGM was used to obtain the fuzzy displacements of the nodes, and then the direct displacement method was used to compute the fuzzy stress intensity factor. The method discussed here provides a new pathway of computing the stress intensity factor in the crack tip of the cracked structures which including uncertain parameters.
     The research was carried out which focused on the interface edge singular stress field of the structure with interface crack under uncertainties. The Interval Local Orthogonal Element Free Galerkin analysis model was established on the structure with interface crack. The singularity of stress field of the crack tip was simulated with enriched basis functions, and the discontinuousness of crack was dealed with diffraction method. This provided an EFM for the calculation of stress intensity factor of structure with interface crack, and also provided a new application category of EFGM. The proposed method can present the response interval of structures effectively, even if the probability statistics is unknown whereas the range of the interval is given. This datum provides a valuable reference for uncertain structure analysis and design.
引文
[1]丁丽娟,程杞元.数值计算方法(第二版)[M].北京:北京理工大学出版社,2008.
    [2]解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.
    [3]张雄,刘岩,马上.无网格法的理论及应用[J].力学进展,2009,39(1):1-36.
    [4]LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal,1977,82(12):1013-1024.
    [5]GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics:theory and applications to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society,1977,18(2):375-389.
    [6]LU Y Y, BELYTSCHKO T, GU L. A new implementation of the element free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering,1994, 113:397-414.
    [7]BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods:An overview and recent developments [J]. Computer Methods in Applied Mechanics and Engineering,1996, 139(1):3-47.
    [8]NAYROLES B, TOUZOT G, VILLON P. Generalizing the finite element method: diffuse approximation and diffuse elements [J]. Computational Mechanics,1992, 10(5):307-318.
    [9]BELYTSCHKO T, LU Y Y, GU L. Element-Free Galerkin Methods [J]. International Journal for Numerical Methods in Engineering,1994,37:229-256.
    [10]LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids,1995,20:1081-1106.
    [11]GOSZ J, LIU W K. Admissible Approximations for Essential Boundary Conditions in the Reproducing Kernel Particle Method [J]. Computational Mechanics, 1996,19:120-135.
    [12]LIU W K, URAS R A, CHEN Y. Enrichment of the Finite Element Method with the Reproducing Kernel Particle Method [J]. Journal of Applied Mechanics, ASME,1997, 64:861-870.
    [13]LIUWK, CHENY, URAS R A, CHANG C T. Generalized Multiple Scale Reproducing Kernel Particle Methods [J]. Computer Methods in Applied Mechanics and Engineering, 1996,139:91-158.
    [14]LIU W K, CHEN Y. Wavelet and multiple scale reproducing kernel method [J]. International Journal for Numerical Methods in Fluids,1995,21:901-931.
    [15]LIU W K, JUN S, et al. Multiresolution Reproducing Kernel Particle Method for Computational Fluid Dynamics [J]. International Journal for Numerical Methods in Fluids,1997,24:1391-1415.
    [16]BABUSKA I, MELENK J M. The partition of unity method [J]. International Journal of Numerical Methods in Engineering,1997,40:727-758.
    [17]BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing [J]. International Journal for Numerical Methods in Engineering,1999, 45(5):601-620.
    [18]STROUBOULIS T, COPPS K, BABUSKA I. The generalized finite element method [J]. Computer Methods in Applied Mechanics and Engineering,2001,190:4081-4193.
    [19]刘欣,朱德懋,陆明万,张雄.基于流形覆盖思想的无网格方法的研究[J].计算力学学报,2001,18(1):21-27.
    [20]WENDLAND H. Positive definite and compactly supported radial basis functions of minimal degrees [J]. Advances in Computational Mathematics,1995, 4:389-396.
    [21]LIU G R, GU Y T. A point interpolation method for two-dimensional solids [J]. International Journal for Numerical Methods in Engineering,2001, 50(4):937-951.
    [22]WANG J G, LIU G R. A point interpolation meshless method based on radial basis functions [J]. International Journal for Numerical Methods in Engineering, 2002,54(11):1623-1648.
    [23]SIBSON R. A vector identity for the Dirichlet tesselation [J]. Mathematical Proceedings of the Cambridge Philosophical Society,1980,87:151-155.
    [24]BRAUN J, SAMBRIDGE M. A numerical method for solving partial differential equations on highly irregular evolving grids [J]. Nature,1995,376:655-660.
    [25]BELIKOV V V, KONTOROVICH V K, KONTOROVICH V K. The non Sibson interpolation: A new method of interpolation of the values of a function on an arbitrary set of points [J]. Computational Mathematics and Mathematical Physics,1997,37(1):9-15.
    [26]SUKUMAR N, MORAN B, SEMENOV A YU. Natural neighbour Galerkin methods [J]. Journal for Numerical Methods in Engineering,2001,50:1-27.
    [27]GU Y T, WANG Q X, LAM K Y. A meshless local Kriging method for large deformation analyses [J]. Computer Methods in Applied Mechanics and Engineering, 2007,196:1673-1684.
    [28]SHAW I, ROY D. A NURBS-based error reproducing kernel method with applications in solid mechanics [J]. Computational Mechanics,2007,40(1):127-148.
    [29]0NATEE, IDELSOHNS, ZIENKIEWICZ 0 C, et al. A stabilized finite point method for analysis of fluid mechanics problems [J]. Computer Methods in Applied Mechanics and Engineering,1996,139:315-346.
    [30]0NATE E, IDELSOHN S, ZIENKIEWICZ 0 C, et al. A finite point method in computational mechanics. Applications to convective transport and fluid flow [J]. International Journal for Numerical Methods in Engineering,1996,39(22):3839-3866.
    [31]ONATE E, PERAZZO E, MIQUEL J. A finite point method for elasticity problems [J]. Computers&Structures,2001,79:2151-2163.
    [32]LISZKA T J, DUARTE CAM, TWORZYDLO W W. hp-Meshless cloud method [J]. Computer Methods in Applied Mechanics and Engineering,1996,139:263-288.
    [33]陆明万,张雄.基于紧支径向基函数的配点型无网格法求解椭圆型边值问题[M].力学与工程,北京:清华大学出版社,1999:174-179.
    [34]ZHANG X, LIU X H, SONG K Z. Least-square collocation meshless method [J]. International Journal for Numerical Methods in Engineering,2001,51 (9):1089-1100.
    [35]张雄,胡炜,潘小飞,等.加权最小二乘无网格法[J].力学学报,2003,35(4):425-431.
    [36]ATLURI S N, ZHU T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J]. Computational Mechanics,1998,22:117-127.
    [37]ATLURI S N, ZHU T. New concepts in meshless methods [J]. International Journal for Numerical Methods in Engineering,2000,47:537-556.
    [38]CHING H K, BETRA R C. Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method [J]. Computer Modeling in Engineering& Sciences (CMES),2001,2(2):273-290.
    [39]ATLURI S N. The Meshless Method (MLPG) for Domain& BIE Discretizations [M]. Encino USA:Tech Science Press,2004.
    [40]ATLURI S N, SHEN S P. The Meshless Local Petrov-Galerkin (MLPG) Method [M]. USA:Tech Science Press,2002.
    [41]龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518.
    [42]龙述尧,刘凯远.动态断裂力学问题中的局部Petrov-Galerkin无网格方法[J].暨南大学学报,2005,26(3):57-59.
    [43]龙述尧.用无网格局部Petrov-Galerkin法分析弹性地基上的梁[J].湖南大学学报,2001,28(5):11-15.
    [44]LIU G R,GU Y T. Meshless local Petrov-Galerkin(MLPG)method in combination with finite element and boundary element approaches[J].Computational Mechanics, 2000,26:536-546.
    [45]LIU G R, GU Y T. A local point interpolation method for stress analysis of two-dimensional solids[J].Structural Engineering and Mechanics,2001, 11(2):221-236.
    [46]LIU G R, GU Y T. A local point interpolation method for static and dynamic analysis of thin beams [J]. Computer Methods in Applied Mechanics and Engineering, 2001,190:5515-5528.
    [47]LIU G R, GU Y T. Comparisons of two meshfree local point interpolation methods for structure analyses [J]. Computational Mechanics,2002,29:107-121.
    [48]蔡永昌,朱合华,王建华.基于Voronoi结构的无网格局部Petrov-Galerkin方法[J].力学学报,2003,35(2):187-193.
    [49]PARK S H, YOUN S K. The least-squares meshfree method [J]. International Journal for Numerical Methods in Engineering,2001,52(9):997-1012.
    [50]KWON K C, PARK S H, JIANG B N, et al. The least-squares meshfree method for solving linear elastic problems [J]. Computational Mechanics,2003, 30(3):196-211.
    [51]张雄,胡炜,潘小飞,陆明万.加权最小二乘无网格法[J].力学学报,2003,35(4):425-431.
    [52]PAN X F, ZHANG X, LU M W. Meshless Galerkin least-squares method [J]. Computational Mechanics,2005,35(3):182-189.
    [53]MUKHERJEE Y X, MUKHERJEE S. The boundary node method for potential problems [J]. International Journal for Numerical Methods in Engineering,1997, 40(5):797-815.
    [54]CHATI M K, MUKHERJEE S., MUKHERJEE Y X. The boundary node method for three-dimensional linear elasticity [J]. International Journal for Numerical Methods in Engineering,1999,46(8):1163-1147.
    [55]GU Y T, LIU G R. A boundary point interpolation method for stress analysis of solids [J]. Computational Mechanics,2002,28(1):47-54.
    [56]LIU G R, YAN L, WANG J G. Point interpolation method based on local residual formulation using radial basis functions [J]. Structural Engineering and Mechanics, 2002,14:713-732.
    [57]ZHU T, ZHANG J, ATLURI S N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach [J]. Computational Mechanics,1998,21(3):223-235.
    [58]ATLURI S N, KIM H G, CHO J Y. A critical assessment of truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods [J]. Computational Mechanics,1999,24(5):348-372.
    [59]ZHU T. A new meshless regular local boundary integral equation (MRLBIE) approach [J]. International Journal for Numerical Methods in Engineering,1999, 46:1237-1252.
    [60]LONG S Y, XIONG Y B. A Meshless Method of a Thin Plate [J]. Chinese Journal of Solid Mechanics(English Edition),2002,15(3):244-258.
    [61]张见明.杂交边界点法[D].北京:清华大学,2002.
    [62]CHEN WEN. RBF-based meshless boundary knot method and boundary particle method [C], Proceeding of China Congress on Computational Mechanics, Guangzhou, China,2001:319-326.
    [63]程玉民,陈美娟.弹性力学的一种边界无单元法[J].力学学报,,2003,35(2):181-186.
    [64]BELYTSCHKO T, TABBARA M. Dynamic fracture using element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering,1996, 39(6):923-938.
    [65]KRYSL P, BELYTSCHKO T. The Element Free Galerkin method for dynamic propagation of arbitrary 3-D cracks [J]. International Journal for Numerical Methods in Engineering,1999,44(6):767-800.
    [66]SUKUMAR N, MORAN B, BLACK T, BELYTSCHKO T. An element-free Galerkin method for three-dimensional fracture mechanics [J]. Computational Mechanics,1997, 20:170-175.
    [67]RAO B N, RAHMAN S. An efficient meshless method for fracture analysis of cracks [J]. Computational Mechanics,2000,26(4):398-408.
    [68]RAO B N, RAHMAN S. A coupled meshless-finite elemeat method for fracture analysis of cracks [J]. International Journal of Pressure Vessels and Piping,2001, 78(9):647-657.
    [69]TIAGO C M, LEITAO V M A. Development of a EFG formulation for damage analysis of reinforced concrete beams [J]. Computers&Structures,2004,82:1503-1511.
    [70]RABCZUK T, BELYTSCHKO T. Application of Particle Methods to Static Fracture of Reinforced Concrete Structures [J]. International Journal of Fracture,2006, 137:19-49.
    [71]RAO B N, RAHMAN S. Mesh-free analysis of cracks in isotropic functionally graded materials [J]. Engineering Fracture Mechanics,2003,70:1-27.
    [72]CHEN Y, ESKANDARIAN A, OSKARD M, et al. Meshless analysis of plasticity with application to crack growth problems [J]. Theoretical and Applied Fracture Mechanics,2004,41:83-94.
    [73]RAO B N, RAHMANS. Probabilistic fracture mechanics by Galerkin meshless methods-part I:rates of stress intensity factors [J]. Computational Mechanics, 2002,28(5):351-364.
    [74]RAO B N, RAHMANS. Probabilistic fracture mechanics by Galerkin meshless methods-part II:reliability analysis [J]. Computational Mechanics,2002, 28(5):356-374.
    [75]REN J, LIEW K M, MEGUID S A. Modelling and aimulation of the superelastic behaviour of shape memory alloys using the element-free Galerkin method [J]. International Journal of Mechanical Sciences,2002,44(12):2393-2413.
    [76]REN J, LIEW K M. Meshfree modelling and characterisation of thermomechanical behaviour of NiTi alloys [J]. Engineering Analysis with Boundary Elements,2005,29(1):29-40.
    [77]REN J, LIEW K M. Meshfree modelling and simulation of the thermomechanical behaviour of shape memory alloys [J]. Smart Materials and Structures,2005, 14(5):S302-S311.
    [78]GUAN Y J, ZHAO G Q, XIN W, et al. Massive metal forming process simulation based on rigid/visco-plastic element-free Galerkin method [J]. Journal of Materials Processing Technology,2007,187:412-416.
    [79]潘小飞.高效稳定的无网格法若干问题的研究[D].北京:清华大学,2006.
    [80]BOBARU F, MUKHERJEE S.Shape sensitivity analysis and shape optimization in planar elasticity using the element-free Galerkin method[J].Computer Methods in Applied Mechanics and Engineering,2001,190:4319-4337.
    [81]BOBARU F, MUKHERJEE S.Meshless approach to shape optimization of linear thermoelastic solids [J].International Journal for Numerical Methods in Engineering,2002,53(4):765-796.
    [82]GOUPEE A J, SENTHIL S VEL. Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm [J].Computer Methods in Applied Mechanics and Engineering,2006, 195:5926-5948.
    [83]SINGH I,SINGH I V,PRAKASH R. Meshless element free Galerkin method for unsteady nonlinear heat transfer problems [J].International Journal of Heat and Mass Transfer,2007,50:1212-1219.
    [84]SINGH I,SINGH I V,PRAKASH R. Numerical analysis of fluid squeezed between two parallel plates by meshless method [J].Computers&Fluids,2007, 36(9):1460-1480.
    [85]SINGH I V, TANAKAM, ENDOM. Thermal analysis of CNT-based nano-composites by element free Galerkin method[J].Computationad Mechanics,2007,39(6):719-728.
    [86]QUEK S S, LIU G R. Simulation of surface evolution of quantum dot using meshfree approximation[J].Thin Solid Films,2005,479:297-309.
    [87]PAMIN J, ASKES H, DE BORST R.Two gradient plasticity theories discretized with the element-free Galerkin method[J].Computer Methods in Applied Mechanics and Engineering,2003,192:2377-2403.
    [88]RAHMAN S,RAO B N. A perturbation method for stochastic meshless analysis in elastostatics [J].International Journal for Numerical Methods in Engineering, 2001,50(8):1969-1991.
    [89]WANG J G, KARIM M R, LIN P Z. Analysis of seabed instability using element free Galerkin method[J].Ocean Engineering,2007,34(2):247-260.
    [90]ZHANG X, LU M W, WEGNER J L. A 2-D meshless model for jointed rock structures [J].International Journal for Numerical Methods in Engineering,2000, 47(10):16491-661.
    [91]MURAKAMI I,SETSUYASU T, ARIMOTO S.Mesh-free method for soil-water coupled problem within finite strain and its numerical validity [J].Soils and foundations, 2005,45 (2):145-154.
    [92]SINGH I V, SANDEEP K, PRAKASH R. Heat transfer analysis of two-dimensional fins using a meshless element free Galerkin method [J]. Numerical Heat Transfer, Part A:Applications,2003,44(1):73-84.
    [93]SINGH I V. Meshless EFG method in threes dimensional heat transfer problems: A numerical comparison, cost and error analysis [J]. Numerical Heat Transfer, Part A:Applications,2004,46(2):199-220.
    [94]SINGH I, SINGH I V, PRAKASH R. Numerical solution of temperature-dependent thermal conductivity problems using a meshless method [J]. Numerical Heat Transfer, Part A:Applications,2006,50(2):125-145.
    [95]SINGH I V. Parallel implementation of the EFG Method for heat transfer and fluid flow problems [J]. Computational Mechanics,2004,34(6):453-463.
    [96]YANG H T, LIU L. Solving transient heat conduction problems with cyclic symmetry via a paralleled EFGM and a precise algorithm [J]. Numerical Heat Transfer, Part B:Fundamentals,2004,46(5):479-495.
    [97]SOONG T T, BOGDANOFF J. On the natural frequencies of a disordered linear chain of N degree of freedom [J]. International Journal of Mechanical Sciences,1963, 5:237-265.
    [98]BOYCE W E, GOODWIN B E. Random transverse vibration of elastic beams [J]. Journal of the Society for Industrial and Applied Mathematics,1964,12(3):613-629.
    [99]HART GARY C, COLLINS JON D. The treatment of randomness in finite element modeling [C]. SAE Shock and Vibrations Symposium, Los Angeles, CA.1970,2509-2519.
    [100]MASANOBU S, CLIFFORD J A. Random eigenvalue problems in structural analysis [J]. AIAA Journal,1972,10:456-462.
    [101]HANDA T, TSUJIUCHI J. Restoration of Linear-motion Blurred Pictures by Image Scanning Method [J]. Journal of Modern Optics,1975,22(6):537-549.
    [102]COMBOU. Application of first-order uncertainty analysis in the finite element method in linear elasticity [C]. In:Proceedings of 2nd International Conference on Applications of Statistics and Structural Engineering, Aachen,1975, 67-87.
    [103]DENDROU B A, HOUSTIS E N. An inference finite element method for field application [J]. Applied Mathematical Modeling. England:Guildford,1978,49-55.
    [104]BAECHER G B, INGRA T S. Stochastic FEM in settlement predictions [J]. Journal of the Geotechnical Engineering Division,1981,107(4):449-463.
    [105]HANDA K, ANDERSON K. Application of Finite Element Methods in the Statistical Analysis of Structures [C]. In:Proceedings, Third International Conference on Structural Safety and Reliability,1981,409-417.
    [106]HISADA T, NAKAGIRI S. Stochastic Finite Element Method Developed for Structural Safety and Reliability [C]. In:Proceedings, Third International Conference on Structural Safety and Reliability,1981,395-408.
    [107]HISADA T, NAKAGIRI S. Role of the Stochastic Finite Element Method in Structural Safety and Reliability [C]. In:Proceedings, Fourth International Conference on Structural Safety and Reliability 1985,213-219.
    [108]SHINOZUKAM, DEODATIS G. Response Variability of Stochastic Finite Element Systems [J]. Journal of Engineering Mechanics,1988,114(3):499-519.
    [109]YAMAZAKI F, SHINOZUKA M, DASGUPTA G. Neumann Expansion for Stochastic Finite Element Analysis [J]. Journal of Engineering Mechanics,1988, 114(8):1335-1354.
    [110]KIUREGHIAN A D, KE JYH-BIN. The stochastic finite element method in structural reliability [J]. Probabilistic Engineering Mechanics,1988,3(2):83-91.
    [111]TAKADA T. Weighted integral method in stochastic finite element analysis [J].Probabilistic Engineering Mechanics,1990,5(3):146-156.
    [112]DEODATIS G. Weighted Integral Method. I:Stochastic Stiffness Matrix [J]. Journal of Engineering Mechanics,1991,117(8):1851-1864.
    [113]RAJASHEKHAR M R, ELLINGWOOD R B. A new look at the response surface approach for reliability analysis [J]. Structural Safety,1993,12(3)-.205-220.
    [114]吴世伟,李同春.重力坝最大可能失效模式初探[J].水利学报,1990,21(8):20-28.
    [115]陈虬,刘先斌.随机有限元及其工程应用[M].成都:西南交通大学出版社,1993.
    [116]ZADEH L A. Fuzzy sets [J]. Information and Control,1965,8(3):338-353.
    [117]GAWRONSKI W. Fuzzy elements [J]. Computers&Structures,1979,10:863-865.
    [118]BROWN C B. A Fuzzy Safety Measure [J]. Journal of the Engineering Mechanics Division,1979,105(5):855-872.
    [119]BROWN C B, YAO J T P. Fuzzy Sets and Structural Engineering [J]. Journal of Structural Engineering,1983,109(5):1211-1225.
    [120]RAO S S. Multi-objective optimization of fuzzy structural systems[J]. International Journal for Numerical Methods in Engineering,1987,24(6):1157-1171.
    [121]WANG G Y, QIU J P. Theory of fuzzy random vibration with fuzzy parameters [J]. Fuzzy Sets and Systems,1990,36(1):103-112.
    [122]JUANG C H, WEY J L, ELTON D J. Model for Capacity of Single Piles in Sand Using Fuzzy Sets [J]. Journal of Geotechnical Engineering,1991,117(12):1920-1931.
    [123]HALDAR I, REDDY R K. A random-fuzzy analysis of existing structures [J]. Fuzzy Sets and Systems,1992,48(2):201-210.
    [124]吕恩琳.一种模糊随机有限元法[J].重庆大学学报,1996,19(5):68-75.
    [125]HANSEN ELDON. Interval Arithmetic in Matrix Computations, PartⅠ[J]. Journal of the Society for Industrial and Applied Mathematics:Series B, Numerical Analysis,1965,2(2):308-320.
    [126]HANSEN ELDON. Interval Arithmetic in Matrix Computations, PartⅡ[J]. Journal of the Society for Industrial and Applied Mathematics:Series B, Numerical Analysis,1967,4(2):1-9.
    [127]VALLIAPPAN S, PHAM T D. Fuzzy finite element analysis of a foundation on an elastic soil medium [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1993,17(11):771-789.
    [128]王彩华,朱恒山.基于L-R型模糊运算法则的一种结构模糊方程的解法[C].第三届全国模糊分析设计学术会议论文集,1993,35-38.
    [129]禹智涛,吕恩琳,王彩华.结构模糊有限元平衡方程的一种解法[J].重庆大学学报,1996,19(1):53-58.
    [130]王彩华,宋连天.模糊论方法学[M].北京:中国建筑工业出版社,1988.
    [131]刘长虹,陈虬.基于单源模糊数的模糊有限元方程的解法[J].西南交通大学学报,2001,36(1):84-87.
    [132]王柏生.单源模糊数及其运算[J].模糊系统与数学,1998,12(2):49-54.
    [133]雷震宇,陈虬.基于信息熵的模糊随机结构有限元法[J].力学季刊,2001,22(3):340-345.
    [134]LUCA I DE, TERMINI S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory [J]. Information and control,1972,20(4):301-312.
    [135]张跃.模糊随机变量[J].哈尔滨建筑工程学院学报,1989,22(3):12-21.
    [136]CHEN LI, RAO S S. Fuzzy finite-element approach for the vibration analysis of imprecisely-defined systems [J]. Finite Elements in Analysis and Design,1997, 27(1):69-83.
    [137]吕恩琳.结构模糊有限元平衡方程的一种新解法[J].应用数学和力学,1997,18(4):361-366.
    [138]MOORE R E. Interval Analysis [M]. Prentice-Hall, Englewood Cliffs, NJ, 1966.
    [139]HANSEN E R. Sharpness in interval computations [J]. Reliable Computing, 1997,3(1):17-29.
    [140]NICKEL KARL L. A Globally Convergent Ball Newton Method [M]. SIAM Journal on Numerical Analysis,1981 18(6):988-1003.
    [141]BEN-HAIM Y. A non-probabilistic concept of reliability[J].Structure Safety,1994,14(4):227-245.
    [142]ELISHAKOFF I.Essay on uncertainties in elastic and viscoelastic structures:from A M Freudenthal's criticisms to modern convex modeling [J]. Computers& Structures,1995,56(6):871-895.
    [143]QIU Z P, CHEN S H, LIU Z S. Matrix perturbation method for the vibration problem of structures with interval parameters [J]. Applied Mathematics and Mechanics,1994,15(6):551-560.
    [144]吴杰,陈塑寰.区间参数振动系统的动力优化[J].力学学报,2003,35(3):373-376.
    [145]邱志平,顾元宪.有界不确定性参数结构静力位移范围的区间参数摄动法[J].兵工学报,1998,19(3):255-258.
    [146]杨晓伟,陈塑寰,滕绍勇.基于单元的静力区间有限元法[J].计算力学学报,2002,19(2):179-183.
    [147]KOYLUOGLU H U, CAKMAK A S, NIELSEN S R K. Interval algebra to deal with pattern loading and structural uncertainties [J]. Journal of Engineering Mechanics, 1995,11:1149-1157.
    [148]RAO S S, BERKE L. Analysis of uncertain structural systerns using interval analysis [J].AIAA Journal,1997,35(4):725-735.
    [149]陈怀海.非确定结构系统区间分析的直接优化法[J].南京航空航天大学学报,1999,31(2):146-150.
    [150]MUHANNA R L, MULLEN R L. Uncertainty in mechanics problems-interval-based approach[J].ASCE Journal of Engineering Mechanics,2001,127(6):557-566.
    [151]郭书祥,吕震宙.区间运算和区间有限元[J].应用数学和力学,2001,22(12):1249-1254.
    [152]BEN-HAIM Y, CHEN G, SOONG T T. Maximum structural response using convex models [J]. Journal of Engineering Mechanics,1996,22(4):325-333.
    [153]BEN-HAIM Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models [J]. Structural Safety,1995,17(2):91-109.
    [154]ELISHAKOFF I, ELISSEFF P, GLEGG SAL. Nonprobabilistic convex theoretic modeling of scatter in material properties [J]. AIAA journal,1994,32(4):843-849.
    [155]LINDBERGH. Convex for uncertain imperfection control in multimode dynamic buckling [J]. Journal of Applied Mechanics,1992,59(4):937-946.
    [156]ELISHAKOFF I. Discussion on:a non-probabfllstic concept of reliabilty [J].1995,17(3):195-199.
    [157]ELISHAKOFF I, HAFTKA R T, FANG J. Structunal design under bounded uncertainty-optimization with anti-optimization [J]. Computers&Structures,1994, 53(6):1401-1405.
    [158]LOMBADI M. Optimization of uncertain structures using nonprobabilistic models [J]. Computers&Structures,1998,67:99-103.
    [159]PANTELIDES C P, GANZELI S. Design of trusses under uncertain loads using convex model [J]. Journal of Structural Engineering,1998,124(3)-.318-329.
    [160]郭书样,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60.
    [161]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [162]刘更,刘天祥,谢琴.无网格法及其应用[M].西安:西北工业大学出版社,2005.
    [163]SCHWER L, GERLACH C, BELYTSCHKO T. Element-Free Galerkin Simulations of Concrete Failure in Dynamic Uniaxial Tension Test [J]. Journal of Engineering Mechanics,2000,126(5):443-454.
    [164]PENG M J, CHENG Y M. A boundary element-free method (BEFM) for two-dimensional potential problems [J]. Engineering Analysis with Boundary Element, 2009,33:77-82.
    [165]ZHANG ZAN, LIEW K M, CHENG Y M. Analyzing 2D fracture problems with the improved element-free Galerkin method [J]. Engineering Analysis with Boundary Element,2008,32:241-250.
    [166]ZHANG ZAN, ZHAO PENG, LIEW K M. Improved element-free Galerkin for two-dimensional potential problems [J]. Engineering Analysis with Boundary Element, 2009,33:547-554.
    [167]张建辉,邓安福.基于正交基函数的薄板弯曲无单元法MLS导函数及其应用[J].计算力学学报,2003,20(3):355-360.
    [168]武清玺.结构可靠性分析及随机有限元法[M].北京:机械工业出版社,2005.
    [169]刘宁.可靠度随机有限元法及其工程应用[M].北京:中国水利水电出版社,2001.
    [170]马丽红,邱志平,王晓军,等.Winkler地基板的区间无网格Galerkin方法[J].岩土工程学报,2008,30(3):384-389.
    [171]张汝清,吕恩琳,蹇开林.现在计算力学[M].重庆:重庆大学出版社,2004.
    [172]BELYTSCHKO T, FLEMING M. Smoothing, enrichment and contact in the element-free Galerkin method [J]. Computers and Structures.1999,71:173-195.
    [173]BELYTSCHKO T, ORGAN D, KRONGAUZ I. A Coupled finite element-element free Galerkin method [J]. Computational Mechanics,1995,17:186-195.
    [174]ORGAN D. Numerical solutions to dynamic fracture problems using the element-free Galerkin methods [D]. Northwestern University,1996.
    [175]RICE J R. A path independent integral and the approximate analysis of strain concentration by notch and cracks [J]. Journal of Applied Mechanics,1968, 35:379.
    [176]黄克中,毛善培.随机方法与模糊数学应用[M].上海:同济大学出版社,1987.
    [177]杨松林.工程模糊论方法及其应用[M].北京:国防工业出版社,1996.
    [178]WILLIAMS M L. The stress around a fault of crack in dissimilar media [J]. Bull. Seismol. Soc. Am.,1959,49:199-204.
    [179]ENGLAND A H. A crack between dissimilar media [J]. Journal of Applied Mechanics,1965,32:400-402.
    [180]RICE J R. A path independent integral and the approximate analysis of strain concentration by notch and cracks [J]. Journal of Applied Mechanics,1968, 35:379-398.
    [181]TRANTINA G C. Combined mode crack extension in adhesive joints [J]. Journal of Composite Materials,1972,6:371-385.
    [182]COMNINOU M. The interface crack [J]. Journal of Applied Mechanics,1977, 44:631-636.
    [183]孟广伟,周立明,李锋,等.局部正交无网格伽辽金法的研究及其在含多裂纹多孔结构中的应用[J].计算力学学报,2010,27(6):989-994.
    [184]孟广伟,周立明,李锋,沙丽荣.摄动随机局部正交无网格伽辽金法[J].吉林大学学报(工学版),2010,40(6):1556-1561.
    [185]孟广伟,周立明,李锋.含裂纹结构的模糊无网格伽辽金法[J].吉林大学学报(工学版),2010,40(增刊):287-292.
    [186]孟广伟,赵云亮,周立明,李锋.无网格伽辽金法中两种基函数的性质[J].吉林大学学报(工学版),2009,39(3):697-703.
    [187]孟广伟,周立明,李锋.基于EFGM—ANN的含多裂纹结构的断裂可靠性分析[J].机械强度,2010,32(6):1012-1017.
    [188]刘凯远.无网格局部Petrov-Galerkin方法在断裂力学中的应用[D].长沙:湖南大学,2007.
    [189]喻和平.区间分析理论及其在偏坡工程中的应用[M].南京:河海大学,2006.
    [190]许金泉.界面力学[M].北京:科学出版社,2006.
    [191]汤丽华.粘弹性界面端及界面裂纹的奇异场[D].上海:上海交通大学,2007.
    [192]郑慧淼.粘弹性界面端奇异行为[D].上海:上海交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700