用户名: 密码: 验证码:
土贝母苷甲对体外培养肝癌细胞(HepG2)抑制作用及其相关机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞性肝癌(hepatocellular carcinoma,HCC)是当今世界常见的恶性肿瘤之一,其死亡率占世界肿瘤中的第3位,每年全球大约有550,000个新增肝癌病例,超过所有恶性肿瘤的5%,但是目前临床上的治疗结果仍然不容乐观。因此探寻更有效的治疗方法是目前迫在眉睫之事,而传统中药则因其固有的优点无疑是研究肝癌治疗新药物的重要资源。
     近年来就发现传统中药中的土贝母是一种有效的抗肿瘤药物。土贝母Bolbostemma paniculatum (Maxim.) Franquet (Cucurbitaceae)为葫芦科假贝母属植物,很早就在中国被广泛用于炎症、蛇毒等的治疗,1765年出版的《本草纲目拾遗》中已有记载。土贝母被发现具有较强的抗癌作用后更是受到广泛的关注,并从中成功提取出了有效成分,土贝母苷甲。土贝母苷甲是一种三萜皂苷,已经有实验证明土贝母苷甲可以抑制体外培养的多种人类癌细胞的生长,包括人早幼粒白血病细胞株(HL-60)、子宫颈癌细胞株(HeLa cells)和鼻咽癌细胞株(CNE-2Z)等癌细胞。这些体外研究结果都提示土贝母苷甲有可能是一种有效的抗癌药物成分。然而土贝母苷甲对肝癌的抗肿瘤活性尚未见报道,而且动物模型的药代动力学显示,土贝母苷甲在肝脏中的含量最高,所以土贝母苷甲很有可能对肝癌的治疗效果更佳。因此,有必要研究土贝母苷甲对肝癌的抗肿瘤活性及其相关机制。
     本课题主要针对体外培养的人肝癌细胞株HepG2细胞,并以正常肝细胞株L-02细胞作为对照,研究了土贝母苷甲对肝癌细胞生长的抑制作用。同时,鉴于肿瘤的发生发展除了因为细胞增殖和分化异常外,细胞凋亡异常也是关键的机制,进一步研究了土贝母苷甲诱导HepG2细胞凋亡的分子生物学机制。另外,本课题还研究了土贝母苷甲对肝癌细胞的迁移、侵袭、细胞骨架刚度等生物力学行为或性质的影响,并对相应的作用机制进行了初步探讨。这些研究为更全面深入地认识土贝母苷甲作用于肝癌细胞,如HepG2细胞的过程和机制奠定了基础,为进一步研究土贝母苷甲用于临床治疗肝癌提供了一定的理论依据。本课题研究取得的主要结果如下:
     ①土贝母苷甲抑制体外培养的肝细胞的生长:采用MTT法试验的结果表明,土贝母苷甲对体外培养的人肝癌细胞(HepG2、HCCLM3)和正常肝细胞(L-02、QSG-7701)的生长均有抑制作用,并呈明显的时间依赖性和剂量依赖性。重要的是,肝癌细胞和正常肝细胞对土贝母苷甲的抑制作用表现出不同的响应,尤其是在10-30μM的浓度范围内,肝癌细胞对于土贝母苷甲作用的敏感性显著地高于正常肝细胞。流式细胞术检测HepG2细胞的细胞周期结果表明土贝母苷甲对肝癌细胞增殖的抑制可能与药物将细胞阻滞于G2/M期有关。
     ②土贝母苷甲诱导肝癌细胞的凋亡:采用相差细胞显微术和Hoechst33258染色剂标记细胞核的实验发现,经过不同浓度的土贝母苷甲处理后,HepG2细胞出现形态皱缩、变圆,细胞核染色质浓缩、断裂等典型的凋亡形态学改变;采用Tubulin-Tracker荧光探针标记的细胞微管骨架也由不加土贝母时明亮的红色荧光、从细胞中心发射状排列分布到出现细胞周围荧光强度减弱、无定形排列、细胞膜易位、细胞形态变圆等显示细胞微管骨架解聚的现象。流式细胞术检测Annexin V/PI双染色法标记细胞的检测结果显示,随着土贝母苷甲浓度的增加,HepG细胞和L-02细胞中早期凋亡和晚期凋亡的细胞数量都相应增加,但是在较低浓度时(e.g.≤15μM)时,早期凋亡的细胞比例与晚期凋亡的细胞比例差别并不明显,当浓度较高(e.g. =30μM)的时候,早期凋亡的细胞比例远远超过晚期凋亡的细胞比例,暗示土贝母苷甲在较高浓度的时候可能更倾向于促进细胞的早期凋亡。另一方面,在同等浓度下,土贝母苷甲对HepG2细胞凋亡的诱导作用要大于对L-02细胞的作用,这与其对细胞增殖的抑制作用结果相一致。
     采用流式细胞术和Western blotting等的实验结果表明,HepG2细胞在经过土贝母苷甲作用后,其线粒体膜电位下降,细胞色素c从线粒体中释放到细胞浆中,caspase-3和-9的活性增高,抗凋亡蛋白Bcl-2表达降低,而促凋亡蛋白Bax的表达升高,以及Bax和Bcl-2表达的相对比率不断增高等。这些结果说明了线粒体途径参与了土贝母苷甲诱导的HepG2细胞凋亡过程。
     ③土贝母苷甲抑制肝癌细胞迁移与侵袭:肿瘤细胞的转移和侵袭是恶性肿瘤的主要生物学特征,也是直接影响肝癌患者治疗效果和预后的重要原因。本课题的研究显示,土贝母苷甲可以有效抑制HepG2细胞的迁移与侵袭。采用对细胞F-actin骨架的荧光染色和共聚焦显微镜观察显示,经土贝母苷甲作用后的HepG2细胞内F-actin骨架有明显的破坏迹象。明胶酶谱法检测结果则显示经土贝母苷甲作用后的HepG2细胞内的基质金属蛋白酶MMP-2和MMP-9的表达降低。这些结果说明土贝母苷甲可能通过破坏细胞微丝的结构和抑制MMP-2、MMP-9的表达来抑制肝癌细胞的迁移与侵袭。
     ④土贝母苷甲改变肝癌细胞的生物力学性质:根据土贝母苷甲对肝癌细胞F-actin骨架结构的作用,我们推测土贝母苷甲对细胞刚度等生物力学性质也有相应的影响。为了验证这一点,我们采用光学磁微粒扭转系统(OMTC)测量了细胞刚度及其受土贝母苷甲的影响。结果显示,土贝母苷甲确实降低了细胞的刚度,和细胞与加载频率间幂率关系(G~fα)的幂值。此外,HepG2细胞较L-02细胞的本底刚度低,但对土贝母苷甲作用的反应相应更快。这些结果首次揭示了土贝母苷甲对HepG2细胞的F-actin骨架生物力学性质的影响,而细胞骨架生物力学性质对细胞变形、迁移、侵袭、分化等许多重要的生物学行为都起着决定性的作用。
     综上所述,土贝母苷甲对肝癌(HepG2)细胞生长确实存在显著的抑制作用,而对正常肝细胞(L-02)生长的抑制作用则相对较弱。土贝母苷甲对肝癌(HepG2)细胞生长的抑制作用主要通过由微管和线粒体介导的细胞凋亡机制实现。但另一方面,土贝母苷甲对微丝骨架结构也有破坏作用,从而影响肝癌细胞的刚度和动力学特性,以及相应的肝癌细胞迁移与侵袭能力。所以,土贝母苷甲不仅能抑制肝癌细胞的增殖生长,同是也能抑制肝癌细胞的转移和侵袭。这些研究结果提示土贝母苷甲作为治疗肝癌的中药成分具有一定的潜在价值。
Hepatoma is one of the most prevalent malignant tumor types and the third leading cause of cancer-related death worldwide. Each year, approximately 550,000 new cases of hepatoma are reported worldwide, representing more than 5% of all human cancers. Despite the development and use of multimodality therapies including chemotherapy, the clinical outcome of hepatoma treatment remains unsatisfactory, with usually less than 7% of the 5-year overall survival rate. Thus, it is imminent to find more effective methods and/or agents for hepatoma treatment. Traditional Chinese medicinal herbs, owing to its intrinsic advantages, may provide a great source for such search.
     Indeed, one herb that may have great potential is tubeimoside (TBMS), or the tuber of Bolbostemma paniculatum (Maxim.) Franquet (Cucurbitaceae). In traditional Chinese medicine TBMS has long been widely used for treatment of illness such as inflammation and snake venoms, and was listed in the Supplement to the Compendium of Materia Medica published in early 1765. In the 1980’s TBMS was first reported to show potent anti-tumor activity. Such anti-tumor activity in part motivated the successful isolation of tubeimoside I (TBMS I), a triterpenoid saponin. And subsequent studies confirmed that TBMS I can indeed inhibit growth of cultured cancer cells of several human cancer cell lines including human promyelocytic leukemia (HL-60), nasopharyngeal carcinoma CNE-2Z cell line (CNE-2Z) and HeLa cells. These studies appear to suggest that TBMS I may be a potential candidate as a novel anti-tumor drug, However, TBMS I so far has not been well studied for its anti-tumor activity against hepatoma, even though that TBMS I is known to preferentially distribute in the liver during in vivo metabolism, and thus might better target liver cancer, or hepatoma.
     Therefore, we evaluated TBMS I for its cytotoxicity to cultured human hepatoma cells or normal liver cells, from HepG2 or L-02 cell lines, respectively. Because the genesis and progression of cancer are known to involve not only abnormal proliferation and differentiation, but also abnormal apoptosis of the cells, we thus investigated apoptosis-associated molecular events as potential mechanisms responsible for the cytotoxic effects of TBMS I on HepG2 cells. Furthermore, we evaluated the effects of TBMS I on migration, invasion, F-actin structuer, and cytoskeletal stiffness of the cultured HepG2 cells. All together, this study may serve as a foundation for more comprehensive understanding of the pharmacology of TBMS I with HepG2 cells, and provide a scientific basis for further development of TBMS I as a novel drug for treating hepatoma in clinical practice. The main findings of this study are as follows:
     ①TBMS I inhibited growth of cultured cells. The results from MTT assay demonstrated that TBMS I inhibited growth of HepG2 cells, HCCLM3 cells, L-02 cells and QSG-7701 cells in a typical concentration- and time-dependent manner. However, as compared to the normal human liver cells, hepatoma cells appeared to be more sensitive to TBMS I, particularly at the dose range of 10-30μM. Cell cycle analysis by flow cytometry demonstrated that exposure to TBMS I inhibited HepG2 cell proliferation via G2/M phase arrest in a dose-dependent manner.
     ②TBMS I induced apoptosis in HepG2 cells. When HepG2 cells were examined for cell and nucleus morphology by phase contrast microscopy and Hoechst 33258 staining, it was found that after exposure to TBMS I induced cell shrinkage and even detachment, nuclear condensation and fragmentation. The cytoplasmic microtubules labeled with Tubulin-Tracker fluorescent probe also changed from bright fluorescence and appeared radiating from center to periphery of the cells without TBMS I to an apparent decrease in the fluorescence intensity, membrane translocation, and amorphous appearance, all suggesting tubulin depolymerization. Analysis of the cells double stained with Annexin V/PI by flow cytometry demonstrated that the percentage of the early apoptotic cells induced by TBMS I exposure seemed indifferent from that of the late ones when TBMS I concentration was low (e.g.≤15μM), but at high concentrations of TBMS I (e.g. =30μM), the exposure induced much greater percentage of the early apoptotic cells as compared to the late apoptotic cells. This suggests that exposure to TBMS I at high concentrations may predominately promote early apoptosis in HepG2 cells. TBMS I induced a similar trend of apoptotic process in L-02 cells, but with less total apoptotic cells, which was consistent with the results of proliferation inhibition.
     The mitochondrial apoptotic pathway has been described as an important signaling pathway of apoptosis. In the present study, we examined whether this pathway was involved in the TBMS I-induced apoptosis. Results obtained from flow cytometry and Western blotting demonstrated that exposure of HepG2 cells to TBMS I resulted in loss of mitochondrial membrane integrity, release of cytochrome c from mitochondria to the cytoplasm, marked activation of caspase-9, and -3, decrease in Bcl-2 expression and increase in Bax expression that led to increase of Bax/Bcl-1 ratio. All these results show that mitochondrial apoptotic pathways participate in TBMS I-induced apoptosis.
     ③TBMS I effectively inhibited migration and invasion of HepG2 cells. Cell migration and invasion are major biological behaviors that characterize tumore malignancy, and important determinanats of therapeutic efficacy and prognosis in clinical treatment of hepatoma patients. In this study, we used Transwell assay to evaluate the effect of TBMS I on the migration and invasion of HepG2 cells. The results showed that as the cells were treated with increasing concentration of TBMS I, both the migration and invasion of HepG2 cells were increasingly inhibited. In parallel, the cells treated with TBMS I show destruction and desolution of the F-actin cytoskeleton labeled with FITC-Phalloidin, and also decreased expression of matrix metalloproteinase (MMP)-2 and -9 as measured by Gelatin zymography. These results suggest that F-actin cytoskeleton and MMPs signal pathways may be alternative targets of TBMS I through which TBMS I may regulate cytoskeleton dynamics and cell-matrix interactions, then inhibit migration and invasion of the cells.
     ④TBMS I affected biomechanical properties of HepG2 cells. Since TBMS I induced destruction and desolution of F-actin cytoskeleton, we proposed that TBMS I may affect the biomechanical properties of the HepG2 cells. To test this idea, we measured the stiffness of HepG2 cells before and after exposure to TBMS I using optical magnetic twisting cytometry (OMTC). The results showed that TBMS I indeed affected the stiffness of HepG2 cells. Exposure of the HepG2 cells to increasing concentration of TBMS I resulted in decreases in both cell stiffness (G’) and the value of exponent (α) for the power-law between the cell stiffness and the loading frequency (G~fα). In addition, while the baseline stiffness of HepG2 cells was lower than that of L-02 cells, the response of HepG2 cells to TBMS I was faster than than of L-02 cells. This was the first time that biomechanical properties of HepG2 cells were studied with regards TBMS I.
     Taken together, we conclude that TBMS I was a potent agent to suppress the growth of hepatoma cells in vitro. And the growth inhibition was in large part mediated via apoptosis-associated mitochondrial dysfunction and microtubule pathways. On the other hand, TBMS I also showed destruction and desolution of the F-actin cytoskeleton, then affected the stiffness and further inhibited migration and invasion of HepG2 cells. So TBMS I not only inhibited the growth of hepatoma cells but also inhibited the migration and invasion, together with its preferential distribution in the liver and its origin of natural medicinal plant, suggest that TBMS I may be a preferred drug candidate for treating liver cancer.
引文
[1] El-Serag HB, Mason AC. Risk factors for the rising rates of primary liver cancer in the United States[J]. Arch Intern Med, 2000,160:3227-30.
    [2] Rabe C, Pilz T, Klostermann C, Berna M, Schild HH, Sauerbruch T, et al. Clinical characteristics and outcome of a cohort of 101 patients with hepatocellular carcinoma[J]. World J Gastroentero, 2001,7:208-15.
    [3] El-Serag HB, Mason AC, Key C. Trends in survival of patients with hepatocellular carcinoma between 1977 and 1996 in the United States[J]. Hepatology, 2001,33:62-5.
    [4] Jin F, Devear SS, Chow WH, et al. Cancer incidence trends in urban Shanghai 1972-1994:an update[J]. Int J Cancer, 1999,83:435-40.
    [5]王永清,于立坚,朱娟莉.土贝母提取物抗肿瘤作用的研究[J].陕西新医药, 1981,10:55-9.
    [6] Hu Z, Ma RD, Yu LJ. Effects of tubeimoside I on cell cycle and apoptosis of human myeloblastic leukemia cells (HL-60) [J]. Chin J Clin Oncol, 2003,30:163-71.
    [7] Ma RD, YU LJ, Su WM. Apoptosis of human nasopharyngeal carcinoma CNE-2Z cell line induced by tubeimoside I isolated from Bolbostemma paniculatum[J]. Chinese Journal of Cancer, 2003,22: 806-11.
    [8] Ma RD, Song G, You WB, Yu LJ, Su WM, Liao MN, et al. Anti-microtubule activity of tubeimoside I and its colchicine binding site of tubulin[J]. Cancer Chemoth Pharm, 2008,62:559-68.
    [9] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002[J]. Ca-Cancer J Clin, 2005,55:74-108.
    [10] Raoul JL. Natural history of hepatocellular carcinoma and current treatment options[J]. Semin Nucl Med, 2008,38:S13-S8.
    [11] Pisani P, Bray F, Parkin DM. Estimates of the world-wide prevalence of cancer for 25 sites in the adult population[J]. Int J Cancer, 2002,97:72-81.
    [12]张思维,李连弟,鲁凤珠.中国1990-1992年原发性肝癌死亡调查分析[J].中华肿瘤杂志, 1999,21:245-7.
    [13] Cancer incidence in five continents[M]. Volume VIII. IARC Sci Publ, 2002:1-781.
    [14]叶家才,崔书中,巴明臣.原发性肝癌的流行病学特征及其危险因素[J].实用医学杂志, 2008,24:1839-41.
    [15]肖开银,彭民浩.原发性肝癌流行病学研究进展[J].中国普外基础与临床杂志,2000,4:272-4.
    [16] Beasley RP. Hepatitis B virus. The major etiology of hepatocellular carcinoma[J]. Cancer, 1988,61:1942-56.
    [17] Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan[J]. Lancet, 1981,2:1129-33.
    [18] AM. DB. Malignant tumors of the liver. In: Schiff ER, Sorrell MF,Maddrey WC, eds. Schiff's diseases of the liver, 8th ed. Philadelphia: Lippincott-Raven Publishers. 1999:1281-304.
    [19] Colombo M. Hepatitis C virus and hepatocellular carcinoma[J]. Baillieres Best Pract Res Clin Gastroenterol, 1999,13:519-28.
    [20] Di Bisceglie AM. Hepatitis C and hepatocellular carcinoma[J]. Hepatology, 1997,26:34S-8S.
    [21] Donato F, Boffetta P, Puoti M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma[J]. Int J Cancer, 1998,75:347-54.
    [22] Di Bisceglie AM, Goodman ZD, Ishak KG, Hoofnagle JH, Melpolder JJ, Alter HJ. Long-term clinical and histopathological follow-up of chronic posttransfusion hepatitis[J]. Hepatology, 1991,14:969-74.
    [23] Ikeda K, Saitoh S, Koida I, Arase Y, Tsubota A, Chayama K, et al. A multivariate analysis of risk factors for hepatocellular carcinogenesis: a prospective observation of 795 patients with viral and alcoholic cirrhosis[J]. Hepatology, 1993,18:47-53.
    [24] Kiyosawa K, Tanaka E, Sodeyama T. Hepatitis C virus and hepatocellular carcinoma[J]. Curr Stud Hematol Blood Transfus, 1998,62:161-80.
    [25] Yoshida H, Shiratori Y, Moriyama M, Arakawa Y, Ide T, Sata M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. IHIT Study Group. Inhibition of Hepatocarcinogenesis by Interferon Therapy[J]. Ann Intern Med, 1999,131:174-81.
    [26] Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups[J]. Lancet, 1997,349:825-32.
    [27] El-Serag HB, Richardson PA, Everhart JE. The role of diabetes in hepatocellular carcinoma: a case-control study among United States Veterans[J]. Am J Gastroenterol, 2001,96:2462-7.
    [28] Pergolizzi JV, Jr., Auster M, Conaway GL, Sardi A. Cryosurgery for unresectable primary hepatocellular carcinoma: a case report and review of literature[J]. Am Surg, 1999,65:402-5.
    [29] Yamamoto J, Kosuge T, Takayama T, Shimada K, Yamasaki S, Ozaki H, et al. Recurrence of hepatocellular carcinoma after surgery[J]. Br J Surg, 1996,83:1219-22.
    [30] Otto G, Heuschen U, Hofmann WJ, Krumm G, Hinz U, Herfarth C. Survival and recurrence after liver transplantation versus liver resection for hepatocellular carcinoma: a retrospective analysis[J]. Ann Surg, 1998,227:424-32.
    [31] Keng GH, Sundram FX. Radionuclide therapy of hepatocellular carcinoma[J]. Ann Acad Med Singapore, 2003,32:518-24.
    [32] Thomas MB, Zhu AX. Hepatocellular carcinoma: the need for progress[J]. J Clin Oncol, 2005,23:2892-9.
    [33] Johnson PJ. Is there a role for systemic therapy in hepatocellular carcinoma, and if so, can we assess response[J]. Am Soc Clin Oncol Education Book 2002,38:310-5.
    [34] Leung TW, Johnson PJ. Systemic therapy for hepatocellular carcinoma[J]. Semin Oncol, 2001,28:514-20.
    [35] Qian C, Drozdzik M, Caselmann WH, Prieto J. The potential of gene therapy in the treatment of hepatocellular carcinoma[J]. J Hepatol, 2000,32:344-51.
    [36] Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells[J]. Nat Med, 2000,6:1011-7.
    [37] McCormick F. Cancer gene therapy: fringe or cutting edge[J]? Nat Rev Cancer, 2001,1:130-41.
    [38]朱德增,翟笑枫,彭永海,等.中西医结合治疗晚期肝癌黄疽的疗效观察[J].第二军医大学学报, 2001,22:4.
    [39]王晓娟,刘小敏,曾春亚,张杨,梁晓秋.三氧化二砷诱导人肝癌HepG2细胞凋亡及细胞周期阻滞的研究[J].北京中医药大学学报, 2008,31:404-7.
    [40]聂林,余卫,何冬梅,任玮玮,张洹,李弘.三氧化二砷对肝癌细胞survivin基因和端粒酶活性的影响[J].肿瘤, 2006,26:1064-8.
    [41]秦军,钱海鑫,王酉,沈爱国,陈莉,陆牡丹,等.三氧化二砷对人肝癌细胞株SMMC-7721中p27kip1及其相关分子Skp2表达的影响[J].苏州大学学报(医学版), 2008,28:191-3.
    [42]杨春旭,韦晓谋,朱灵.蝎毒对耐药肝癌细胞株Bel-7404/ADM逆转作用研究[J].广西医科大学学报, 2007,24:243-5.
    [43]陈华,孙宇,崔晓楠.华蟾素注射液对人肝癌HepG-2细胞DNA拓扑异构酶Ⅰ的影响[J].中国癌症杂志, 2010,20:197-201.
    [44]顾伟,韩克起,苏永华,黄雪强,凌昌全.蟾毒灵对裸鼠人肝癌移植瘤的抑制作用及对Bcl-2和Bax蛋白表达的影响[J].中西医结合学报, 2007:155-9.
    [45]桂尤胜,曹献英,陈筠.斑蝥酸钠体外诱导肝癌细胞凋亡的实验研究[J].武汉大学学报(医学版), 2004,25:493-6.
    [46]唐渊,李晓辉.莪术提取物对肝癌细胞系HepG2的抗癌作用及机制研究[J]中国药理学通报, 2007,23:790-4.
    [47]张维彬,谭敏,肖刚,胡少为.莪术油诱导小鼠HepA肝癌细胞凋亡及其对bcl-2蛋白表达的影响[J].现代中西医结合杂志, 2009,18:370-1.
    [48]梁朝晖,张维彬,胡少为.莪术油对小鼠原位移植HepA肝癌细胞影响的研究[J].陕西中医, 2009,30:107-9.
    [49]罗民,盛辉,王医林.红景天对肝癌细胞增殖的抑制作用[J].吉林医学, 2005,26:1285-6.
    [50]解方为,欧阳学农,蒋明德.红景天甙对人肝癌细胞的诱导分化作用[J]西南国防医药, 2005,15:613-5.
    [51]孙军,李岩.姜黄素对人肝癌细胞BEL-7402中HIF-1α表达的影响[J].中国药理学通报, 2006,22:1379-83.
    [52]李琦,王炎,范忠泽,冯年平,高虹,南艺蕾,等.丹参酮ⅡA及其纳米粒诱导肝癌细胞凋亡及对p38 MAPK、TGFβ-1信号蛋白表达的影响[J].肿瘤2008,28:8-12.
    [53]钟志宏,陈文贵,柳永和,李启星,邱月.丹参酮ⅡA抑制HepG2细胞生长及诱导其凋亡的实验研究[J].中南大学学报(医学版) 2007,32:99-103.
    [54]郑国灿,李智英.丹参酮I抗肿瘤作用及作用机制的实验研究[J].实用肿瘤杂志, 2005,20:33-5.
    [55]杨雁,陈敏珠.黄芪总苷对肝癌细胞凋亡及wtp53基因表达的影响[J].中国药理学通报, 2001,17:447-51.
    [56]姜浩,樊光华.人参皂甙Rh2对人肝癌Bel -7404细胞增殖和凋亡的影响[J].中国肿瘤临床与康复, 2004,11:289-92.
    [57]华海清,沈小昆,秦叔逵.人参皂苷Rg3抗人肝癌细胞株侵袭和转移的实验研究[J].中国癌症杂志, 2005,15:326-30.
    [58]何芳,曾文铤,朱科伦.人参皂苷Rg3抑制肝癌移植瘤新生血管形成的研究[J].河南科技大学学报(医学版), 2005,23:245-7.
    [59]简捷,刘利珍,李小燕,胡志方,王稻,黄缘.人参皂苷Rg3对人肝癌细胞Pim-3及Bad凋亡蛋白表达的影响[J].世界华人消化杂志, 2008,16:2229-33.
    [60]曾小莉,徐植光.人参总皂甙对人肝癌细胞胞浆中某些表型逆转作用[J].癌症, 2000,19:776-8.
    [61]曾小莉,徐植光.人参总皂甙诱导人肝癌细胞分化初探[J].肿瘤防治研究, 2000,27:180-90.
    [62]王海霞.多西紫杉醇诱导SMMC-7721肝癌细胞凋亡中的氧化-抗氧化失衡研究[J].肿瘤学杂志, 2008,14:432-4.
    [63]张浩,刘小方,李昱骥,周建平,孔凡民,董明.多西紫杉醇诱导人肝癌细胞凋亡及其机制的研究[J].中华肝胆外科杂志, 2008,14:901-3.
    [64]褚娟红,叶骞.薏苡仁的药理及临床研究概况[J].辽宁中医药大学学报, 2008,10:159-60
    [65]韦长元,李挺,唐宗平,埃高莫·比佐,刘剑仑,杨南武.薏苡仁提取物对人肝癌细胞增殖、凋亡及p53表达的影响[J].广西医科大学学报, 2001,18:397-9.
    [66]吕秀芳,孟庆宇,郭新民.白花蛇舌草对人肝癌Bel-7402细胞凋亡的影响[J].中国中医药信息杂志, 2007,14:33-5.
    [67]赵军艳,郑艳敏,赵红艳,姚树坤.苦参碱和氧化苦参碱对肝癌细胞增殖凋亡及JAK-STAT信号通路的影响[J].中药药理与临床, 2008,24:18-20.
    [68]金艳书,吴学敏,娄金丽.苦参碱对人肝癌细胞增殖、细胞周期及细胞凋亡的影响[J].中国临床康复, 2006,10:107-9.
    [69]代志军,王西京,薛茜,纪宗正,刘小旭,康华峰,等.半枝莲含药血清对肝癌H22细胞凋亡及线粒体膜电位的影响[J].中西医结合学报2008,6:821-6.
    [70]韦鹏涯,浦洪琴,韦星,宾晓芸,李朝敢.半枝莲提取物诱导人肝癌SMMC-7721细胞凋亡及其对凋亡相关蛋白表达的影响[J].时珍国医国药, 2007,18:3020-2.
    [71]林敬明,刘煜,罗荣城.半枝莲抑制人肝癌QGY-7701细胞增殖研究[J].南方医科大学学报2006,26:591-3.
    [72]马力,张月宁.鸦胆子油乳诱导肝癌细胞凋亡及对相关基因表达的影响[J].世界华人消化杂志, 2004,12:559-62.
    [73]杨小平,张星.青蒿酯钠诱导人肿瘤细胞凋亡及其分子机制的探讨[J].中草药2002,33:819-21.
    [74]丰俊东,徐晓玉.川芎嗪含药血清对人肝癌细胞HepG2增殖的抑制作用[J]中草药, 2005,36:1551-3.
    [75]宋健宁,汤利华,楷康.槲皮素下调hTERT表达对肝癌HepG2细胞生长影响研究[J]生物技术通报, 2007,18:128-31.
    [76]龚立,高永翔.青藤碱诱导肝癌细胞凋亡的实验研究[J].成都中医药大学学报, 2007,30:38-9.
    [77]宋刚.土贝母皂苷、苷甲的抗癌作用研究.华南理工大学,博士学位论文, 2004.
    [78] Yu TX, Ma RD, Yu LJ. Structure-activity relationship of tubeimosides in anti-inflammatory, antitumor, and antitumor-promoting effects[J]. Acta pharmacol Sin, 2001,22:463-8.
    [79]傅章才,赵更生,房益蓝.土贝母皂甙的药理学研究[J].陕西新医药, 1985,14:49-53.
    [80]王永清,于立坚,杨世勇.土贝母抗癌有效成分结晶D的临床前药理研究[J].陕西新医药, 1984,13.
    [81]王永清,于立坚,杨世勇.土贝母苷甲在动物体内的吸收、分布、代谢和排泄[J].中草药, 1994,25:256-8.
    [82]李石兰,陆应麟,蔡朱男.土贝母注射液毒性的初步试验[J].陕西中医学院学报, 1981,3:16-7.
    [83]傅章才,徐汉卿.土贝母皂甙A搽剂治疗病毒病602例[J].中草药, 1996,27:157-60.
    [84]徐汉卿,傅章才,冯捷.土贝母皂甙治疗疣病252例报告[J].中医杂志, 1984,6:49-51.
    [85]张晓辉,孙乃学,郭绒霞.土贝母皂甙对单疱病毒性角膜炎作用的实验研究[J].眼科新进展, 2002,22:373-6.
    [86]于立坚,马润娣,姜世勃.土贝母甙甲在体外对人免疫缺陷病毒核心蛋白p24的产生和细胞病变的作用[J].中国药理学报, 1994,15:103-5.
    [87] Yu L, Ma R, Yu T. Induction of morphological and functional differentiation of human promyelocytic leukemia cells (HL-60) by Tubeimoside 1[J]. Planta Med, 1996,62:119-21.
    [88] Yu L, Ma R, Wang Y, Nishino H. Potent anti-tumor activity and low toxicity of tubeimoside 1 isolated from Bolbostemma paniculatum[J]. Planta Med, 1994,60:204-8.
    [89]姜树山,杨建学,王丽华.土贝母对小鼠前胃鳞癌的促进作用[J].中国中药杂志, 1990,15:42-4.
    [90]马润娣,于立坚,王永清.土贝母皂甙甲素对鼠耳炎性水肿和小鼠皮肤促癌过程的强抑制作用[J].科学通报, 1991,18:1421-6.
    [91] Ma RD, YU LJ, Su WM. Induction of cell cycle arrest and apoptosis by tubeimoside I isolated from Bolbostemma paniculatum in HeLa cells[J]. Chin J Clin Pharmacol Ther, 2004,9:261-9.
    [92] Xu Y, Chiu LF, He QY, Chen F. Tubeimoside-1 Exerts Cytotoxicity in HeLa Cells through Mitochondrial Dysfunction and Endoplasmic Reticulum Stress Pathways[J]. Journal of Proteome Research, 2009,8:1585-93.
    [93]马润娣,于立坚,苏伟明.土贝母着甲诱导HeLa细胞周期阻滞和凋亡[J].中国临床药理学与治疗学, 2004,9:261-9.
    [94] Yu LJ, Yu TX, Ma RD. Induction of cell cycle arrest and apoptosis by tubeimoside I isolated from Bolbostemma paniculatum in HeLa cells[J]. Pharmacologist, 2002,14:A62.
    [95] Yang P, Yu TX, Ma RD. Cell cycle arrest and apoptosis induced by tubeimoside isolated from Bolbostemma paniculatum in HeLa cells[J]. Pharmacol Toxicol, 2001,89:S100-5.
    [96]金鹏飞,郑春辉,裴月湖.中药土贝母研究进展[J].沈阳药科大学学报, 2003,20:152-6.
    [97] Yu LJ, Yu TX, Ma RD. Inhibition of the tumor promoting action of 12-O-tetradecanoylphorbol-l3-acetate by tubeimoside III isolated from Boibostemma paniculatum[J]. Carcinogenesis, 1995,16:3045-8.
    [98]杨玉琼,程小丽,李笑弓.鸦油乳与土贝母对肾癌细胞系GRC-1细胞周期的影响[J].现代中医, 1996,3:170-2.
    [99]李笑弓,南勋义,党建功.中药土贝母对人肾细胞癌影响的实验研究[J].中国中西医结合外科杂志, 1998 4:100-1.
    [100]李笑弓,南勋义,党建功.中药土贝母对人肾细胞癌影响的实验研究[J].中华泌尿外科杂志, 1997,18:503-6.
    [101]胡章,马润娣,于立坚.土贝母苷甲对人HL-60髓性白血病细胞周期与凋亡的影响[J].中国肿瘤临床, 2003,30:163-71.
    [102]黄月辉,黄昌亮.土贝母提取物一结晶E对HL-60细胞的诱导分化作用[J].第四军医大学学报, 1992,13:304-7.
    [103]徐文,潘文波,姜杰.土贝母诱导K562细胞凋亡[J].吉林大学学报(医学版), 2002,28:608-9.
    [104]冯青杰,孙立群,孙冬.中药土贝母对Hep-2细胞株诱导分化的研究[J].耳鼻喉-头颈外科, 2000,7:351-4.
    [105]姜世明,肖正明,宋景贵.土贝母水提物对体外培养人肝癌细胞增殖及代谢的影响[J].世界华人消化杂志, 2000,8:310-6.
    [106]王长秀,马润娣,于立坚.土贝母苷甲对人高转移巨细胞癌PGCL3细胞粘附、侵袭和迁移能力的影响[J].中国药学会2004年会议论文集(光盘版), 2004.
    [107]李兴华,张爱军,王玉川等.复方土贝母皂甙膜剂的制备与应用[J].西北药学杂志, 1997,12:172-3.
    [108] Yu LJ, Ma RD, Wang YQ, Nishino H, Takayasu J, He WZ, et al. Potent anti-tumorigenic effect of tubeimoside 1 isolated from the bulb of Bolbostemma paniculatum (Maxim) Franquet[J]. Int J Cancer, 1992,50:635-8.
    [109]黄文玉,唐敏,黄彩云.土贝母对小鼠吞噬细胞吞噬功能的影响[J].齐鲁中医药情报, 1989,3:16-7.
    [110]李兴华,王朋,傅章才.土贝母皂甙A对实验动物免疫功能的影响[J].中国药房, 1998,9:13-4.
    [111]苏华,郭仁舆.土贝母皂甙作为阴道杀精子剂的实验研究[J].西安医科大学学报, 1986,3:225-6.
    [112] Masazumj M, Ryoji K, Makoto N, al e. Solubilizing effects and inclusion reaction of cyclic bisdesmosides from tubers of Bolbosterrama paniculatum[J]. YAKU-GAKU ZASSH (Jap), 1990,110:943-9.
    [113]杨萍,于廷曦,马润娣.土贝母皂苷诱导人宫颈癌HeLa细胞周期阻滞和细胞凋亡[J].癌症, 2002,21:346-50.
    [114] Han R. Chemoprevention and drug therapy of cancer[M]. Beijing: Unoin Press of BeijingMedical University and Chinese Union Medical University; 1991, p. 45-6.
    [115] Hsieh TC, Wijeratne EK, Liang JY, Gunatilaka AL, Wu JM. Differential control of growth, cell cycle progression, and expression of NF-kappaB in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens[J]. Biochem Biophys Res Commun, 2005,337:224-31.
    [116] Van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure[J]. Cytometry, 1998,31:1-9.
    [117] Kummalue T. Molecular mechanism of herbs in human lung cancer cells[J]. J Med Assoc Thai, 2005,88:1725-34.
    [118]刘伟,毕富勇.中药诱导肝癌细胞凋亡的实验研究进展[J].安徽医学, 2009,30:4.
    [119]郑炜望,华海清.中药诱导肝癌细胞凋亡的研究进展[J].世界华人消化杂志, 2009,17:4.
    [120] Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis[J]. Nat Rev Cancer, 2002,2:277-88.
    [121] Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis[J]. J Biol Chem, 1997,272:32401-10.
    [122] Ashkenazi A, Dixit VM. Death receptors: signaling and modulation[J]. Science, 1998,281:1305-8.
    [123] Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis[J]. Curr Opin Immunol, 1998,10:545-51.
    [124] Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways[J]. Oncogene, 2001, 20:2122-33.
    [125] Rubio-Moscardo F, Blesa D, Mestre C, Siebert R, Balasas T, Benito A, et al. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes[J]. Blood, 2005,106:3214-22.
    [126] Wang F, Ma RD, Yu LJ. Role of mitochondria and mitochondrial cytochrome c in tubeimoside I-mediated apoptosis of human cervical carcinoma HeLa cell line[J]. Cancer Chemotherapy and Pharmacology, 2006,57:389-99.
    [127] Ma R, Song G, You W, Yu L, Su W, Liao M, et al. Anti-microtubule activity of tubeimoside I and its colchicine binding site of tubulin[J]. Cancer Chemother Pharmacol, 2008,62:559-68.
    [128] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972,26:239-57.
    [129] Kerr JF. History of the events leading to the formulation of the apoptosis concept[J]. Toxicology, 2002,181-182:471-4.
    [130] Paweletz N. Walther Flemming: pioneer of mitosis research[J]. Nat Rev Mol Cell Biol, 2001,2:72-5.
    [131] Elmore S. Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007,35:495-516.
    [132] Sun L, Wang X. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells[J]. World J Gastroentero, 2003,9:1930-4.
    [133] Steller H. Mechanisms and genes of cellular suicide[J]. Science, 1995,267:1445-9.
    [134] Hannun YA. Apoptosis and the dilemma of cancer chemotherapy[J]. Blood, 1997,89:1845-53.
    [135] Wang X. The expanding role of mitochondria in apoptosis[J]. Genes Dev, 2001,15:2922-33.
    [136] Sunayama K, Konno H, Nakamura T, Kashiwabara H, Shoji T, Tsuneyoshi T, et al. The role of cyclooxygenase-2 (COX-2) in two different morphological stages of intestinal polyps in APC(Delta474) knockout mice[J]. Carcinogenesis, 2002,23:1351-9.
    [137] Johnson AJ, song X, Hsu A, Chen C. Apoptosis signaling pathways mediated by cyclooxygenase-2 inhibitors in prostate cancer cells[J]. Adv Enzyme Regul, 2001,41:221-35.
    [138] Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD[J]. Nature, 1998,391:43-50.
    [139] Juo P, Kuo CJ, Reynolds SE, Konz RF, Raingeaud J, Davis RJ, et al. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases[J]. Mol Cell Biol, 1997,17:24-35.
    [140] Talanian RV, Dang LC, Ferenz CR, Hackett MC, Mankovich JA, Welch JP, et al. Stability and oligomeric equilibria of refolded interleukin-1beta converting enzyme[J]. J Biol Chem, 1996,271:21853-8.
    [141] Muzio M, Salvesen GS, Dixit VM. FLICE induced apoptosis in a cell-free system. Cleavage of caspase zymogens[J]. J Biol Chem, 1997,272:2952-6.
    [142] Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c[J]. Cell, 1996,86:147-57.
    [143] Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. Mitochondrial disease in mouse results in increased oxidative stress[J]. Proc Natl Acad Sci U S A, 1999,96:4820-5.
    [144] Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor[J]. Nature, 1999,397:441-6.
    [145] Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors[J]. Cell, 1998,94:481-90.
    [146] Blanc C, Deveraux QL, Krajewski S, Janicke RU, Porter AG, Reed JC, et al. Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells[J]. Cancer Res, 2000,60:4386-90.
    [147] Yokota S, Geppert TD, Lipsky PE. Enhancement of antigen- and mitogen-induced human T lymphocyte proliferation by tumor necrosis factor-alpha[J]. J Immunol, 1988,140:531-6.
    [148] Ou D, Wang X, Metzger DL, Robbins M, Huang J, Jobin C, et al. Regulation of TNF-related apoptosis-inducing ligand-mediated death-signal pathway in human beta cells by Fas-associated death domain and nuclear factor kappaB[J]. Hum Immunol, 2005,66:799-809.
    [149] Lee SK, Kim HN, Kang YR, Lee CW, Kim HM, Han DC, et al. Obovatol inhibits colorectal cancer growth by inhibiting tumor cell proliferation and inducing apoptosis[J]. Bioorgan Med Chem, 2008,16:8397-402.
    [150] Kroemer G, Reed JC. Mitochondrial control of cell death[J]. Nat Med, 2000,6:513-9.
    [151] Waxman DJ, Schwartz PS. Harnessing apoptosis for improved anticancer gene therapy[J]. Cancer Res, 2003,63:8563-72.
    [152] Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment[J]? Mol Cancer Ther, 2003,2:573-80.
    [153] Hengartner MO. The biochemistry of apoptosis[J]. Nature, 2000,407:770-6.
    [154] Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3[J]. Cell, 1997,90:405-13.
    [155] Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis[J]. Cell, 1998,94:491-501.
    [156] Yao J, Jiang Z, Duan W, Huang J, Zhang L, Hu L, et al. Involvement of mitochondrial pathway in triptolide-induced cytotoxicity in human normal liver L-02 cells[J]. Biol Pharm Bull, 2008,31:592-7.
    [157] Hsu HF, Houng JY, Kuo CF, Tsao N, Wu YC. Glossogin, a novel phenylpropanoid from Glossogyne tenuifolia, induced apoptosis in A549 lung cancer cells[J]. Food and Chemical Toxicology, 2008,46:3785-91.
    [158] Certo M, Moore VD, Nishino M, Wei G, Korsmeyer S, Armstrong SA, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members[J]. Cancer Cell, 2006,9:351-65.
    [159] Nakazawa Y, Kamijo T, Koike K, Noda T. ARF tumor suppressor induces mitochondria-dependent apoptosis by modulation of mitochondrial Bcl-2 family proteins[J]. J Biol Chem, 2003,278:27888-95.
    [160] Lanave C, Santamaria M, Saccone C. Comparative genomics: the evolutionary history of the Bcl-2 family[J]. Gene, 2004,333:71-9.
    [161] Kleiner DE, Stetler-Stevenson WG. Matrix metalloproteinases and metastasis[J]. Cancer Chemother Pharmacol, 1999,43 Suppl:S42-51.
    [162] Liotta LA, Stetler-Stevenson WG. Metalloproteinases and cancer invasion[J]. Semin Cancer Biol, 1990,1:99-106.
    [163] Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJ. Matrix metalloproteinases[J]. Br J Surg, 1997,84:160-6.
    [164] Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, et al. Matrix metalloproteinases: a review[J]. Crit Rev Oral Biol Med, 1993,4:197-250.
    [165] Tabuchi K, Fukuyama K. Genetic alterations of gliomas[J]. No To Shinkei, 1997,49:205-13.
    [166] Barsky SH, Siegal GP, Jannotta F, Liotta LA. Loss of basement membrane components by invasive tumors but not by their benign counterparts[J]. Lab Invest, 1983,49:140-7.
    [167] Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen[J]. Nature, 1980,284:67-8.
    [168] Yurchenco PD, Schittny JC. Molecular architecture of basement membranes[J]. FASEB J, 1990,4:1577-90.
    [169] Curran S, Murray GI. Matrix metalloproteinases in tumour invasion and metastasis[J]. J Pathol, 1999,189:300-8.
    [170] Deryugina EI, Luo GX, Reisfeld RA, Bourdon MA, Strongin A. Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2[J]. Anticancer Res, 1997,17:3201-10.
    [171] Sang QX. Complex role of matrix metalloproteinases in angiogenesis[J]. Cell Res, 1998,8:171-7.
    [172] Stetler-Stevenson WG. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis[J]. Surg Oncol Clin N Am, 2001,10:383-92, x.
    [173] Stetler-Stevenson WG. Type IV collagenases in tumor invasion and metastasis[J]. Cancer Metastasis Rev, 1990,9:289-303.
    [174] Rodgers WH, Osteen KG, Matrisian LM, Navre M, Giudice LC, Gorstein F. Expression and localization of matrilysin, a matrix metalloproteinase, in human endometrium during thereproductive cycle[J]. Am J Obstet Gynecol, 1993,168:253-60.
    [175] David L, Nesland JM, Holm R, Sobrinho-Simoes M. Expression of laminin, collagen IV, fibronectin, and type IV collagenase in gastric carcinoma. An immunohistochemical study of 87 patients[J]. Cancer, 1994,73:518-27.
    [176] Jeffrey JJ. Collagen and collagenase: pregnancy and parturition[J]. Semin Perinatol, 1991,15:118-26.
    [177] Wysocki AB, Staiano-Coico L, Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9[J]. J Invest Dermatol, 1993,101:64-8.
    [178] Harris ED, Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy[J]. N Engl J Med, 1990,322:1277-89.
    [179] Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease[J]. J Periodontal Res, 1991,26:230-42.
    [180] Roomi MW, Monterrey JC, Kalinovsky T, Rath M, Niedzwiecki A. Patterns of MMP-2 and MMP-9 expression in human cancer cell line[J]s. Oncol Rep, 2009,21:1323-33.
    [181] Ashida K, Nakatsukasa H, Higashi T, Ohguchi S, Hino N, Nouso K, et al. Cellular distribution of 92-kd type IV collagenase/gelatinase B in human hepatocellular carcinoma[J]. Am J Pathol, 1996,149:1803-11.
    [182] Berube M, Deschambeault A, Boucher M, Germain L, Petitclerc E, Guerin SL. MMP-2 expression in uveal melanoma: differential activation status dictated by the cellular environment[J]. Mol Vis, 2005,11:1101-11.
    [183] Sato T, Sakai T, Noguchi Y, Takita M, Hirakawa S, Ito A. Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases[J]. Gynecol Oncol, 2004,92:47-56.
    [184] Di Nezza LA, Misajon A, Zhang J, Jobling T, Quinn MA, Ostor AG, et al. Presence of active gelatinases in endometrial carcinoma and correlation of matrix metalloproteinase expression with increasing tumor grade and invasion[J]. Cancer, 2002,94:1466-75.
    [185] Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis[J]. J Natl Cancer Inst, 1997,89:1260-70.
    [186] Cottam DW, Rennie IG, Woods K, Parsons MA, Bunning RA, Rees RC. Gelatinolytic metalloproteinase secretion patterns in ocular melanoma[J]. Invest Ophthalmol Vis Sci, 1992,33:1923-7.
    [187] Fishman DA, Bafetti LM, Banionis S, Kearns AS, Chilukuri K, Stack MS. Production of extracellular matrix-degrading proteinases by primary cultures of human epithelial ovariancarcinoma cells[J]. Cancer, 1997,80:1457-63.
    [188] Garzetti GG, Ciavattini A, Lucarini G, Goteri G, de e Nictolis M, Garbisa S, et al. Tissue and serum metalloproteinase (MMP-2) expression in advanced ovarian serous cystoadenocarcinomas: clinical and prognostic implications[J]. Anticancer Res, 1995,15:2799-804.
    [189] Gohji K, Fujimoto N, Hara I, Fujii A, Gotoh A, Okada H, et al. Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension[J]. Int J Cancer, 1998,79:96-101.
    [190] Lian-zhou C, Jin-tang X, Wen L, Jie Z, Qian W. Expression of PTEN and MMP-2 in hepatocellular carcinoma and its relationship with growth,invasion and metastasis[J]. Chinese Journal of Clinicians(Electronic Version), 2008,2:1248-53.
    [191]李振宇,王伟林,方哲平.细胞外基质金属蛋白酶诱导因子CD 147和基质金属蛋白酶9在肝癌中的表达及其临床意义[J].肿瘤, 2010,30:215-9.
    [192] Liu H, Zang C, Fenner MH, Possinger K, Elstner E. PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro[J]. Breast Cancer Res Treat, 2003,79:63-74.
    [193]林珏龙,陈耀文,蔡维佳,等.细胞内F-actin的聚合与解聚对肝癌细胞Be1-7402的影响[J].激光生物学报, 2005,14:52-5.
    [194] Levee MG, Dabrowska MI, Lelli JL, Jr., Hinshaw DB. Actin polymerization and depolymerization during apoptosis in HL-60 cells[J]. Am J Physiol, 1996,271:C1981-92.
    [195]姜红梅,陈丽梅.组织工程的进展[J].国外医学生物医学工程分册, 1996,19:1-9.
    [196] Deng L, Fairbank NJ, Fabry B, Smith PG, Maksym GN. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells[J]. Am J Physiol Cell Physiol, 2004,287:C440-8.
    [197] Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, et al. Universal physical responses to stretch in the living cell[J]. Nature, 2007,447:592-5.
    [198] Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ. Scaling the microrheology of living cells[J]. Phys Rev Lett, 2001,87:148102-5.
    [199] Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, Laporte JD, et al. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz[J]. J Appl Physiol, 2000,89:1619-32.
    [200] Eberhard L. HVM-3000 Magnetizer manual[M]. EOL Eberhard, CH-4104 Oberwil, Switzerland. . 2002.
    [201] Fabry B, Maksym GN, Shore SA, Moore PE, Panettieri RA, Jr., Butler JP, et al. Selectedcontribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells[J]. J Appl Physiol, 2001,91:986-94.
    [202]何海波,唐休发.肿瘤细胞生物力学的研究进展[J].国外医学口腔医学分册. 2004,31:273-5.
    [203] Seol JG, Park WH, Kim ES, Jung CW, Hyun JM, Lee YY, et al. Potential role of caspase-3 and -9 in arsenic trioxide-mediated apoptosis in PCI-1 head and neck cancer cells[J]. Int J Oncol, 2001,18:249-55.
    [204] Kamada S, Washida M, Hasegawa J, Kusano H, Funahashi Y, Tsujimoto Y. Involvement of caspase-4(-like) protease in Fas-mediated apoptotic pathway[J]. Oncogene, 1997,15:285-90.
    [205] Mashima T, Naito M, Tsuruo T. Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis[J]. Oncogene, 1999,18:2423-30.
    [206] Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis[J]. Science, 1997,278:294-8.
    [207] White SR, Williams P, Wojcik KR, Sun S, Hiemstra PS, Rabe KF, et al. Initiation of apoptosis by actin cytoskeletal derangement in human airway epithelial cells[J]. Am J Respir Cell Mol Biol, 2001,24:282-94.
    [208] Shen ZY, Xu LY, Li EM, Li JT, Chen MH, Shen J, et al. Ezrin, actin and cytoskeleton in apoptosis of esophageal epithelial cells induced by arsenic trioxide[J]. Int J Mol Med, 2003,12:341-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700