用户名: 密码: 验证码:
短距离无线通讯中传播特性理论研究及相关关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短距离无线通信以无线个域(Wireless Personal Area,WPA)应用为核心特征。随着RFID技术、ZigBee技术、蓝牙V3.0技术以及60 GHz毫米波通信等低、高速无线应用技术的发展,短距离无线通信正深入到通讯应用的各个领域,表现出广阔的应用前景。
     短距离无线通信具有高速率大容量、低速率高可靠性以及低功耗、低成本等特点,这使得电源管理技术、链路预算技术、以及多径时延分析等相关技术成为优化低、高速短距离无线通信性能,降低短距离无线通信成本,提高短距离无线通信质量的关键技术。决定这些关键技术的因素很多,其中无线传输信道作为电波传播的路径对无线通信技术性能的影响至关重要。对于工作距离在毫米级到千米级的短距离无线应用而言,虽然无线电波仍是经由无线传输信道,通过反射、衍射和散射等传播机制到达接收端,但是由于传输距离和应用环境的限制,短距离无线应用更容易受到多种实际环境因素的影响。此外,由于短距离无线收发端的机动特性,无线信道不仅具有随机性,还呈现出时变性,体现出短距离无线传输信道的复杂性。如何正确描述短距离无线传输信道,建立高效的短距离无线传输信道模型,准确提取短距离无线传输信道参数,并针对具体的短距离无线技术应用,基于短距离传输信道模型解决电源管理,链路预算等相关关键技术中的问题是本文工作的意义所在。
     围绕上述研究目的,本文系统而深入的研究了以下内容:
     第一、通过对无线传输信道的描述,以及短距离窄带信道和宽带信道的理论研究,系统地分析了短距离无线传输信道测试建模和参数提取理论。深入研究和比较了短距离无线信道时域和频域测试建模技术。重点分析了适合短距离无线传输信道的频域测试建模技术,并详细分析和总结了频域测试建模系统的原理、设置以及后处理过程等关键技术。
     第二、针对短距离无线应用工作的射频微波2.4 GHz和5.8 GHz ISM频段进行了短距离无线传输信道频域测试建模。通过建模后处理过程及统计分析过程提取了短距离无线传输信道模型参数,建立了适合描述射频微波频段短距离无线传输信道的信道模型,完成了分析研究射频微波频段短距离无线电波传播相关技术的必要步骤。
     第三、通过对射频微波频段短距离无线传输信道模型的分析,提出了一种基于短距离视距传输信道的电源管理算法。将无线传输信道模型参数和射频通信模块本身特性相结合进行双向动态功率调节,实现实时电源管理。完成电源管理算法的软硬件实现,并通过理论分析和测试,验证了电源管理算法的性能。
     第四、通过对射频微波频段短距离无线传输信道模型的分析,针对无源微波RFID技术的特点,提出一种基于内部连续反射模型的RFID标签距离的计算算法。对附着在被识别物体表面的标签应用,特别是当识别物体材料厚度与波长可比拟时,推导了射频识别物体材料反射系数与标签距离之间的关系,并通过物理有限元模型对算法进行了仿真及分析比较。
     第五、通过对IEEE 802.15 TG3c 60 GHz无线个域应用的研究,提出了适用于60 GHz桌面短距离无线传输信道模型。推导了随收发端距离变化的反射系数表达式及基于距离的链路损耗表达式,并将得到的理论预测数据与IEEE 802.15 TG3c发布的相同桌面环境测试数据进行了比较,验证了链路损耗理论预测模型的准确性。
     本文围绕上述工作,对短距离无线传输信道进行了理论分析和测试建模。针对具体的短距离无线应用相关关键技术,提出了基于短距离无线传输信道的算法和模型,并通过理论分析、软硬件实现和测试仿真等方法进行了分析和验证。
Along with the rapid development of kinds of wireless communications technologies, such as RFID, Zigbee, Bluetooth3.0 and 60 GHz millimeter wireless communication etc., short-range wireless applications taking WPA(Wireless Personal Area) as the characteristic got the extensive study and has become more and more wide in various fields.
     Power management, link budget and the analysis of delay profile for low and high throughput wireless applications are the key technologies for short-range wireless communications, since the characteristics of high speed and high throughput or low speed but high reliability for short-range wireless communication systems. There are many factors important to these key technologies, but propagation channel, which is the path of radio wave propagation, is more crucial. Although radio waves are propagated with reflection, diffraction and scattering, the wireless radio channel poses a severe challenge as a medium for reliable short-range communication. It is not only susceptible to noise, interference, and other channel impediments, but these impediments change over time in random way due to transceivers movement. How to overcome these challenges and resolve the problems existing in those key technologies are the main purpose of this research.
     Based on above analyses, the main works and contributions of the thesis include:
     1. The wireless propagation channel modeling and channel parameters extraction for short-range radio wave propagation are analyzed based on narrowband and wideband propagation channel model. The comparisons of channel modeling in time domain and in frequency domain are conduct. Channel sounding in frequency domain is analyzed especially, since its feature of short-range measurement. The principle, process, and postprocess are analyzed and summarized.
     2. Radio wave propagation researches are performed at 2.4 GHz and 5.8 GHz both are ISM frequency bands and are usually used in short-range wireless applications under radio and microwave frequency bands. The goal is to determine short-range propagation channel properties and models that suitable to characterize propagation channel for RF and microwave frequency bands.
     3. A two-way power management algorithm based on real-time path loss of propagation channel was implemented and validated in a point-to-point wireless system worked at 2.45 GHz. The performance of the power management are testified and evaluated by theoretical analysis and indoor measurements. It is shown that the proposed algorithm can prolong the battery lifetime effectively and adjust the transmitting power dynamically in different short-range multipath environments.
     4. A calculation approach for tag range of passive microwave RFID based on a multi-ray model are proposed. We show the relationship between the tag range and the reflection coefficients of the tagged object material. The distance-dependent reflection coefficients are proposed, especially when the thickness of the object surface is comparable to the wavelength. A precise simulations based on the 3-D physical finite element model is taken to verify the validity of the approach.
     5. A site-specific desktop propagation model is presented for IEEE 802.15 TG3c 60 GHz WPA. The reflection coefficients versus Tx-Rx separation distance using vertical and horizontal polarization are investigated. Path loss data are then computed using improved two-ray propagation model. Obtained values are compared with the measured data published in IEEE 802.15 TG3C and shown to have a more precise fitting than that predicted by conventional model.
     Theoretical analysis and modeling for short-range wireless propagation channel are taken in the investigation. Algorithms and models are proposed based on the short-range propagation channel. The validity of the algorithms and models are verified by the theoretical analyses, measurements, and simulations.
引文
[1] C. Park, and T. S. Rappaport. Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee. IEEE Trans. Wireless Commun., 2007, 14(4):70-78
    [2] G. Fettweis, E. Zimmermann, V. Jungnickel, et al. Challenges in Future Short Range Wireless Systems. IEEE Veh. Technol. Mag., 2006, 1(2):24-31
    [3] A. Sikora. Design challenges for short-range wireless networks. IEE Proc.-Commun., 2004, 151(5):473-479
    [4] A. Bensky. Short-range Wireless Communication-Fundamentals of RF System Design and Application (second edition). Oxford:Elsevier, 2004
    [5] T. A. Sexton, and K. Pahlavan. Channel modeling and adaptive equalization of indoor radio channels. IEEE J. Sel Areas Commun., 1989, 7(1):114-121
    [6] M. Patzold, A. Szczepanski, and N. Youssef. Methods for modeling of specified and measured multipath power-delay profiles. IEEE Trans. Veh. Technol., 2002, 51(5):978-988
    [7] J. O. Nielsen, V. Afanassiev, and J. B. Andersen. A dynamic model of the indoor channel. Wireless Personal Communications, 2001, 19(2):91-120
    [8] J. H. Tarng, C. Ruey-Shan, H. Jiunn-Ming, et al. A new and efficient hybrid model for estimating space diversity in indoor environment. IEEE Trans. Veh. Technol., 2000, 49(2):457-466
    [9] C. L. Holloway, D. A. Hill, R. A. Dalke, et al. Radio wave propagation characteristics in lossy circular waveguides such as tunnels, mine shafts, and boreholes. IEEE Trans. Antennas Propag., 2000, 48(9):1354-1366
    [10] F. Babich, and G. Lombardi. Statistical analysis and characterization of the indoor propagation channel. IEEE Trans. Commun., 2000, 48(3):455-464
    [11] S. R. Saunders, and A. A. Zavla. Antennas and Propagation for Wireless Communication Systems (second editon). Chichester:Wiley, 2007
    [12] A. Goldsmith. Wireless Communications. NY:Cambridge University Press, 2005
    [13] T. K. Sarkar, J. Zhong, K. Kyungjung, et al. A survey of various propagation models for mobile communication. IEEE Antennas Propag. Mag., 2003, 45(3):51-82
    [14] C. Jansen, R. Piesiewicz, D. Mittleman, et al. The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems. IEEE Trans. Antennas Propag., 2008, 56(5):1413-1419
    [15] I. Cuinas, D. Martinez, M. G. Sanchez, et al. Modelling and measuring reflection due to flat dielectric surfaces at 5.8 GHz. IEEE Trans. Antennas Propag., 2007, 55(4):1139-1147
    [16] C. L. Dillard, T. M. Gallagher, C. W. Bostian, et al. Rough surface scattering from exterior walls at 28 GHz. IEEE Trans. Antennas Propag., 2004, 52(12):3173-3179
    [17] A. H. Muqaibel, and A. Safaai-Jazi. A new formulation for characterization of materials based on measured insertion transfer function. IEEE Trans. Microw Theory Tech., 2003, 51(8):1946-1951
    [18] I. Cuinas, and M. G. Sanchez. Measuring, modeling, and characterizing of indoor radio channel at 5.8 GHz. IEEE Trans. Veh. Technol., 2001, 50(2):526-535
    [19] I. Cuinas, and M. G. Sanchez. Building material characterization from complex transmissivity measurements at 5.8 GHz. IEEE Trans. Antennas Propag., 2000, 48(8):1269-1271
    [20] K. Sato, T. Manabe, T. Ihara, et al. Measurements of reflection and transmission characteristics of interior structures of office building in the 60-GHz band. IEEE Trans. Antennas Propag., 1997, 45(12):1783-1792
    [21] W. Burnside, and K. Burgener. High frequency scattering by a thin lossless dielectric slab. IEEE Trans. Antennas Propag., 1983, 31(1):104-110
    [22] L. Zhiwei, P. Xiaoming, P. Khiam Boon, et al. Kronecker modelling for correlated shadowing in UWB MIMO channels. 2007 IEEE Wireless Communications and Networking Conference(WCNC 2007):1583-1587
    [23] J. Salo, L. Vuokko, H. M. El-Sallabi, et al. An additive model as a physical basis for shadow fading. IEEE Trans. Veh. Technol., 2007, 56(1):13-26
    [24] M. M. Zonoozi, and P. Dassanayake. Shadow fading in mobile radio channel. 1996 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'96), 2:291-295
    [25] T. S. Rappaport. Wireless Communication: Principles and Practice (second edition). NJ:Prentice Hall PTR, 2002
    [26] K. Haneda, J. Takada, and K. Takizawa. Ultra wideband path loss modelling in a line-of-sight office environment. 2007 The Second European Conference on Antennas and Propagation(EuCAP 2007):1-6
    [27] J. A. Dabin, A. M. Haimovich, and H. Grebel. A statistical ultra-wideband indoor channel model and the effects of antenna directivity on path loss and multipath propagation. IEEE J. Sel Areas Commun., 2006, 24(4):752-758
    [28] K. Daeyoung, M. A. Ingram, and W. W. Smith, Jr. Measurements of small-scale fading and path loss for long range RF tags. IEEE Trans. Antennas Propag., 2003, 51(8):1740-1749
    [29] S. Loyka, and A. Kouki. Using two ray multipath model for microwave link budget analysis. IEEE Antennas Propag. Mag., 2001, 43(5):31-36
    [30] J. C. R. Dal Bello, G. L. Siqueira, and H. L. Bertoni. Theoretical analysis and measurement results of vegetation effects on path loss for mobile cellular communication systems. IEEE Trans. Veh. Technol., 2000, 49(4):1285-1293
    [31] S. A. Torrico, H. L. Bertoni, and R. H. Lang. Modeling tree effects on path loss in a residential environment. IEEE Trans. Antennas Propag., 1998, 46(6):872-880
    [32] L. Piazzi, L. Piazzi, and H. L. Bertoni. Effect of terrain on path loss in urban environments for wireless applications. IEEE Trans. Antennas Propag., 1998, 46(8):1138-1147
    [33] H. H. Xia. A simplified analytical model for predicting path loss in urban and suburban environments. IEEE Trans. Veh. Technol., 1997, 46(4):1040-1046
    [34] S. Y. Seidel, and T. S. Rappaport. 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans. Antennas Propag., 1992, 40(2):207-217
    [35] N. D. Hawkins, N. D. Hawkins, R. Steele, et al. Path loss characteristics of 60 GHz transmissions. Electron. Lett., 1985, 21(22):1054-1055
    [36] H. Hashemi. The indoor radio propagation channel. Proceedings of the IEEE, 1993, 81(7):943-968
    [37] G. L. Turin, F. D. Clapp, T. L. Johnston, et al. A statistical model of urban multipath propagation. IEEE Trans. Veh. Technol., 1972, 21(1):1-9
    [38] A. Saleh, and R. Valenzuela. A statistical model for indoor multipath propagation. IEEE J. Sel Areas Commun., 1987, 5(2):128-137
    [39] B. H. Fleury, M. Tschudin, R. Heddergott, et al. Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE J. Sel Areas Commun., 1999, 17(3):434-450
    [40] D. Cox. Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment. IEEE Trans. Antennas Propag., 1972, 20(5):625-635
    [41] C. Oestges, D. Vanhoenacker-Janvier, and B. Clerckx. Channel characterization of indoor wireless personal area networks. IEEE Trans. Antennas Propag., 2006, 54(11):3143-3150
    [42] L. Xinrong, and K. Pahlavan. Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Trans. Wireless Commun., 2004, 3(1):224-234
    [43] A. Algans, K. I. Pedersen, and P. E. Mogensen. Experimental analysis of the joint statistical properties of azimuth spread, delay spread, and shadow fading. IEEE J. Sel Areas Commun., 2002, 20(3):523-531
    [44] C. Ward, M. Smith, A. Jeffries, et al. Characterising the radio propagation channel for smart antenna systems. Electronics & Communication Engineering Journal, 1996, 8(4):191-200
    [45] W. Pietsch. Measurement of radio channels using an elastic convolver and spread spectrum modulation. II. Results. IEEE Trans. Instrum. Meas., 1994, 43(5):695-699
    [46] S. Kozono. Received signal-level characteristics in a wide-band mobile radio channel. IEEE Trans. Veh. Technol., 1994, 43(3):480-486
    [47] A. M. D. Turkmani, D. A. Demery, and J. D. Parsons. Measurement and modelling of wideband mobile radio channels at 900 MHz. IEE Proc. Commun, Speech and Vision., 1991, 138(5):447-457
    [48] A. J. Rustako, Jr., N. Amitay, G. J. Owens, et al. Radio propagation at microwave frequencies for line-of-sight microcellular mobile and personal communications. IEEE Trans. Veh. Technol., 1991, 40(1):203-210
    [49] B. M. Donlan, D. R. McKinstry, and R. M. Buehrer. The UWB indoor channel: large and small scale modeling. IEEE Trans. Wireless Commun., 2006, 5(10):2863-2873
    [50] Z. Irahhauten, H. Nikookar, and G. J. M. Janssen. An overview of ultra wide band indoor channel measurements and modeling. IEEE Microw. Wireless Compon. Lett., 2004, 14(8):386-388
    [51] R. J. M. Cramer, R. A. Scholtz, and M. Z. Win. Evaluation of an ultra-wide-band propagation channel. IEEE Trans. Antennas Propag., 2002, 50(5):561-570
    [52] D. Cassioli, M. Z. Win, and A. F. Molisch. The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE J. Sel Areas Commun., 2002, 20(6):1247-1257
    [53] Y. Karasawa. Statistical multipath propagation modeling for broadband wireless systems. IEICE Transactions on Communications, 2007, E90B(3):468-484
    [54] S. Geng, J. Kivinen, X. Zhao, et al. Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Trans. Veh. Technol., 2009, 58(1):3-13
    [55] T. Zwick, T. J. Beukema, and H. Nam. Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Trans. Veh. Technol., 2005, 54(4):1266-1277
    [56] N. Moraitis, and P. Constantinou. Indoor channel measurements and characterization at 60 GHz for wireless local area network applications. IEEE Trans. Antennas Propag., 2004, 52(12):3180-3189
    [57] C. R. Anderson, and T. S. Rappaport. In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Trans. Wireless Commun., 2004, 3(3):922-928
    [58] X. Hao, V. Kukshya, and T. S. Rappaport. Spatial and temporal characteristics of 60-GHz indoor channels. IEEE J. Sel Areas Commun., 2002, 20(3):620-630
    [59] S. Guerin. Indoor wideband and narrowband propagation measurements around 60.5 GHz in an empty and furnished room. 1996 IEEE 46th Vehicular Technology Conference(Mobile Technology for the Human Race), vol.1:160-164
    [60] V. Guillet. Narrowband and wideband characteristics of 60 GHz radio propagation in residential environment. Electron. Lett., 2001, 37(21):1310-1311
    [61] D. G. Leeper. A long-term view of short-range wireless. Computer, 2001, 34(6):39-44
    [62] C. Liu, E. Skafidas, and R. J. Evans. Characterization of the 60 GHz Wireless Desktop Channel. IEEE Trans. Antennas Propag., 2007, 55(7):2129-2133
    [63] M. Khattar Awad, K. T. Wong, and L. Zheng-bin. An integrated overview of the open literature's empirical data on the indoor radiowave channel's delay properties. IEEE Trans. Antennas Propag., 2008, 56(5):1451-1468
    [64] P. Veltsistas, G. Kalaboukas, G. Konitopoulos, et al. Satellite-to-indoor building penetration loss for office environment at 11 GHz. IEEE Antennas Wireless Propag. Lett., 2007, 6:96-99
    [65] J. F. S. F?tima N. B. Magno, Zēnia A. Valente, Jess? C. Costa, Gerv?sio P. S. Cavalcante, . Study of the slow fading in indoor environment using parabolic equations. Microwave Opt Technol Lett., 2007, 49(7):1676-1679
    [66] M. R. M. L. A. F. A. Alves, S. G. Silva, A. G. d'Assunń?o. Using efficient ray-tracing techniques to predict propagation losses in indoor environments. Microwave Opt Technol Lett., 2007, 49(4):854-858
    [67]刘国立,王海松,史晓新,盖轶冰,丁国文.树冠中电波传播路径损耗的研究及模型的建立.电波科学学报, 2006, 21(6):910-915
    [68] J. Zhong, L. Bin-Hong, W. Hao-Xing, et al. Efficient ray-tracing methods for propagation prediction for indoor wireless communications. IEEE Antennas Propag. Mag., 2001, 43(2):41-49
    [69] F. Saez de Adana, O. Gutierrez Blanco, I. Gonzalez Diego, et al. Propagation model based on ray tracing for the design of personal communication systems in indoor environments. IEEE Trans. Veh. Technol., 2000, 49(6):2105-2112
    [70] K. A. Remley, H. R. Anderson, and A. Weisshar. Improving the accuracy of ray-tracing techniques for indoor propagation modeling. IEEE Trans. Veh. Technol., 2000, 49(6):2350-2358
    [71]李超峰,焦培南.三维射线跟踪预测模型在5.8GHz的实验验证.电波科学学报, 2006, 21(6):921-926
    [72]扈罗全,朱洪波.超宽带室内多径信道随机分析模型.电波科学学报, 2006, 21(4):482-489
    [73] A. M. Hammoudeh, and G. Allen. Millimetric wavelengths radiowave propagation for line-of-sight indoor microcellular mobile communications. IEEE Trans. Veh. Technol., 1995, 44(3):449-460
    [74] N. Amitay. Modeling and computer simulation of wave propagation in lineal line-of-sight microcells. IEEE Trans. Veh. Technol., 1992, 41(4):337-342
    [75]顾朝志,洪利,蒋泽.用修正的UTD模型预测室内电波传播.微波学报, 2006, 22(6):9-13
    [76] C. P. Lim, M. Lee, R. J. Burkholder, et al. 60 GHz indoor propagation studies for wireless communications based on a ray-tracing method. Eurasip Journal on Wireless Communications and Networking, 2007,
    [77] J.-M. M.-G.-P. Rub?n Ibernn-Fern?ndez, Leandro Juan-Ll?cer, . Line-of-sight MIMO indoor measurements at 2.4 GHz. Microwave Opt Technol Lett., 2006, 48(7):1403-1405
    [78] C. Liu, E. Skafidas, T. S. Pollock, et al. Angle of arrival extended S-V model for the 60 GHz wireless desktop channel. 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications(Angle of arrival extended S-V model for the 60 GHz wireless desktop channel):1-6
    [79] Khemphila, Anchana, Promwong, et al. Ultra wideband network in short-range wireless system for personal computer. 2006 International Symposium on Communications and Information Technologies(ISCIT '06):1221-1224
    [80] C. C. Chong, and S. K. Yong. A generic statistical-based UWB channel model for high-rise apartments. IEEE Trans. Antennas Propag., 2005, 53(8):2389-2399
    [81] J. Kunisch, E. Zollinger, J. Pamp, et al. MEDIAN 60 GHz wideband indoor radio channel measurements and model. 1999 IEEE VTS 50th Vehicular Technology Conference(VTC 1999 - Fall), 4:2393-2397
    [82] R. Senguttuvan, S. Sen, and A. Chatterjee. Multidimensional adaptive power management for low-power operation of wireless devices. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2008, 55(9):867-871
    [83] A. Fallahi, and E. Hossain. QoS provisioning in wireless video sensor networks: A dynamic power management framework. Wireless Commun, 2007, 14(6):40-49
    [84] Z. Han, and K. J. R. Liu. Joint link quality and power management over wireless networks with fairness constraint and space-time diversity. IEEE Trans. Veh. Technol., 2004, 53(4):1138-1148
    [85] Z. Han, and K. J. R. Liu. Power minimization under throughput management over wireless networks with antenna diversity. IEEE Trans. Wireless Commun., 2004, 3(6):2170-2181
    [86] A. Lazaro, D. Girbau, and D. Salinas. Radio link budgets for UHF RFID on multipath environments. IEEE Trans. Antennas Propag., 2009, 57(4):1241-1251
    [87] V. Chawla, and H. Dong Sam. An overview of passive RFID. IEEE Commum. Mag., 2007, 45(9):11-17
    [88] L. Sydanheimol, J. Nummetla, L. Ukkonen, et al. Characterization of Passive UHF RFID Tag Performance. IEEE Antennas Propag. Mag., 2008, 50(3):207-212
    [89] P. V. Nikitin, and K. V. S. Rao. Antennas and propagation in UHF RFID systems. 2008 IEEE International Conference on RFID(RFID 2008):277-288
    [90] M. L. W, M. Wrulich, and S. Caban. Measurements and channel modeling for short range indoor UHF applications. 2006 First European Conference on Antennas and Propagation(EuCAP 2006):1-5
    [91] P. V. Nikitin, and K. V. S. Rao. Performance limitations of passive UHF RFID systems. 2006 IEEE International Symposium Antennas and Propagation Society(ISAP'06):1011-1014
    [92] P. Xia, X. Qin, H. Niu, et al. Short range gigabit wireless communications systems: potentials, challenges and techniques. 2007 IEEE International Conference on Ultra-Wideband(ICUWB 2007):123-128
    [93] N. Guo, R. C. Qiu, S. S. Mo, et al. 60-GHz millimeter-wave radio: principle, technology, and new results. Eurasip Journal on Wireless Communications and Networking, 2007:8
    [94] R. C. Daniels, and R. W. Heath. 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Veh. Technol. Mag., 2007, 2(3):41-50
    [95] J. A. Howarth, A. P. Lauterbach, M. J. Boers, et al. 60GHz radios: enabling next-generation wireless applications. 2005 IEEE Region 10(TENCON 2005):1-6
    [96] D. Cabric, M. S. W. Chen, D. A. Sobel, et al. Future wireless systems: UWB, 60GHz, and cognitive radios. 2005 Proceedings of the IEEE Custom Integrated Circuits Conference(CICS 2005):793-796
    [97] P. F. M. Smulders. 60 GHz radio: prospects and future directions. 2003 IEEE Proceedings SymposiumBenelux Chapter on Communications and Vehicular Technology(CVT 2003):1-8
    [98] P. Smulders. Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE Commum. Mag., 2002, 40(1):140-147
    [99] R. Prasad, and L. Vandendorpe. An overview of millimeter wave indoor wireless communication systems. 1993 2nd International Conference on Universal Personal Communications(Personal Communications: Gateway to the 21st Century), 2:885-889
    [100] H. Sawada, Y. Shoji, and H. Ogawa. NICT propagation data. IEEE 802.15.06-0012-01-003c., 2006
    [101] H. Sawada, C.-S. Choi, and S. Kato. NLOS residential channel model based on TSV model. IEEE 502.15.06-0559-03-003c., 2006
    [102] G. Z. S. Collonge, G. El Zein, . Influence of furniture on 60-GHz radio propagation in a residential environment. Microwave Opt Technol Lett., 2003, 39(3):230-233
    [103] C.-S. C. H. Sawada, R. Funada, S. Kato,M. Umehira, and H. Ogawa. LOS office channel model based on TSV model. IEEE 502.15-06-0377-00-00-3c., 2006
    [104] J.Kunisch, E.Zollinger, J.Pamp, et al. MEDIN 60 GHz wideband indoor radio channle measurements and model. 1999 IEEE Vehicular Technology Conference(VTC'99):1393-2397
    [105] S.-K. Yong. TG3c channel modeling sub-committee final report. IEEE 802.15-07-0584-01-003c., 2007
    [106] P. F. M. Smulders, and A. G. Wagemans. Frequency-domain measurement of the millimeter wave indoor radio channel. IEEE Trans. Instrum. Meas., 1995, 44(6):1017-1022
    [107] S. J. Howard, and K. Pahlavan. Measurement and analysis of the indoor radio channel in the frequency domain. IEEE Trans. Instrum. Meas., 1990, 39(5):751-755
    [108] H. Hashemi. Impulse response modeling of indoor radio propagation channels. IEEE J. Sel Areas Commun., 1993, 11(7):967-978
    [109] K. Pahlavan, and S. J. Howard. Frequency domain measurements of indoor radio channels. Electron. Lett., 1989, 25(24):1645-1647
    [110] S. J. Howard, and K. Pahlavan. Doppler spread measurements of indoor radio channel. Electron. Lett., 1990, 26(2):107-109
    [111] H. Zaghloul, G. Morrison, and M. Fattouche. Frequency response and path loss measurements of indoor channel. Electron. Lett., 1991, 27(12):1021-1022
    [112] J. Andrusenko, R. L. Miller, J. A. Abrahamson, et al. VHF general urban path loss model for short range ground-to-ground communications. IEEE Trans. Antennas Propag., 2008, 56(10):3302-3310
    [113] A. U. H. Sheikh, and S. F. Hau. Channal impulse response: Measurements and interpretations. Wireless Personal Communications, 2002, 21(2):219-228
    [114] J. M. Molina-Garcia-Pardo, J. V. Rodriguez, and L. Juan-Llacer. MIMO channel sounder based on two network analyzers. IEEE Trans. Instrum. Meas., 2008, 57(9):2052-2058
    [115] S. Loredo, and R. P. Torres. Experimental analysis of temporal variations in indoor radio channels at 1.8 GHz. Microwave Opt Technol Lett., 2002, 35(2):132-137
    [116] V. Degli-Eposti, G. Lombardi, C. Passerini, et al. Wide-band measurement and ray-tracing simulation of the 1900-MHz indoor propagation channel: comparison criteria and results. IEEE Trans. Antennas Propag., 2001, 49(7):1101-1110
    [117] H. Suzuki, and A. S. Mohan. Measurement and prediction of high spatial resolution indoor radio channel characteristic map. IEEE Trans. Veh. Technol., 2000, 49(4):1321-1333
    [118] G. Morrison, and M. Fattouche. Super-resolution modeling of the indoor radio propagation channel. IEEE Trans. Veh. Technol., 1998, 47(2):649-657
    [119] S. J. Howard, and K. Pahlavan. Autoregressive modelling of an indoor radio channel. Electron. Lett., 1990, 26(12):816-817
    [120] B. T. Maharaj, J. W. Wallace, M. A. Jensen, et al. A low-cost open-hardware wideband multiple-input-multiple-output (MIMO) wireless channel sounder. IEEE Trans. Instrum. Meas., 2008, 57(10):2283-2289
    [121] M. Kwakkernaat, Y. de Jong, R. Bultitude, et al. High-resolution angle-of-arrival measurements on physically-nonstationary mobile radio channels. IEEE Trans. Antennas Propag., 2008, 56(8):2720-2729
    [122] J. Karedal, A. J. Johansson, F. Tufvesson, et al. A measurement-based fading model for wireless personal area networks. IEEE Trans. Wireless Commun., 2008, 7(11):4575-4585
    [123] P. L. Kafle, A. Intarapanich, A. B. Sesay, et al. Spatial correlation and capacity measurements for wideband MIMO channels in indoor office environment. IEEE Trans. Wireless Commun., 2008, 7(5):1560-1571
    [124] J. Jemai, and T. K. Kurner. Broadband WLAN channel sounder for IEEE 802.11b. IEEE Trans. Veh. Technol., 2008, 57(6):3381-3392
    [125] G. Xinying, Z. Jianhua, L. Guangyi, et al. Large-scale characteristics of 5.25 GHz based on wideband MIMO channel measurements. IEEE Antennas Wireless Propag. Lett., 2007, 6:263-266
    [126] R. J. C. Bultitude, T. C. W. Schenk, N. A. A. O. den Kamp, et al. A propagation-measurement-based evaluation of channel characteristics and models pertinent to the expansion of mobile radio systems to frequencies beyond 2 GHz. IEEE Trans. Veh. Technol., 2007, 56(2):382-388
    [127] J. H. Tarng, L. Wen-Shun, H. Yeh-Fong, et al. A novel and efficient hybrid model of radio multipath-fading channels in indoor environments. IEEE Trans. Antennas Propag., 2003, 51(3):585-594
    [128] C. Chia-Chin, T. Chor-Min, D. I. Laurenson, et al. A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems. IEEE J. Sel Areas Commun., 2003, 21(2):139-150
    [129] A. F. Molisch, M. Steinbauer, M. Toeltsch, et al. Capacity of MIMO systems based on measured wireless channels. IEEE J. Sel Areas Commun., 2002, 20(3):561-569
    [130] M. Steinbauer, A. F. Molisch, and E. Bonek. The double-directional radio channel. IEEE Antennas Propag. Mag., 2001, 43(4):51-63
    [131] J. Kivinen, Z. Xiongwen, and P. Vainikainen. Empirical characterization of wideband indoor radio channel at 5.3 GHz. IEEE Trans. Antennas Propag., 2001, 49(8):1192-1203
    [132] R. S. Thoma, D. Hampicke, A. Richter, et al. Identification of time-variant directional mobile radio channels. IEEE Trans. Instrum. Meas., 2000, 49(2):357-364
    [133] J. Kivinen, T. O. Korhonen, P. Aikio, et al. Wideband radio channel measurement system at 2 GHz. IEEE Trans. Instrum. Meas., 1999, 48(1):39-44
    [134] Y. L. C. De Jong, and M. H. A. J. Herben. High-resolution angle-of-arrival measurement of the mobile radio channel. IEEE Trans. Antennas Propag., 1999, 47(11):1677-1687
    [135] R. A. Valenzuela, O. Landron, and D. L. Jacobs. Estimating local mean signal strength of indoor multipath propagation. IEEE Trans. Veh. Technol., 1997, 46(1):203-212
    [136] J. H. Tarng, W. R. Chang, and B. J. Hsu. Three-dimensional modeling of 900-MHz and 2.44-GHz radio propagation in corridors. IEEE Trans. Veh. Technol., 1997, 46(2):519-527
    [137] J. P. Rossi, J. P. Barbot, and A. J. Levy. Theory and measurement of the angle of arrival and time delay of UHF radiowaves using a ring array. IEEE Trans. Antennas Propag., 1997, 45(5):876-884
    [138] H. Takai. In-room transmission BER performance of anti-multipath modulation PSK-VP. IEEE Trans. Veh. Technol., 1993, 42(2):177-185
    [139] J. M. Molina-Garcia-Pardo, J. V. Rodriguez, and L. Juan-Llacer. Polarized indoor MIMO channel measurements at 2.45 GHz. IEEE Trans. Antennas Propag., 2008, 56(12):3818-3828
    [140] L. E. Gurrieri, T. J. Willink, A. Petosa, et al. Characterization of the angle, selay and polarization of multipath signals for indoor environments. IEEE Trans. Antennas Propag., 2008, 56(8):2710-2719
    [141] Z. W. Tang, and A. S. Mohan. An investigation of MIMO performance in the indoor ricean environment. Wireless Personal Communications, 2006, 39(1):99-113
    [142] C. Nerguizian, C. L. Despins, S. Affes, et al. Radio-channel characterization of an underground mine at 2.4 GHz. IEEE Trans. Wireless Commun., 2005, 4(5):2441-2453
    [143] Y. Kai, L. Qinghua, and M. Ho. Measurement investigation of tap and cluster angular spreads at 5.2 GHz. IEEE Trans. Antennas Propag., 2005, 53(7):2156-2160
    [144] I. Cuinas, and M. G. Sanchez. Wide-band measurements of nondeterministic effects on the BRAN indoor radio channel. IEEE Trans. Veh. Technol., 2004, 53(4):1167-1175
    [145] R. D. Tingley, and K. Pahlavan. Space-time measurement of indoor radio propagation. IEEE Trans. Instrum. Meas., 2001, 50(1):22-31
    [146] A. M. Street, L. Lukama, and D. J. Edwards. Use of VNAs for wideband propagation measurements. IEE Proc. -Commun. , 2001, 148(6):411-415
    [147] S. Loredo, L. Valle, and R. P. Torres. Accuracy analysis of GO/UTD radio-channel modeling in indoor scenarios at 1.8 and 2.5 GHz. IEEE Antennas Propag. Mag., 2001, 43(5):37-51
    [148] G. J. M. Janssen, P. A. Stigter, and R. Prasad. Wideband indoor channel measurements and BER analysis of frequency selective multipath channels at 2.4, 4.75, and 11.5 GHz. IEEE Trans. Commun., 1996, 44(10):1272-1288
    [149] B. P. Donaldson, M. Fattouche, and R. W. Donaldson. Characterization of in-building UHF wireless radio communication channels using spectral energy measurements. IEEE Trans. Antennas Propag., 1996, 44(1):80-86
    [150] Z. Irahhauten, J. Dacuna, G. J. M. Janssen, et al. Link budget analysis and modeling of short-range UWB channels. IEEE Trans. Antennas Propag., 2008, 56(8):2730-2738
    [151] P. Pagani, and P. Pajusco. Characterization and modeling of temporal variations on an ultrawideband radio link. IEEE Trans. Antennas Propag., 2006, 54(11):3198-3206
    [152] A. Muqaibel, A. Safaai-Jazi, A. Attiya, et al. Path-loss and time dispersion parameters for indoor UWB propagation. IEEE Trans. Wireless Commun., 2006, 5(3):550-559
    [153] J. Liu, M. Dohler, B. Allen, et al. Power loss modelling of short-range ultra wideband pulse transmissions. IEE Proc.-Commun. , 2006, 153(1):143-152
    [154] W. Ciccognani, A. Durantini, and D. Cassioli. Time domain propagation measurements of the UWB indoor channel using PN-sequence in the FCC-compliant band 3.6-6 GHz. IEEE Trans. Antennas Propag., 2005, 53(4):1542-1549
    [155] A. F. Abouraddy, and S. M. Elnoubi. Statistical modeling of the indoor radio channel at 10 GHz through propagation measurements .I. Narrow-band measurements and modeling. IEEE Trans. Veh. Technol., 2000, 49(5):1491-1507
    [156] N. A. Alsindi, B. Alavi, and K. Pahlavan. Measurement and modeling of ultrawideband TOA-based ranging in indoor multipath environments. IEEE Trans. Veh. Technol., 2009, 58(3):1046-1058
    [157] C. Gentile, and A. Kik. A Frequency-dependence model for the ultrawideband channel based on propagation events. IEEE Trans. Antennas Propag., 2008, 56(8):2775-2780
    [158] J. Karedal, S. Wyne, P. Almers, et al. A measurement-based statistical model for industrial ultra-wideband channels. IEEE Trans. Wireless Commun., 2007, 6(8):3028-3037
    [159] K. Haneda, T. Jun-ichi, and T. Kobayashi. Cluster properties investigated from a series of ultrawideband double directional propagation measurements in home environments. IEEE Trans. Antennas Propag., 2006, 54(12):3778-3788
    [160] K. Sarabandi, N. Behdad, A. Nashashibi, et al. A measurement system for ultrawide-band communication channel characterization. IEEE Trans. Antennas Propag., 2005, 53(7):2146-2155
    [161] A. F. Molisch. Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans. Veh. Technol., 2005, 54(5):1528-1545
    [162] S. S. Ghassemzadeh, L. J. Greenstein, T. Sveinsson, et al. UWB delay profile models for residential and commercial indoor environments. IEEE Trans. Veh. Technol., 2005, 54(4):1235-1244
    [163] A. Bayram, A. M. Attiya, and A. Safaai-Jazi. Frequency-domain measurement of indoor UWB channels. Microwave Opt Technol Lett., 2005, 44(2):118-123
    [164] S. S. Ghassemzadeh, R. Jana, C. W. Rice, et al. Measurement and modeling of an ultra-wide bandwidth indoor channel. IEEE Trans. Commun., 2004, 52(10):1786-1796
    [165] N. Celik, M. F. Iskander, R. Emrick, et al. Implementation and experimental verification of a smart antenna system operating at 60 GHz band. IEEE Trans. Antennas Propag., 2008, 56(9):2790-2800
    [166] S. Ranvier, J. Kivinen, and P. Vainikainen. Millimeter-wave MIMO radio channel sounder. IEEE Trans. Instrum. Meas., 2007, 56(3):1018-1024
    [167] J. Kivinen. 60-GHz wideband radio channel sounder. IEEE Trans. Instrum. Meas., 2007, 56(5):1831-1838
    [168] N. Moraitis, and P. Constantinou. Measurements and characterization of wideband indoor radio channel at 60 GHz. IEEE Trans. Wireless Commun., 2006, 5(4):880-889
    [169] W. Feinian, and K. Sarabandi. An enhanced millimeter-wave foliage propagation model. IEEE Trans. Antennas Propag., 2005, 53(7):2138-2145
    [170] N. Deparis, A. Bendjabballah, A. Boe, et al. Transposition of a baseband UWB signal at 60 GHz for high data rate indoor WLAN. IEEE Microw. Wireless Compon. Lett., 2005, 15(10):609-611
    [171] A. G. Siamarou. A swept-frequency wideband channel sounding system at the 63.4-64.4 GHz band with 1 ns time-resolution. Int. J. Infrared Millim Waves., 2008, 29(12):1186-1195
    [172] H. Yang, M. H. A. J. Herben, and P. F. M. Smulders. Impact of antenna pattern and reflective environment on 60 GHz indoor radio channel characteristics. IEEE Antennas Wireless Propag. Lett., 2005, 4:300-303
    [173] A. G. Siamarou. Broadband wireless local-area networks at millimeter waves around 60 GHz. IEEE Antennas Propag. Mag., 2003, 45(1):177-181
    [174] C. L. M. Fryziel, L. Clavier, N. Rolland, P. A. Rolland, . Path-loss model of the 60-GHz indoor radio channel. Microwave Opt Technol Lett., 2002, 34(3):158-162
    [175] R. J. C. Bultitude, R. F. Hahn, and R. J. Davies. Propagation considerations for the design of an indoor broad-band communications system at EHF. IEEE Trans. Veh. Technol., 1998, 47(1):235-245
    [176] T. Manabe, Y. Miura, and T. Ihara. Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz. IEEE J. Sel Areas Commun., 1996, 14(3):441-448
    [177] P. F. M. Smulders, and A. G. Wagemans. Wideband indoor radio propagation measurements at 58 GHz. Electron. Lett., 1992, 28(13):1270-1272
    [178] T. S. Rappaport. Characterization of UHF multipath radio channels in factory buildings. IEEE Trans. Antennas Propag., 1989, 37(8):1058-1069
    [179] S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, et al. UWB indoor delay profile model for residential and commercial environments. 2003 IEEE 58th Vehicular Technology Conference(VTC 2003-Fall), 5:3120-3125
    [180] S. S. Ghassemzadeh, L. J. Greenstein, A. Kavcic, et al. UWB indoor path loss model for residential and commercial buildings. 2003 IEEE 58th Vehicular Technology Conference(VTC 2003-Fall), 5:3115-3119
    [181]陆大絟.随机过程及其应用.北京:清华大学出版社, 2000
    [182] E. R. Araque, and R. B. Miller. Measurement and analysis of the radio channel in the frequency domain in the standard IEEE802.11a's band. 2007 Electronics, Robotics and Automotive Mechanics Conference(CERMA 2007):33-38
    [183] F. J. Harris. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 1978, 66(1):51-83
    [184] B. Denis, and J. Keignart. Post-processing framework for enhanced UWB channel modeling from band-limited measurements. 2003 IEEE Conference on Ultra Wideband Systems and Technologies(UWST'03):260-264
    [185] P. G. Flikkema, and S. G. Johnson. A comparison of time- and frequency-domain wireless channel sounding techniques. 1996 IEEE Proceedings of Bringing Together Education, Science and Technology (Southeastcon'96):488-491
    [186] D. Tholl, M. Fattouche, R. J. C. Builtitude, et al. A comparison of two radio propagation channel impulse response determination techniques. IEEE Trans. Antennas Propag., 1993, 41(4):515-517
    [187] H. Z. G. Morrison, M. Fattouche, M. Smith and A. McGirr. Frequency measurements of the indoor channel: System evaluation and post processing using IDFT and ARMA modeling. 1991 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing(CCCSP'91), 71:71-74
    [188] B. Ata. Dynamic power control in a wireless static channel subject to a quality-of-service constraint. Operations Research, 2005, 53(5):842-851
    [189] M. Zorzi. Power control and diversity in mobile radio cellular systems in the presence of ricean fading and log-normal shadowing. IEEE Trans. Veh. Technol., 1996, 45:373-382
    [190] L. Chisci, R. Fantacci, L. Mucchi, et al. A queue-based approach to power control in wirless communication networks. IEEE Trans. Wireless Commun., 2008, 7:128-134
    [191] C. Kainan, S. Jagannathan, and D. Pommerenke. Adaptive power control protocol with hardware implementation for wireless sensor and RFID reader networks. Systems Journal, IEEE, 2007, 1(2):145-159
    [192] www.nordicsemi.no/wireless-support. Product specification. Nordic Semiconductor ASA. , 2006
    [193] P. V. Nikitin, K. V. S. Rao, and R. D. Martinez. Differential RCS of RFID tag. Electron. Lett., 2007, 43(8):431-432
    [194] F. Fuschini, C. Piersanti, F. Paolazzi, et al. On the efficiency of load modulation in RFID systems operating in teal rnvironment. IEEE Antennas Wireless Propag. Lett., 2008, 7:243-246
    [195] K. Min-Sung, and Y. Jae-Hoon. RFID tag range measurement system using isolation antenna. 2007 Microwave Conference(MC 2007):230-233
    [196] K. Sato, H. Sawada, Y. Shoji, et al. Channel model for millimeter wave WPAN. 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC 2007):1-5
    [197] Y. S. H. Sawada, C.-S. Choi, K. Sato, R. Funada, H. Harad, S. Kato,M. Umehira, and H. Ogawa. Merging two-path and S-V models for LOS desktop channel environment. IEEE 802.15-06-0297-02-003c, 2006
    [198] P. Pagani, I. Siaud, N. Malhouroux, et al. Adaptation of the France telecom 60 GHz channle model to the TG3c framework. IEEE 802.15-06-0218-00-003c, 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700