用户名: 密码: 验证码:
大跨度自锚式斜拉悬索桥分析方法与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着交通科技的发展各种各样的桥型也随即产生,大跨径悬索桥与大跨径斜拉桥更是发展迅速。但是随着桥梁所处的空间、施工条件以及经济造价的限制,这些大跨径桥型越来越受到限制;桥型多样化,空间结构桥梁增多是桥梁发展的趋势所在。新工艺、新材料和高性能计算机的出现,使得与桥梁设计相关理论在近三十年得以迅速发展、完善。
     概念设计方面:经过解析与数值分析理论的发展,明确了典型结构体系的力学特性,涌现了各种样式悬索桥、斜拉桥,协作体系桥梁。自锚式、地锚式悬索桥以其优美的线型、新颖的外观以及选址灵活等特点受到大家喜欢。地锚式悬索桥虽然是大跨径甚至超大跨径桥梁的首选,但是它那硕大的锚碇受到施工以及经济的制约越来越让人们伤透脑筋。自锚式悬索桥而越来越受到青睐,一大批大跨度自锚式悬索桥也就应运而生。但是受到材料以及力学体系的限制跨径也受到很大制约,只能在中小跨径徘徊。斜拉桥的跨径也作的越来越大,已经超过千米的斜拉桥世界上也有好几座,发展势头也锐增。斜拉桥的刚度以及挺拔的力度也受到人们的青睐,在中小跨径以及大跨径桥梁,跨江、跨海等地理位置复杂的地形、还有风速以及地震恶劣环境条件下的地形都能看到斜拉桥挺拔的身影。但是斜拉桥随着跨径的增加,随着力学体系要求,斜拉桥的塔高越来也越高,千米级斜拉桥的塔高达到350多米甚至400米,这么高的普通建筑都受到力学和环境的挑战,何况还受到静力以及动力不断施加的桥梁,施工难度以及监控相当复杂。况且还有地形以及航空管制等外界事物的必然限制。综合以上很多因素的考虑,基于大连湾跨海大桥的实例,大连理工大学课题组提出了自锚式斜拉.悬索协作体系桥梁来解决相应的问题,还受到交通部西部交通建设科技项目“斜拉-悬索协作体系桥梁的研究”开发课题的资金资助。西部交通建设科技项目基金(2006 318 823 50)。
     自锚式斜拉—悬吊协作体系桥作为一种新型的桥梁结构形式,具备了传统的斜拉—悬吊协作体系桥的诸多优点,而且由于庞大锚碇的取消,更好的适应了深海软土地基的建设,在不良地质环境条件下具有强劲的竞争力,目前已被工程界所采纳。但从已有的文献看,对这种桥型静、动力性能的研究颇为少见。为了确保自锚式斜拉-悬索桥施工和成桥运营期间的安全,使得自锚式斜拉-悬索桥结构的设计更加经济合理,本文以拟建的大连湾跨海大桥以及金州湾跨海大桥为工程背景,基于几何非线性有限元理论、图论优化理论,对大跨度自锚式悬索桥整体稳定与极限承载力、结构动力特性、地震响应分析、抗震减震、颤振稳定、抗震可靠度、结构系统可靠度等几个方面开展了大跨度自锚式斜拉-悬索桥分析方法与性能方面的研究。本文的研究工作和取得的主要成果有:
     1.结合设计基本资料及设计技术要求,提出了大连湾跨海大桥桥型方案的设计构思,并对大桥自锚式斜拉-悬索桥的结构体系进行了创新性设计。
     2.本文将图论应用于薄壁杆件结构计算,建立了薄壁剖面的图模型,利用关联矩阵和基本回路矩阵简洁而又准确地描述了薄壁剖面的拓扑关系。利用图论导出的计算扇性坐标、Bredt剪流、二次剪流和弯曲剪流的矩阵方程式。对任意复杂的薄壁剖面,只要建立了图模型,得到关联矩阵和基本回路矩阵,就可利用以上各矩阵方程式方便地用电子计算机求解,从而避免了在具体计算过程中判断剖面的拓扑关系而引起的困难。用图论作工具,研究了薄壁杆件在自由扭转时剖面极限扭矩的计算方法。
     3.分析研究了悬索桥、斜拉桥、自锚式斜拉悬索桥的相关理论。本文选择大型通用有限元程序ANSYS作为结构分析软件,在求解过程中计入上述各种非线性因素的影响,以大连湾跨海大桥大连港主通航孔为工程背景,建立平面杆系计算模型。把自己分析的梁柱效应理论、虚位移原理应用于自锚式斜拉悬索桥力学分析当中,结合ANSYS有限元软件,更好分析此桥产生的非线性力学效应。
     4.基于有限元理论,考虑多种非线性因素,建立有限元模型,对大连湾跨海大桥大连港主通航孔推荐方案主跨800m的自锚式斜拉—悬索协作体系桥的静力行为进行了详尽分析,包括刚度特性、内力、吊索疲劳问题、交接区的变形。
     5.自锚式斜拉—悬吊协作体系桥的动力特性主要包括体系的自振频率和主振型,它是该体系桥进行动力响应分析的前提和基础。通过建立空间有限元计算模型,对采用自锚式斜拉—悬吊协作体系的大连港跨海大桥的动力特性进行了分析,并与相同跨径和结构参数的地锚式斜拉—悬吊协作体系桥进行了对比研究,总结了自锚式斜拉—悬吊协作体系桥动力特性的新特点并揭示了其原因。
     6.分别用反应谱方法和时程分析方法对大连港海湾大桥拟定的结构体系进行了抗震分析。根据抗震分析结果,选定了结构体系,采用了摩擦支座减震技术,并对粘滞阻尼技术进行了探讨。本文将精确高效的虚拟激励法引入到自锚式斜拉—悬吊协作体系桥的地震响应分析中,对此桥在随机地震荷载作用下的地震响应进行了系统地研究,重点考察了三种影响地震体系波作用下,考虑了多点激励和地震动的空间变化效应以及阻尼的变化对该新型体系内力和位移峰值的影响。以大连湾跨海大桥为例,基于由规范反应谱生成的当量功率谱密度函数,对比分析了多点一致激励和非一致激励下其地震响应的特点和规律,所得结论为该新型协作体系桥的抗震设计提供了有价值的参考。鉴于阻尼作为结构动力特性及动力反应中的一个重要参数,本章研究了阻尼器地选择,作者主要言裾持妥枘崞?介绍了粘滞阻尼器地原理及其应用方法,研究了阻尼比的变化对结构地震反应的影响。为该新型体系桥梁的进一步设计提供了有价值的参考。
     7.针对大跨度自锚式斜拉-悬索桥可能存在的风致振动,对大连港海湾大桥进行了颤振稳定分析。
     本文简要介绍了桥梁静力风效应与桥梁风致振动的基本理论,以大连湾跨海大桥为工程背景,通过理论分析对大跨度自锚式悬索桥的抗风性能进行了研究。主要研究①运用多模态颤振有限元分析方法,分别从悬索的矢跨比、吊跨比、斜拉索索面布置形式、边跨辅助墩的设置以及桥面主梁构成等设计参数着手,对主跨800m的一座自锚式斜拉-悬吊协作体系桥进行了颤振稳定性分析,指出了影响自锚斜拉-悬吊协作体系桥颤振稳定性的关键设计参数,并从抗风性能角度探讨了自锚斜拉-悬吊协作体系桥的合理结构形式。②由变形引起的结构动力特性以及空气力的非线性变化效应将会对大跨径自锚式-斜拉悬索桥的颤振产生不容忽视的影响。基于结构的变形后状态,充分考虑结构变形引起的非线性效应,建立了大跨径桥梁颤振分析的三维非线性方法及其计算程序。结合大连湾跨海大桥设计的自锚式斜拉-悬索桥进行了颤振分析和研究,并揭示了结构变形产生的非线性效应对大跨径自锚式斜拉悬吊桥颤振影响的程度和机理。
     8.本文以大连湾跨海大桥作为研究对象,引入虚拟激励法,对自锚式斜拉悬索桥的抗震动力可靠度进行了计算分析。分别计算了考虑均匀地面激励、空间效应及任意相干效应的情况,在多点非一致激励下的桥梁下部结构的墩、塔各控制截面的抗震动力可靠度,得到了一些有价值的结论。
     9.本文总结了结构系统可靠度分析的方法及失效模式。对大连湾自锚式斜拉悬索协作桥在承载能力极限状态下的系统可靠度进行了评估。采用全局β约界法识别结构系统的主要失效模式,并应用微分等价递归算法得到系统各失效模式的等价安全裕量方程。最后,通过Ditlevsen界限理论,确定了结构系统失效概率的上、下限。
In recent years, with the development of traffic technology, then the development of variety of bridge-type is also produced, long-span suspension bridge with long span cable-stayed bridge is developing rapidly. But, because space for the construction of a bridge, construction conditions and the economic cost are restricted, these long-span bridge types have increasingly constrained; bridge-type diversification and the increase in space-bridge structure are the trend of the bridge development. With new technology, new materials and the emergence of high-performance computer, making the theory of bridge design to become the rapid development and improvement in the last three decades.
     Aspects of bridge conceptual design: through development of the analytical and numerical analysis theory, defining mechanical properties of the typical structural system, a variety of style of suspension bridge, cable-stayed bridge and cooperative system is the emergence. Self-anchored and ground-anchored suspension bridges are liked by everyone with its graceful linear, the appearance of novel and flexible bridge site. The ground-anchored suspension bridge is the first choice for long-span and super-long-span bridge design, but, is more and more worried by people because of its construction of huge anchorage, and economic constraints. Because self-anchored suspension bridge is more and more liked by people, a large number of large-span self-anchored suspension bridges also came into being. However, because of constraints of materials and mechanical systems, long-span self-anchored suspension bridge has been greatly restricted, self-anchored bridge is only the small and medium-span bridge. The long-span cable-stayed bridges are also more and more built. Cable-stayed bridge of more than 1000 meters span has become in the world, trends of development is a sharp increase. Cable-stayed bridge is liked by people because of its stiffness and strength of tall and straight, is be able to made everywhere in the small and medium span, long-span bridges, crossing river, across the sea, the complex geographic terrain, as well as wind and seismic harsh environmental conditions of the terrain. However, the increase with cable-stayed bridge span, requirements with the mechanical system, cable-stayed bridge tower more and more is higher, height of the tower of cable-stayed bridge more than 1000 meters span has reached more than 350m or 400m, such a high general building is challenged by mechanical and environmental, the bridge is more affected because of static and dynamic continuing imposing, construction of difficulty and monitoring of quite complex. Moreover, it is restricted inevitably by terrain, as well as air traffic control and the external things etc. Taking consideration of the above many factors, based on examples of Dalian Bay Bridge, Dalian University of Technology Task Force presented a self-anchored cable-stayed-suspension collaboration system bridge project to solve the corresponding problems, but also affected by development funding issues by western transportation construction projects " Cable-stayed-suspension bridge research cooperative system " of the Ministry of Communications in China. Western Transportation Construction Science and Technology Project Fund Number (200,631,882,350).
     Self-anchored cable-stayed-suspension bridge of a new type of bridge structure has now been adopted by the engineering sector, because of many advantages of the traditional cable-stayed-suspension bridge, and a strong competitive edge due to the cancellation of a large anchorage, better adapting to the construction of deep-sea and soft soil in the bad conditions of geological environment, however, the existing literature of view, the research for this bridge-type static and dynamic properties is quite rare. The paper has carried out several research on large-span self-anchored cable-stayed- suspension bridge on the overall stability, ultimate bearing capacity, structural dynamic characteristics of seismic response analysis, seismic vibration, flutter stability, seismic reliability degrees, the structural system reliability etc, In order to ensuring self-anchored cable-stayed-suspension bridge construction, and the safety during the operation, making self-anchored cable-stayed-suspension bridge structural design more economical and reasonable, based on geometric nonlinear finite element theory, graph theory, optimization theory, with background of Dalian Bay Bridge and Jinzhou Bay Bridge engineering. Work and major achievements of this paper are:
     (1) Based on the basic design data and requirements, the designs on the new type of structural system of Dalian bay Bridge are proposed. A lot of creationary achievements will be acquired on Dalian Bridge, called the single tower self-anchored suspension bridge.
     (2) This paper applied graph theory to thin-walled structure calculation, and established a thin-walled cross-section of the graph model, described succinctly and accurately the topolog -ical relations of thin-walled cross-section in correlation matrix and the basic loop matrix. And derived coordinates of fan features, matrix equation of bredt shear flow、secondary shear flow and the bending shear flow in graph theory. Studied calculations of the thin-walled cross-section limit torque in the free torsion in graph theory.
     (3) Carried out analysis of the relevant theory of the suspension bridge, cable-stayed bridge, self-anchored cable-stayed suspension bridge. This paper make use of large-scale general finite element program ANSYS, included in the above-mentioned non-linear factors in the solution process, with Dalian Main Navigation bridge Dalian Port for the engineering background, establishing plane frame calculation model. Carry out self-anchored suspension bridge mechanical analysis in beam-column effect theory and theory of virtual displacement principle, better analyzed this non-linear mechanical effects generated by the bridge with ANSYS finite element software.
     (4) Based on finite element theory, considering a variety of non-linear factors, establishing the finite element model, carried out a detailed static behavior analysis to self-anchored cable-stayed-suspension bridge of Dalian Bay Bridge of main span of 800m, including stiffness, internal forces, sling fatigue, deformation of transfer zone.
     (5) Dynamic characteristics of self-anchored cable-stayed suspension bridge mainly include natural vibration frequencies and principal modes, which are the base and precondition of dynamic response analysis for the kind of the system bridge. Dynamic characteristics of Dalian bay bridge, belonging to self-anchored cable-stayed suspension system, are analyzed and compared with those of earth-anchored cable-stayed suspension bridge with the same span and structure parameters by using spatial finite element model, some new traits of dynamic characteristics for the system bridge are summarized and the reasons are discovered.
     (6) By applying highly efficient pseudo excitation method, the dissertation analyzes random seismic response of self-anchored cable-stayed suspension bridge under P wave, SH wave and SV wave excitation and the influences on the peak values of internal forces and displacements of some factors such as multiple-support excitation and seismic spatial effect and varieties of damping ratio are considered. Subjected to multiple-support uniform and non-uniform excitation, the traits and regulations of seismic response for Dalian bay bridge are compared on basis of the equivalent power spectrum density function made by criterion response spectrum, conclusions drawn provide some valuable references for the anti-seismic design of the new type of bridge. In view of the damping as the structural dynamic properties and an important parameter of dynamic response, this chapter examined how to choose the damper, and choosing mainly viscous dampers, introduced a viscous damper to principle and application methods, study the impact of the structural seismic response because of the changes of damping ratio, providing a valuable reference for the further design of the new bridge system.
     (7) Carried out Flutter stability analysis of potential wind-induced vibrations of large-span self-anchored cable-stayed-suspension bridge in Dalian Port Bay.
     This paper briefly describes the bridge's basic theory of the bridge static wind effects and wind-induced vibration, carried out the research with wind resistance through the theoretical analysis to large-span self-anchored suspension bridge, based on the engineering background of Dalian Bay Bridge. Major research:①Carried out flutter stability of self-anchored cable-stayed-suspension bridge of a main span 800m, in multi-mode flutter finite element method, in the main cable long-height ratio, hanging cross-ratio, surface layout of cable surface of cable-stayed bridge, the settings of side cross-supporting bridge piers, and design parameters such as main beam constitution etc. carried out key design parameters affecting the bridge, and discuss rational structure of self-anchored cable-stayed-suspension in the perspective of the wind resistance performance.②The impact resulting flutter can not be ignored in the structural dynamic properties and the effects of non-linear changes of air forces caused by deformation for long-span self-anchored cable-stayed-suspension bridge. Established computing program of flutter analysis of three-dimensional non-linear method for self-anchored cable-stayed-suspension bridge, Based on the structure of deformed state and giving full consideration to non-linear effect of structural deformation. Carried out analysis and research of flutter reliability on self-anchored cable-stayed-suspension in Dalian bay, revealed the extent and mechanism of flutter reliability effect of non-linear effect resulted from structural deformation on long-span self-anchored cable-stayed suspension bridge.
     (8) The pseudo excitation method is introduced in the structural dynamic reliability analysis, which overcomes the shortcoming of time consuming of the random vibration approach and makes it possible to apply the random vibration approach for large and complex bridge structures. In the paper, the reliability of important structural component, piers and towers used as resist the seismic action, is analysed in detail. It is special considered that the space effect, non-stationary and damping ratio can impact on the dynamic reliability.
     (9) The system reliability method is established for the self-anchored suspension bridges under ultimate limit states. The globalβ-unzipping method and the different equivalent recursion algorithm are adopted to recognize the significant failure models and equivalent limit state functions. The results show that the globalβ-unzipping method is highly efficient and accurate in recognizing the main failure models of structural system. The bond of failure probability of the self-anchored suspension bridge system is calculated by the Ditlevsen's theory.
引文
[1]尼尔斯J·吉姆辛著.姚玲森,林长川译.缆索承重桥梁[M].北京:人民交通出版社,1992.3.
    [2]Niels J.Gimsing.Cable Supported Bridges[M].Chichester:John Wiley,1997.
    [3]H.Wenzel.Cable Stayed Bridge History Design Application[M].Northern Gate Book Co..Ltd.,1998.
    [4]M.Irvine Cable Structures[HI.New York:Dover.1992.
    [5]Manabu Ito.Cable-supported steel bridge:design problem and solutions[J].Journal of construct steel research.1996,39(1):69-84.
    [6]Michel Virlogeux.Recent evolution of cable-stayed bridges[J].Engineering Structures.1999,39(5):737-755.
    [7]雷俊卿,郑明珠,徐恭义.悬索桥设计[M].北京:人民交通出版社,2002
    [8]王伯惠.斜拉-悬索协作体系桥[J].辽宁省交通高等专科学报学校学报.2000,2(3):1-7.
    [9]肖汝诚,贾丽君,薛二乐等.斜拉-悬索协作体系的设计探索[J].土木工程学报.2000,33(5):46-51.
    [10]王伯惠.伶仃洋三大航道桥桥型方案探讨(一)伶仃西桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,1999:555-565.
    [11]王伯惠.伶仃洋三大航道桥桥型方案探讨(二)伶仃西桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,1999:565-577.
    [12]胡隽.大跨度吊拉组合索桥的理论研究(博士学位论文).北京:北方交通大学.2000.11.
    [13]邱文亮.自锚式悬索桥非线性分析与试验研究(博士学位论文).大连:大连理工大学.2004.02.
    [14]大连理工大学土木建筑设计研究院桥梁研究所.大连庄河建设大桥初步设计图,2005.10
    [15]大连理工大学土木建筑设计研究院桥梁研究所.大连市跨海大桥可行性研究报告,2005.12
    [16]严国敏.现代悬索桥[M].北京:人民交通出版社,2002
    [17]周孟波.悬索桥手册[M].北京:人民交通出版社,2003
    [18]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,2000
    [19]周孟波.斜拉桥手册[M].北京:人民交通出版社,2004
    [20]项海帆主编.高等桥梁结构理论[M].北京:人民交通出版社,2002
    [21]肖汝诚,项海帆.斜拉-悬吊协作体系桥力学特性及其经济性能研究[J].中国公路学报.1999,12(3):43-48.
    [22]蒙云,刘东,孙淑红.大跨度P.F.C.吊拉组合桥设计研究[J].重庆交通学院学报.1999,18(4):8-12.
    [23]孙淑红,蒙云.吊拉组合桥交接区域吊杆的疲劳闯题研究[J].重庆交通学院学报.1999,18(4):13-18.
    [24]王伯惠.斜拉桥发展和中国经验[M].北京:人民交通出版社,2003
    [25]谷音,郑振.白塔大桥模型实验分析[J].福州大学学报.2000,28(5):72-76.
    [26]潘家英,余振生,辛学忠等.大跨径独塔斜拉桥全桥空间模型试验与分析[J].土木工程学报.1998,31(5):3-14.
    [27]曾攀,钟铁毅,闰贵平.大跨径斜拉-悬索协作体系桥动力分析[J].计算力学学报.2002,19(4):472-477.
    [28]张哲,张宏斌,宋广君等.混合梁弯塔斜拉桥动力模型试验及理论分析[J].哈尔滨工业大学学报.2005.
    [29]杨达文.辅助墩对斜拉桥动力性能的影响[J].广东土木与建筑.2003,6(5):62-63.
    [30]哈鸿,朱乐东.桥塔型式对斜拉桥动力性能的影响[J].同济大学学报.1999,27(2):216-219.
    [31]徐利平.混合梁斜拉桥边跨混凝土梁受力特点[J].结构分析.2003,1:12-16
    [32]孙斌,肖汝诚,贾丽君等.斜拉-悬索协作体系桥经济性能研究.第十四届全国桥梁学术会议论文集,南京,2000:542-549.
    [33]M·S·特罗伊茨基著.王学汶,程庆国等译.斜拉桥理论与设计[M].北京:中国铁道出版社,1980.7
    [34]蒋永林,卢伟,强士中.斜拉桥和悬索桥跨越效率的比较[J].国外桥梁.1998.4:10-11.
    [35]Ito M.Cable-supported steel bridges:design problems and solutions.Journal of Constructional Steel Research.1996,39(1):69-84.
    [36]Jacobsen HH,Rouvillain F,Nielsen M.World's longest welded bridge spans.Welding in the World,Le Soudage Dans Le Monde.1996,38:91-110.
    [37]Starossek U.Cable-stayed bridge concept for longer spans.Journal of Bridge Engineering.1996,1(3):99-103.
    [38]程国强,俞亚南,谢旭.大跨度悬索桥运行影响因素分析.水运工程.2005,(2):61-65.
    [39]Anon.Cable-stayed pedestrain bridge at calgary(Canada).Industria Italiana del Cemento.1988,58(4):232-243.
    [40]Manabu Ⅰ.Cable-supported steel bridge.Journal of construct steel research.1996,39(1):69-84.
    [41]Reid RL.Civil engineering news:Bridge engineering:Chilean suspension bridge will be South America's longest.Civil Engineering.2006,76(4):13-15.
    [42]Freire AMS,Negrao JHO,Lopes AV.Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges.Computers & Structures.2006,Oct.
    [43]Virlogeux M.Recent evolution of cable-stayed bridges.Engineering Structures.1999,21(8):737-755.
    [44]Spyrakos C,Kemp EL,Venkatareddy R.Validated Analysis of Wheeling Suspension Bridge.Journal of Bridge Engineering.1999,4(1):1-7.
    [45]林元培.斜拉桥.北京:人民交通出版社,1997.
    [46]铁道部大桥工程局桥梁科学研究所.斜拉桥。北京:科学技术文献出版社,1992.
    [47]陈明宪.斜拉桥的发展与展望.中外公路.2008,26(4):76-86.
    [48]王伯惠编著.斜拉桥结构发展和中国经验.北京:人民交通出版社,2004
    [49]周孟波主编.斜拉桥手册.北京:人民交通出版社,2004.
    [50]周念先,杨共树.预应力混凝土斜张桥.北京:人民交通出版社,1989.
    [51]肖汝诚,周念先。走向21世纪的斜张桥(二).铁道标准设计.1998,(5):1-2.
    [52]肖汝诚,周念先.走向21世纪的斜张桥(三).铁道标准设计.1998,(12):27-33.
    [53]周念先,肖汝诚.走向21世纪的斜张桥(一).铁道标准设计.1998,(1):6-9.
    [54]常传利,白海莹.特大跨径斜拉桥.国外公路.1994,(3):14-16,43.
    [55]金曾洪编译.日本多多罗大桥简介.国外公路.1999,(4):8-13.
    [56]陈政清,颜全胜.大跨度斜拉桥的非线性分析.长沙铁道学院学报.1991。(3):29-33.
    [57]Bruno D,Leonardi A.Natural periods of long-span cable-stayed bridges.Journal of Bridge Engineering.1997,2(3):105-115.
    [58]周念先.特大跨斜张桥的两大难题如何解决:(兼谈公路桥与公铁两用桥).铁道建筑.1992,(12):1-4.
    [59]周念先.对特大跨径索桥若干问题的商榷:答严国敏高级工程师.江苏交通工程.1993,(3):1-5.
    [60]周念先.四索面斜张桥-发展特大跨公路桥与公铁两用桥的新途径.铁道标准设计.1993,(5):1-5.
    [61]周念先.斜张桥与悬索桥的竞争与协作:并答严国敏高工的商榷.东北公路.1993,(3):86-94,85.
    [62]周念先.桥梁方案优选(八)江苏交通工程.1995,(6):34-38.
    [63]周念先.桥梁方案优选(七).江苏交通工程.1995,(5):38-54.
    [64]周念先.21世纪斜张桥的展望.江苏交通工程.1998,(4):1-9.
    [65]曹兴松.吊拉组合索桥的设计:(硕士论文).成都:西南交通大学,2001.
    [66]包龙生,杨炳成,于玲.吊拉组合索桥的模型建立与初始索力确定.沈阳建筑大学学报(自然科学版).2004,20(04):265-268.
    [67]Cluley NC,Shepherd R.Analysis of concrete cable-stayed bridges for creep,shrinkage and relaxation effects.Computers & Structures.1996,58(2):337-350.
    [68]Gimsing NJ.Cable supported bridges:concept and design.John Wiley & Sons,Chichester,Engl,1983.
    [69]赖良俊.吊拉组合大桥的结构行为分析:(硕士论文).重庆:重庆交通学院,2002.
    [70]张付宾,许克宾.吊拉组合结构在铁路桥梁中的应用分析.第十一届全国结构工程学术会议,长沙,2002:727-729.
    [71]孙淑红,蒙云.吊拉组合桥交接区域吊杆的疲劳问题研究.重庆交通学院学报.1999。018(004):13-18.
    [72]蒙云,孙淑红.吊拉组合桥结构体系研究与决策.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,2000:691-697.
    [73]靳国胜.吊拉组合桥梁荷载试验研究.甘肃科学学报.2005,17(4):103-106.
    [74]孙淑红,蒙云.吊拉组合体系预应力连续加劲梁性能分析.重庆交通学院学报.1999,(04):30-39.
    [75]孙淑红,蒙云.几种吊拉组合体系主梁结构性能计算分析.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,2000:697-705.
    [76]金增洪.介绍吉姆辛的未来长大桥梁概念.国外公路.2000,20(3):8-14.
    [77]肖汝诚,项海帆.拉吊协作桥的施工控制与吊索疲劳控制研究.同济大学学报(自然科学版).1999,(02):234-238.
    [78]陈炳坤.土耳其伊兹米特海湾上混合型缆索承重桥的设计-为纪念伟大的预想家弗兰茨·迪辛格而作.国外桥梁.1997,(3):11-14.
    [79]杨光华,蔡义前.乌江吊拉组合索桥—一种新的桥型及施工方法.公路.2001,(003):1-6.
    [80]张新军,孙炳楠,陈艾荣,项海帆.斜拉—悬吊协作体系桥的颤振稳定性研究.土木工程学报.2004,(07):106-110.
    [81]孙斌,肖汝诚,贾丽君,项海帆.斜拉—悬吊协作体系桥经济性能研究.中国土木工程学会桥梁及结构工程学会第十四届年会,2000:542-549.
    [82]肖汝诚,项海帆.斜拉—悬吊协作体系桥力学特性及其经济性能研究.中国公路学报.1999,012(003):43-48,116.
    [83]肖汝诚,贾丽君,薛二乐.斜拉—悬索协作体系的设计探索.土木工程学报.2000,33(5):46-51.
    [84]王伯惠.斜拉—悬索协作体系桥.辽宁省交通高等专科学校学报.2000,2(03):1-6.
    [85]王伯惠.斜拉—悬索协作体系桥(续).辽宁省交通高等专科学校学报.2000,2(4):1-7.
    [86]周念先.斜张—悬索协作桥.江苏交通工程.1997,(2):4-7.
    [87]金成棣,陆宗林.大跨径单主缆斜拉—悬索协作体系桥的探索.中国公路学会98年桥梁学术讨论会,1998:46-50.
    [88]唐寰澄.世界长大桥梁技术和艺术的发展趋向.广东公路交通.2000,(66):73-79.
    [89]Barsotti R,Ligaro SS,Royer-Carfagni GF.The web bridge.International Journal of Solids and Structures.2001,38(48-49):8831-8850.
    [90]大连理工大学桥梁工程研究所.大连小平岛圣岛大桥改造工程.大连:大连理工大学.2006.
    [91]金增洪.迪辛格(Dischinger)型对超长桥梁的适用性.中外公路.2001,21(4):35-39.
    [92]Gimsing NJ.Cable supported bridges with spatial cable systems.Bulletin of the International Association for Shell and Spatial Structures.1992,33(108):33-42.
    [93]万国朝.大贝尔特悬索桥设计.国外公路.1995,(1):11-17.
    [94]王伯惠.台湾的斜拉桥.东北公路.2000,23(4):56-61,45.
    [95]王伯惠.伶仃洋三大航道桥桥方案探讨(二)伶仃东桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,2000:565-577.
    [96]方世乐,王萍.伶仃东航道桥方案设计与构思.广东公路勘察设计.1999,(3):36-48.
    [97]大连理工大学.大连市跨海大桥工程预可行性研究报告.大连,2004.
    [98]杜高明.大跨度自锚式斜拉-悬索协作体系桥结构性能分析:(硕士学位论文).大连:大连理工大学2006.
    [99]张凯.自锚式斜拉-悬索协作体系桥地震反应分析:(硕士学位论文).大连:大连理工大学,2006.
    [100]张永杰.自锚式吊拉组合桥设计及力学性能分析:(硕士学位论文).大连:大连理工大学2006.
    [101]张哲,王会利,黄才良,陈军,杜高明.自锚式斜拉-悬索协作体系桥梁设计与分析.公路,2006,(7):44-48.
    [102]大连理工大学桥梁工程研究所.大连庄河建设大桥.大连:大连理工大学,2005.
    [103]刘春城.混凝土自锚式悬索桥三维地震反应研究:(博士学位论文).大连:大连理工大学,2003.
    [104]孙斌,肖汝诚,贾丽君,项海帆.斜拉-悬吊协作体系桥经济性能研究.中国土木工程学会桥梁及结构工程学会第十四届年会。2000:542-549.
    [105]王伯惠.斜拉-悬索协作体系桥(续).辽宁省交通高等专科学校学报.2000,2(4):1-7.
    [106]肖汝诚,项海帆.斜拉-悬吊协作体系桥力学特性及其经济性能研究.中国公路学报.1999,012(003):43-48,116.
    [107]张哲.混凝土自锚式悬索桥.北京:人民交通出版社,2005.
    [108]陈仁福.大跨悬索桥理论.成都:西南交通大学出版社,1994.
    [109]范立础.桥梁抗震.上海:同济大学出版社,1997
    [110]李国豪主编.工程结构抗震动力学.上海:上海科学技术出版社,1980
    [111]李国豪.桥梁结构稳定与振动(修订版).北京:中国铁道出版社,2003.
    [112]胡聿贤.地震工程学.北京:地震出版社,1981
    [113]范立础,胡世德,叶爱君.大跨度桥梁抗震设计.北京:人民交通出版社,2001
    [114]交通部公路规划设计院.公路工程抗震设计规范JTJ004-89.北京:人民交通出版.1990.
    [115]朱位秋.随机振动.北京:科学出版社,1992.
    [116]星谷胜著,常宝琦译.随机振动分析.北京:地震出版社,1977.
    [117]D E纽兰著,方同译.随机振动与谱分析概论.北京:机械工业出版社,1980.
    [118]庄表中.非线性随机振动理论及应用.杭州:浙江大学出版社,1986
    [119]徐昭鑫.随机振动.北京:高等教育出版社,1990
    [120]俞载道,曹国敖.随机振动理论及其应用.上海:同济大学出版社,1988
    [121]钟万勰.应用力学对偶体系.北京:科学出版社,2002.
    [122]钟万勰.一个高效结构随机响应算法系列.自然科学进展-国家重点实验室1996,6(4):391-401
    [123]林家浩.随机地震响应的确定性算法.地震工程与工程振动,1985,5(1):89-94.
    [124]林家浩,张亚辉.受非均匀调制演变随机激励结构响应快速精确计算.计算力学学报1997,1(14):2-8.
    [125]林家浩,林少培,钟万勰.固定式海洋平台结构分析程序DASOS-J(D)的动力分析策略.计算结构力学及其应用.1985,2(3):37-44.
    [126]林家浩.随机地震响应功率谱快速算法.地震工程与工程振动,1990,10(4):38-46.
    [127]林家浩.多相位输入结构随机响应.振动工程学报,1992,5(1):73-77.
    [128]林家浩.非平稳随机地震响应精确高效算法.地震工程与工程振动,1993,13(1):24-29.
    [129]林家浩.关于虚拟激励法与结构随机响应的注记.计算力学学报,1998,15(2):217-223.
    [130]林家浩,沈为平,F.W.威廉斯.受演变随机激励结构响应的精细逐步积分法.大连理工大学学报,1995,35(5):600-605.
    [131]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展.力学进展,2001,31(3):350-360.
    [132]Lin J H,Willams F W,Zhang W S.A new approach to multi-excitation stochastic seismic response.Microcomputers in Civil Engineering.1993,8(4):283-290.
    [133]Lin J H,Zhang W S,Willams F W.Pseudo excitation algorithm for non-stationary random seismic responses.Engineering Structures,1994,16(4):270-276.
    [134]Lin Jiahao,Zhang Wenshou,Li Jianjun.Structure responses to arbitrary coherent stationary random excitation.Computers&Structures,1994,50(5);629-634.
    [135]Lin J H,Willams F W.Computation and analysis of multi-excitation random seismic response.Engineering Computations,1992,9:561-574.
    [136]Lin J H,Shen W P.Williams F W.A high precision direct integration scheme for non-stationary random seismic responses of non-classically damped structures.Int Journal Structure Engineering and Mechanics,1995,3(3):215-228.
    [137]钟万勰.结构动力学的精细时程积分法.大连理工大学学报,1994,34(2):131-136.
    [138]林家浩,钟万勰等.结构非平稳随机响应方差矩阵的直接精细积分计算.振动工程学报,1999,12(1):1-8.
    [139]钟万勰,林家浩等.大跨度桥梁分析方法的一些进展.大连理工大学学报,2000,40(2):127-135.
    [140]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展.同济大学学报,1999,27(2):189-193.
    [141]赵灿晖.大跨度钢管混凝土拱桥的地震响应研究:(博士学位论文).成都:西南交通大学,2001.
    [142]张亚辉.复杂结构在多种荷载工况下的屈曲及动力分析:(博士学位论文).大连:大连理工大学,1999.
    [143]赵岩.桥梁抗震的线性/非线性分析方法研究:(博士论文).大连:大连理工大学,2003.
    [144]刘春城.混凝土自锚式悬索桥三维地震反应研究:(博士论文).大连:大连理工大学,2003.
    [145]Yamamura N,Hiroshi Tanaka.Response analysis of flexible MDF systems for multiple-support excitations.EESD,1990,19:345-357.
    [146]Berrah M K,Eduardo Kausel.A modal combination rule for spatially varying seismic motions.EESD,1993,22:791-800.
    [147]Kiureghian A D,Neuenhofer A.Response spectrum method for multi-support seismic excitaions.Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [148]Kiureghian A D,Neuenhofer A.A discussion on seismic random vibration analysis of multi-support seismic excitations.Journal of Engineering Mechanics,1995,121:1037.
    [149]Yutaka Nakamura,Kiureghian A D,David Liu,Multiple-support response spectrum analysis of the golden gate bridge.Berkeley:University of California at Berkeley,1993.
    [150]Ernesto H Z,Vanmarcke E H.Seismic random vibration analysis of multi-support structural systems.ASCE,Journal of Engineering Mechanics,1994,120:1107-1128.
    [151]Zavoni E H,Vanmarcke E H.Seismic random-vibration analysis of multi-support structural systems.Journal of Engineering Mechanics,ASCE,1994,120(5):1107-1128.
    [152]Harichandran R S,Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time.Journal of Engineering Mechanics,ASCE,1986,105(2):217-231.
    [153]Corotis.R.B,Vanmarcke.E.H.First passage of nonsationary random process[J].ASCE,Journal of Engineering Mechanics Division,1972,98(5):1107-1120.
    [154]Vanmarcke.E.H.,Lee.G.C.On the distribution of the first-passage time for normal stationary random processes.Application of Mechanics,1975,42:1254-1265.
    [155]刘洪兵.大跨度斜拉桥多支承激励地震响应分析.土木工程学报,2001,34(6);38-44.
    [156]刘洪兵.多支承激励地震响应分析的简化反应谱法.中国公路学报,2002,15(1):34-37.
    [157]ALY S.Nazmy.Nonlinear-linear earthquake-response analysis of long-span cablestayed bridges:theory.Earthquake Engineering and Structural Dynamics.1990.vol.19,45-62.
    [158]ALY S.Nazmy.Nonlinear-linear earthquake-response analysis of long-span cablestayed bridges:applications.Earthquake Engineering and Structural Dynamics.1990.vol.19,63-76.
    [159]A.M.Abdel-Ghaffar.and ALY S.Nazmy.3-D nonlinear seismic behaviour of cablestayed bridges.Journal of structural Engineering,1991,117(11):3456-3476.
    [160]ALY S.Nazmy and A.M.Abdel-Ghaffar.Seismic responses analysis of cable-stayed bridges subjected to uniform and muliple-support excitations.Report No.87-SM-1,Department of Civil Engineering,Princeton University,1987.
    [161]Nazmy A S,A.M.Abdel-Ghaffar.Effects of ground motion spatial variability on the response of cable-stayed bridges.EESD,1992,21(1):1-20.
    [162]A.M.Abdel-Ghaffar.Vertical seismic behaviour of suspension bridge[J].Earthquake Engineering and Structural Dynamics.1983.vol.11,1-19.
    [163]A.M.Abdel-Ghaffar.Suspension bridge response to multiple-support excitations.Journal of the Engineering Mechanics Division,ASCE1982,108(2):417-435.
    [164]A.M.Abdel-Ghaffar.Vertical vibration analysis of suspension bridges.Journal of the structure engineering division,ASCE1980,106(10):2053-2075.
    [165]A.M.Abdel-Ghaffar.Free lateral vibrations of suspension bridges,Journal of Structure Engineering,ASCE,1978,104(3):503-525.
    [166]A M.Abdel-Ghaffar.Suspension bridge vibration.Continuum formulation.Journal of the Engineering Mechanics,ASCE,1982,108(6):1215-1236.
    [167]项海帆.斜张桥在行波作用下的地震反应分析.同济大学学报,1983,11(2):1-8.
    [168]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征.计算力学学报,2001,18(3):358-363.
    [169]陈幼平,周宏业.斜拉桥地震反应的行波效应.土木工程学报,1996,29(6):61-67.
    [170]陈幼平,周宏业.斜拉桥地震反应特性.中国铁道科学,1996,17(1);1-8.
    [171]陈淮等.大跨度斜拉桥动力特性分析.计算力学学报,1997,14(1):57-63.
    [172]朱宏平,唐家祥.斜拉桥动力分析三维有限元模型.振动工程学报,1998,11(1):121-126.
    [173]李建中,袁万城.斜拉桥减震耗能体系非线性纵向地震反应分析.中国公路学报,1998,11(1):71-76.
    [174]杨玉民,袁万城,范立础.大跨斜拉桥横向地震反应及其分形特征.同济大学学报,2001,29(1):15-19.
    [175]郭永辉,贺国京.桥梁在多点激振下的非线性响应.长沙铁道学院学报,2000,18(2):9-12.
    [176]邹立华,袁薇等.单索面斜拉桥考虑几何非线性地震反应分析.甘肃工业大学学报,1997,23(1):83-87.
    [177]白国良等.咸阳渭河大桥斜拉桥结构地震反应分析.西安建筑科技大学学报,2000,32(4):330-333.
    [178]刘春城,张哲,黄才良.任意荷载激励下考虑局部效应的斜拉桥结构动力响应分析.公路交通科技,2002,19(5):70-73.
    [179]邱新林.大跨斜拉桥空间非线性地震反应分析.华东公路,2001,3,8-12.
    [180]张亚辉,林家浩.香港青马桥抗震分析.应用力学学报,2002,19(3)25-31.
    [181]李志岭,秦权.用Ritz法分析江阴悬索桥地震反应的影响.工程力学,2003,20(1):32-37.
    [182]秦权,罗颖,孙浩.悬索桥上部结构的抗震设计.清华大学学报,1998,38(12):52-56.
    [183]胡世德,范立础.江阴长江公路大桥纵向地震反应分析.同济大学学报,1994,22(4):433-438
    [184]聂利英,叶爱群,胡世德.大跨度悬索桥地震动力分析中的高阶振动的影响.同济大学学报,2001,29(1):84-88
    [185]朱宏平,张之勇.悬索桥动力模型设计与实验.华中理工大学学报,1999,27(3):25-27.
    [186]彭大文,黄朝光等.单塔悬索桥的地震响应研究.中国公路学报,1997,10(4):55-63.
    [187]黄朝光,彭大文.单塔悬索桥的结构参数对动力特性的影响分析.福州大学学报(增刊),1996,24(9):279-287.
    [188]柳春光,焦双建.城市立交桥结构三维地震反应.地震工程与工程振动,2001,21(2):41-47.
    [189]张宁勇,王君杰,陆锐.土-桩-桥相互作用的集中质量模型的比较研究.结构工程师,2002,(1):43-48.
    [190]杨玉民,胡勃,袁万城.基于位移反应谱的连续梁桥的抗震设计简化方法.同济大学学报,1999,27(2):150-154.
    [191]赵大亮等.大跨度连续梁桥地震反应分析.兰州铁道学院学报,2002,21(6):87-90.
    [192]屈铁军,王前信.多点输入地震反应分析研究的进展.世界地震工程,1993(1):30-36.
    [193]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型.地震学报,1996,18(1):55-62.
    [194]李建俊,林家浩等.大跨度结构受多点随机地震激励的响应.计算结构力学及其应用,1995.12(4):445-452.
    [195]江近仁,洪峰.功率谱和反应谱转换和人造地震波,地震工程与工程振动,1984,4(3):1-10.
    [196]Feng Q M,Hu Y X.Spatial Correlation of earthquake motion and its effect on structural response.ProCUS-PRC Bilateral Workshop on Earthquake Engineering.
    [197]赵凤新等.地震动功率谱和反应谱的转换关系.地震工程与工程振动,2001,21(2):30-35.
    [198]曹建华.结构抗震分析方法的荷载转换及研究:(硕士论文).大连:大连理工大学,2001.
    [199]翟希梅,吴志丰.人工地震波反应谱拟合的改进.哈尔滨工业大学学报,1995,27(6):130-133.
    [200]朱东生,虞庐松.用人工地震波分析斜拉桥的地震响应.兰州铁道学院学报.1997,16(4):1-6.
    [201]王君杰,周晶.地震动频谱非平稳性对结构非线性反应的影响.地震工程与工程振动,1997,17(2):16-20.
    [202]王君杰,周晶.基于演变随机过程模型合成地震波.地震工程工程振动.1997,17(1):11-18.
    [203]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,2003.
    [204]范立础.桥梁抗震.上海:同济大学出版社,2001.
    [205]范立础,胡世德,叶爱君.大跨度桥梁抗震设计.北京:人民交通出版社,2001.
    [206]交通部公路研究院.公路工程抗震设计规范(JTJ004-89)北京:人民交通出版社,1990.
    [207]中华人民共和国标准.铁路工程抗震设计规范(GBJ111-87)北京:中国计划出版社,1989.
    [208]American Association of State Highway and Transportation Officials.Standard specifications for highway bridges,division I-A seismic design,16th edition,1996.
    [209]Eurocode8.Structures in seismic region design,part2:Bridges(draft).April,1993.
    [210]日本道路协会.道路桥示方书·同解说:V耐震设计篇,1996.
    [211]郑史雄,周述华,丁桂保.大跨度钢管混凝土拱桥的地震反应性能.西南交通大学学报,1999,34(3):320-324.
    [212]胡世德,王君杰,魏红一等.丫髻沙大桥主桥抗震性能研究.铁道标准设计,2001,21(6):21-25.
    [213]杨孟刚,陈政清,崔剑峰.茅草街大桥地震时程反应分析.第十六届全国桥梁学术会议,长沙,2004:444-450.
    [214]项海帆.斜张桥在行波作用下的地震反应分析.同济大学学报,1983,(2):1-9.
    [215]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征.计算力学学报,2001.18(3):358-363.
    [216]S.M.Allam,T.K.Datta.Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method.Engineering Structures,2000,22(10):1367-1377.
    [217]范立础,袁万城,胡世德.上海南浦桥纵向地震反应分析.土木工程学报,1992,25(3):2-8.
    [218]A.S.Nazmy,A.M.AbdeI-Ghaffar.Effects of ground motion spatial variability on the response of cable-stayed bridges.E.E.S.D.,1992,(21):1-20.
    [219]S.M.Allam,T.K.Datta.Seismic behaviour of cable-stayed bridges under Multicomponent random ground motion.Engineering Structures,1999,21(1):62-74.
    [220]A.M.Abdel-Ghaffar,L.I.Rubin.Suspension bridge response to multiple support excitations.Journal of the Engineering Mechanics Division,ASCE,1982,I08(EM2):419-435.
    [221]A.M.Abdel-Ghaffar,L.I.Rubin.Lateral earthquake response of suspension bridges.Journal of Structural Engineering,ASCE,1983,109(3):664-675.
    [222]A.M.Abdel-Ghaffar,R.G.Stringfellow.Response of suspension bridges to traveling earthquake excitations:part Ⅰ-vertical response.Soil Dynamics and Earthquake Engineering,1984,3(2):62-72.
    [223]A.M.Abdel-Ghaffar,R.G.Stringfellow.Response of suspension bridges to traveling earthquake excitations:part Ⅱ-lateral response.Soil Dynamics and Earthquake Engineering,1984,3(2):73-81.
    [224]N.Yamamura,H.Tanaka.Response analysis of flexible MDF systems for multiplesupport seismic excitations.E.E.S.D.,1990,(19):345-357.
    [225]胡世德,范立础.江阴长江大桥纵向地震反应分析.同济大学学报,1994,22(4):433-438.
    [226]R.S.Harichandran,A.Hawwari,B.N.Sweidan.Response of long-span bridges to spatially varying ground motion.Journal of Structural Engineering,ASCE,1996,122(5):476-484.
    [227]丰硕,项贻强,谢旭.超大跨度悬索桥的动力特性及地震反应分析.公路交通科技,2005, 22(8):31-35.
    [228]刘春城,张哲,石磊.自锚式悬索桥的纵向地震反应研究.武汉理工大学报,2002,26(5):607-610.
    [229]刘春城,张哲,石磊.虚拟激励法在自锚式悬索桥竖向地震反应分析中的应用.东南大学学报(自然科学版),2003,33(4):522-525.
    [230]杨孟刚,胡建华,陈政清.独塔自锚式悬索桥地震响应分析.中南大学学报.(自然科学版),2005,36(1):133-137.
    [231]范立础,王志强.桥梁减隔震设计.北京:人民交通出版社,2001.
    [232]W.H.Robinson.Recent research and applications of seismic isolation in New Zealand.Bulletin of the New Zealand National Society for Earthquake Engineering,1995,28(4):253-264.
    [233]M.T.A.Chaudhary,M.Abe,Y.Fujino.Performance evaluation of base-isolated Yamaage′bridge with high damping rubber bearings using recorded seismic data.Engineering Structures,2001,(23):902-910.
    [234]C.S.Tsai,H.H.Lee.Seismic mitigation of bridges by using viscoelastic dampers.Computers&Structures,1993,48(4):719-727.
    [235]K.Kawashima,S.Unjoh.Seismic response control of bridges by variable dampers.Journal of Structure Engineering,ASCE,1994,120(9):2583-2601.
    [236]Y.Adichi,S.Unjoh,M.Kondoh.Development of a shape memory alloy damper for intelligent bridge systems.Materials Science Forum,2000,(327/328):31-34.
    [237]M.Q.Feng,J.M.Kim,M.Shinozuka,et al..Viscoelastic dampers at expansion Joints for seismic protection of bridges.Journal of Bridge Engineering,2000,5(1):67-74.
    [238]B.Erkus,M.Abe,Y.Fujino.Investigation of semi-active control for seismic protecttion of elevated highway bridges.Engineering Structures,2002,(24):281-293.
    [239]王根会,杨碧峰.混凝土桥梁结构顺桥向大阻尼减震控制研究.兰州铁道学院学报(自然科学版),2000,19(1):1-5.
    [240]陈水生.高架桥梁地震响应磁流变阻尼器(MR)半主动控制.长安大学学报(自然科学版),2003,23(6):40-43.
    [241]W.L.He,A.K.Agrawal,K.Mahmoud.Control of seismically excited cable-stayed bridge using resetting semiactive stiffness dampers.Journal of Bridge Engineering,2001,6(6):376-384.
    [242]K.S.Park,H.J.Jung,I.W.Lee.Hybrid control strategy for seismic protection of a benchmark cable-stayed bridge.Engineering Structures,2003,25:405-417.
    [243]H.J.Jung,B.F.Spencer Jr.,I.W.Lee.Control of a seismically excited cable-stayed bridge employing MR fluid dampers.Journal of Structural Engineering,ASCE,2003,(129):873-883.
    [244]蔡靖,李小珍,强士中.斜拉桥地震反应的主动控制.桥梁建设,2002,(3):10-11.
    [245]H.Iemura,Y.Adachi,M.H.Pradono.Seismic retrofit of a cable-stayed bridge with dynamic response control technologies.In:Proceeding of the 3~(rd) International Conference on Structural Control,Como,Italy,2002:197-202.
    [246]T.J.Ingham,S.Rodriguez,M.Nader.Nonlinear analysis of the Vincent Thomas Bridge for seismic retrofit.Computers&Structures,1997,64(5/6):1221-1238.
    [247]T.J.Ingham,S.Rodriguez,C.Seim.Use of dampers in the seismic retrofit of the Golden Gate Bridge.In:Proceedings of the 15th Structures Congress,Portland,USA,1997,(2):1219-1223.
    [248]贺德馨.我国风工程研究现状与展望.第六届全国流体力学会议论文集.上海,2001:65-73.
    [249]项海帆.风工程力学和大跨度桥梁的空气动力学问题.中国科学基金,1994,3:232-234.
    [250]孙东科.长跨桥梁三维风振分析:(博士学位论文).大连:大连理工大学,1999.
    [251]曹映泓.大跨度桥梁非线性颤振和抖振时程分析:(博士学位论文).上海:同济大学,1999.
    [252]T.Theodorsen.General theory of aerodynamic instability and the mechanism of flutter.NACA Report No.496,US,Langley,VA,1935.
    [253]R.H.Scanlan,J.J.Tomko.Airfoil and bridge deck flutter derivatives.Journal of the Engineering Mechanics Division,ASCE,1971,97(EM6):1171-1737.
    [254]张若雪.桥梁结构气动导数识别的理论和试验研究[博士学位论文].上海:同济大学,1998.
    [255]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析[博士学位论文].上海:同济大学,2001.
    [256]陈政清,于向东.大跨桥梁颤振自激力的强迫振动法研究.土木工程报,2002,35(5):34-41.
    [257]A.Larsen,J.H.Walther.Aeroelastic analysis of bridge girder sections based on discrete vortex simulations.Journal of Wind Engineering and Industrial Aerodynamics,1997,(67&68):253-265.
    [258]曹丰产,项海帆,陈艾荣.桥梁断面的气动导数和颤振临界风速的数值计算.空气动力学学报,2000,18(1):26-33.
    [259]祝志文.桥梁风效应的数值方法及应用[博士学位论文].长沙:中南大学,2002.
    [260]谢霁明,向海帆.桥梁三维颤振分析的状态空间法.同济大学学报,1985(3).
    [261]T.J.A.Agar.Aerodynamic flutter analysis of suspension bridges by a model technique.Engineering Structures,1989,11(2):75-82.
    [262]A.Namini,P.Albrecht,H.Bosch.Finite element-based flutter analysis of cablesuspended bridges.ASCE ST,1992,118(6):1509-1525.
    [263]陈政清.桥梁颤振临界风速上下限预测与多模态参与效应.结构风工程新进展及应用.上海:同济大学出版社,1993:197-203.
    [264]Z.Q.Chen(陈政清),T.J.Agar.Finite element-based flutter analysis of cablesuspended bridges(discussion).Journal of Structural Engineering(ASCE.ST),1994,120(3):1044-1046.
    [265]华旭刚,陈政清.桥梁风致颤振临界状态的全域自动搜索法.工程力学,2002,19(2):68-72.
    [266]李桂青,曹宏,李秋胜等.结构动力可靠性理论及其应用,北京:地震出版社,1993.
    [267]李桂青,李秋胜.工程结构时变可靠度理论及其应用.北京:科学出版社.2001.
    [268]王光远,程耿东,邵卓民等.抗震结构的最优设防烈度与可靠度,北京:科学出版社,1999.
    [269]Rice S O.Mathematical analysis of random noise.Bell System Technical Journal,1944,23:282-332.
    [270]Siegert A J F.On the first-passage probability problem.Physical Reviews,1951,81:617-623.
    [271]Coleman J J.Reliability of aircraft structures in resisting chance failure operations.Res.,1959,639-645.
    [272]Cramer H,Leadbetter M R.Stationary and related stochastic process.John Wiley and Sons inc.,1967
    [273]Yang J N,Shinozuka M.On the first excursion probability in stationary narrow band random vibration.Journal of Applied Mechanics,1971,38:1017-1022.
    [274]Kawano K,Venkataramana K.Dynamic response and reliability analysis of large offshore structures.Computer Methods in Applied Mechanics and Engineering,1999,168:255-272.
    [275]Wen Y K,Foutch D A,Eliopoulos et al.Reliability of current steel buiding designs for seismic loads.Lecture Notes in Engineering,1990,61:338-347.
    [276]Ghosn M Chen G.Reliability model for bridge columns under seismic loads.Probabi-listic Mechanics and Structural and Geotechnical reliability,ASCE,1992:168-171.
    [277]Fu G K,Moosa A G.Performance based reliability assessment and calibration for seismic highway bridge design.Structures Congress-Proceedings,ASCE,1999:247-250.
    [278]管昌生.随机时变结构动力可靠度分析的Markov模型.武汉工业大学学报,2002,22(2):48-50.
    [279]赵雷,陈虬,路湛沁.考虑参数随机性的钢筋混凝土结构非线性地震可靠度分析,建筑结构学报,1999,20(3):23-24.
    [280]庄一舟,金伟良等.海洋导管架平台抗震可靠性分析方法,海洋学报,1999,21(5):129-136.
    [281]李国强.基于概率可靠度进行结构抗震设计的若干理论问题.建筑结构学报,2000,21(1):12-20.
    [282]门玉明,黄义.土层随机地震反应动力可靠度计算.西安工程学院学报,2002,24(1):43-48.
    [283]方同.工程随机振动.北京:国防科学出版社,1995.
    [284]欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998.
    [285]俞载道,曹国敖.随机振动理论及其应用.上海:同济大学出版社,1988.
    [286]曹宏,李秋胜,李芝艳.随机结构动力反应和可靠性分析.应用数学和力学,1993,14(10):
    [287]林家浩,张亚辉,赵岩.大跨度抗震分析方法及近期进展.力学进展,2001,31(3):350-360.
    [288]张亚辉,林家浩.多点非均匀调制演变随机激励下地震响应.力学学报,2001,33(1):87-95.
    [289]陈厚群,梁爱虎,杜修力.拱坝非均匀多点输入的抗震可靠度分析.城市与工程减灾基础研究论文集,北京:科学出版社,1995.
    [290]Lin J H.A fast CQC algorithm of PSD matrices for random seismic responses.Computers and structures,1992,44(3):683-687.
    [291]李建俊.随机地震响应分析的虚拟激励法:(博士学位论文).大连:大连理工大学,1994.
    [292]董聪.现代结构系统可靠性理论与应用.北京:科学出版社,2001.
    [293]Zimmerman J J,Ellis J H,Corotis R B.Stochastic optimization models for structural reliability analysis.Journal of Structural Engineering,1993,119(1):223-239.
    [294]董聪.结构系统可靠性理论:进展与回顾.工程力学,2001,18(4):79-89.
    [295]Stevenson J,Moses F.Reliability analysis of frame structures.Journal of Structural Division,ASCE,1970,96(ST11):2409-2427.
    [296]Moses F.New directions and research needs in system reliability research.Structural Safety,1990,7:93-100.
    [297]Feng Y S.Enumerating significant failure modes of a structural system by using criterion methods.Computers and Structures,1988,30(5):1153-1157.
    [298]冯元生,董聪.枚举结构主要失效模式的一种方法.航空学报,1991,12(9):537-541.
    [299]董聪,杨庆雄.结构系统静强度可靠性分析理论与算法.强度与环境,1993,2:1-8.
    [300]Murotsu Y,Okada H,Taguchi K,et al.Automatic generation of stochastically.dominant failure modes of frame structures.Structural Safety,1984,28(2):17-25.
    [301]Melchers R E,Tang L K.Dominant failure modes in stochastic structural systems.Structural Safety,1984,2:127-143.
    [302]Tang L K,Melchers R E.Dominant Mechanisms in stochastic plastic Reliability Engineering,1987,18:101-115.
    [303]Thoft-Christensen P,Murotsu Y.Application of structural systems reliability theory.1986 Springer-Verlag,Berlin.
    [304]Gorman M R.Automatic generation of collapse mode equations.Journal of the Structural Division,ASCE,1981,107(ST7):1350-1354.
    [305]Nafday A M,Corotis R B,Cohon J L.Filure mode identification for structural frames.Journal of Structural Engineering,1987,113(7):1415-1432.
    [306]Simoes L M C.Stochastically dominant modes of frames by mathematical programming.Journal of Structural Engineering,1990,116(4):1041-1059.
    [307]交通部公路规划设计院.公路桥涵钢结构及木结构设计规范(JTJ 025-86).北京:人民交通出版社,1987.
    [308]刘玉擎编著.组合结构桥梁.北京:人民交通出版社,2005.
    [309]严国敏.日本一座别具一格的斜拉桥-浜名湖曲塔混合梁斜拉桥.国外桥梁.1997(1):1-5.
    [310]赵鸿铁.钢与混凝土组合结构.北京:科技出版社,2001.
    [311]刘玉擎.混合梁接合部设计技术的发展.世界桥梁.2005,4:9-12.
    [312]崔玉萍.钢-混凝土组合梁疲劳问题概述.市政技术.2004,(1):6-13.
    [313]曹建安,叶梅新.结合梁栓钉极限承载力试验研究.长沙铁道学院学报.1999,17(1):16-20.
    [314]陈开利,刘海燕.木曾川桥、PC梁与钢梁连接部位设计和施工.世界桥梁.2005,(2):11-15.
    [315]陈开利,余天庆.混合梁斜拉桥结合段设计技术的新发展.铁道标准设计.2006,5):43-44.
    [316]雷昌龙.钢-混凝土组合桥中新的剪力连接器的发展与试验.国外桥梁.1999,(2):64-68.
    [317]池田尚治等著.钢-混凝土组合结构设计手册.北京:地震出版社,1992.
    [318]周昌栋,谭永高,宋官保编著.悬索桥上部结构施工.北京:人民交通出版社,2004.
    [319]邵旭东,胡建华编著.桥梁设计百问.北京:人民交通出版社,2005
    [320]Spyrakos C,Emory L.Kemp,Venkatareddy R.Validated Analysis of Wheeling Suspension Bridge.Journal of Bridge Engineering.1999,4(1):1-7.
    [321]Starossek U.Cable-Stayed Bridge Concept for Longer Spans.Journal of Bridge Engineering.1994,1(3):99-103.
    [322]Michel V.Recent evolution of cable-stayed bridges Engineering Structures.1999,39(5):737-755.
    [323]Ohnson RP.Resistance of stud shear connectosr to fatiuge.Jounrla of Constructional Steel Research.2000,56:101-116.
    [324]崔玉萍.钢-混凝土组合梁疲劳问题概述.市政技术.2004,(1):6-13.
    [325]雷昌龙.钢-混凝土组合桥中新的剪力连接器的发展与试验.国外桥梁.1999,(2):64-68.
    [326]徐君兰主编.悬索桥.北京:人民交通出版社,2001
    [327]张安哥,朱成九,陈梦成编著.疲劳、断裂与损伤.成都:西南交通大学出版社,2006.
    [328]曾春华,邹十践编译.疲劳分析方法及应用.北京:国防工业出版社,1991.
    [329]卢开澄,图论及其应用.北京:清华大学出版社,1984
    [330]Hughes O F.Ship Structural Design.John Wiley & Sons,UK,1983
    [331]陈伯真.薄壁结构力学,上海:上海交通大学出版社,1988
    [332]胡毓仁.船体薄壁梁的二次剪流和二次扭矩.上海:中国造船,1985:(2):50-56.
    [333]胡毓仁.陈伯真.船体薄壁梁水平弯曲与扭转耦合响应及其计算程序.中国造船编辑部,第四届船舶结构应力分析学术讨论会论文集,1986:66-76.
    [334]HuYuren.The Application of Graph Theory to the Limit Analysis for Torsion of Thin-Walled Bars.Journal of N M E,1988;26:2765
    [335]Kachanov L.M.,Foundations of the Theory of Plasticity,North-Holland Publishing Company,(1971).
    [336]Martin J.B.,Plasticity;Fundamentals and General Results,The MIT Press:(1975).
    [337]Gelsvik A.,The Theory of Thin Walled Bars,John Wiley & Sons,(1981).
    [338]S.P.铁摩辛柯,J.M.盖莱.弹性稳定理论.北京:科学出版社,1965.26-36.
    [339]唐冕.大跨度自锚式悬索桥的静动力性能研究与参数敏感性分析[博士论文].长沙:中南大学,2007.
    [340]Gimsing NJ.Cable systems for bridges.Vienna,Austria:Int Assoc for Bridge and Struct Eng,Zurich,Switz,1980:727-732.
    [341]李传习。夏桂云.大跨度桥梁结构计算理论.北京:人民交通出版社,2002.
    [342]小松定夫,西村宣南:吊构造の横断面变形を考虑した吊桥の立体解析,土木学会论文报告集,No.236,1975.
    [343]#12
    [344]#12
    [345]Birdsall B:The suspension bridge tower cantilever problem,ASCE,Vol.107,1942.
    [346]Kloppel K,Esslinger M,Kollmeier H:Die berechnung eingespannter und fest mit dem kabel verbundener hangbruckenpylonen bei beanspruchung in bruckenlangsrichtung,Der Stahlbau,Heft 12,1965
    [347]国广哲男,藤原稔,井刈治夫:还元法けょる吊桥主塔の桥轴方向の计算,土木研究所资料,No.588,1970.
    [348]小西一郎著,戴振藩译:钢桥⑤,人民铁道出版社,1981.
    [349]杨达文.辅助墩对斜拉桥动力性能的影响[J].广东土木与建筑.2003,6(5):62-63.
    [350]哈鸿,朱乐东.桥塔型式对斜拉桥动力性能影响[J].同济大学学报.1999,27(2):216-219。
    [351]克拉夫R W(王光远译).结构动力学.北京:科学出版社,1981.
    [352]曾攀,钟铁毅,闫贵平.大跨径斜拉-悬吊协作体系桥动力分析.计算力学学报,2002,19(4):472-476.
    [353]张新军,孙炳南,陈艾荣等.斜拉-悬吊协作体系桥的颤振稳定性研究.土木工程学报,2004,37(7):106-110.
    [354]苏成,韩大建,王乐文.大跨度斜拉桥三维有限元动力模型的建立.华南理工大学学报(自然科学版),1999,22(11):51-56.
    [355]张启伟,冯敏袆.自锚式混凝土悬索桥的动力分析.同济大学学报,2004,12:1562-1566.
    [356]刘春城,张哲,石磊.自锚式悬索桥的纵向地震反应研究.武汉理工大学学报,2002,26(5):607-610.
    [357]Miyazaki M.,et al.Stay-cable systems of long span suspension bridges for coupled flutter.In:2EACWE,Genova.Italy,1997,1529-1536.
    [358]Yoneda M.,Ohno K.,Nakazaki S.,Effects of asymmetrically added temporary mass on the windward side of the deck on the compound flutter speed of an ultra long span suspension bridge.New construction technologies.Session 2,1996.
    [359]黄海新,张哲.自锚式斜拉悬吊协作体系桥的动力分析.大连理工大学学报,2007.557-562.
    [360]Ernesto H Z,Vanmarcke E H.Closure on the discussion.ASCE,Journal of Engineering Mechanics,1995,121:1038.
    [361]Carassale L,Tubino F,Solari G.Seismic response of multi-supported structures by proper orthogonal decomposition.Int Conference on Advances in Structural Dynamics(ASD2000),Hong Kong:Elsevier Science Ltd,2000:827-834.
    [362]Lin Y K,Zhang R,Yong Y.Multiply supported pipeline under seismic wave excitations.ASCE,Journal of Engineering Mechanics,1990,116:1094-1108.
    [363]庄表中,王行新.随机振动概论.北京:地震出版社,1982.
    [364]张元凯,肖汝诚,金成棣.自锚式悬索桥的设计[J].桥梁建设,2002,22(5):30-32.
    [365]John A O,David P B.Self-anchored suspension bridges[J].Journal of Bridge Engi-neering,1999,4(3):151-156.
    [366]吴斌暄,王磊,王歧峰.使用非线性粘滞阻尼器的桥梁在地震反应中的响应分析[J].公路交通科技,2007,24(10):76-80.
    [367]Housner G W.Characteristic of strong motion earthquakes.Bull.Seism.Soc.Am.,1947,37:17-31.
    [368]Kanai K.Semi-empirical formula for seismic characteristic of the ground..东京大学地震研究所汇报,1957,35(2).
    [369]胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应.地震工程研究所报告集,第一集,1962.
    [370]Ruiz P,Penzien J.Probabilistic study of the behavior of structures during earthquakes.Earthquake engineering.C.,UCB,CA,Report No.EERC69-03,1969.
    [371]欧进萍,牛荻涛.地震地面运动随机模型的参数及其结构效应.哈尔滨建筑工程学院学报,1990,10(2):70-76.
    [372]Kaul M K.Stochastic characterization of earthquake through response spectrum.Earthquake Engineering and Structure Dynamics.1978,6(5):497-510.
    [373]孙景江,江近仁.与规范反应谱对应金井清谱的谱参数.世界地震工程,1990,8(1):42-48.
    [374]European Committee for standardization,Eurocode 8:Structural responses to arbitrarily inhomogeneous random fields,Earthquake Engineering structure Dynamics,1988,112(2):154-175.
    [375]陈艳.中大跨度桥梁抗震设计规范算法和参数研究:(硕士学位论文).大连:大连理工大学,2005.
    [376]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [377]王君杰.多点多维地震随机模型结构的反应谱分析方法:(博士学位论文).哈尔滨:国家地震工程力学研究所,1992.
    [378]Oliveira C S,Hao H,Penjien J.Ground motion modeling for multiple-input structural analysis,Structural Safety,1991,10:79-93.
    [379]Harichandran R S.Estimating the spatial variation of earthquake ground motion from dense array recordings,Structural Safety,1991,10:219-233.
    [380]冯启民,胡聿贤.空间相关地面运动的数学模型.地震工程与工程振动,1981,1(2):1-8.
    [381]Loh C.H,Yeh Y.T.Spatial variation and stochastic modeling of seismic differential ground movement.EESD,1988,16:583-596.
    [382]张亚辉,赵岩,张春宇.大跨度桥梁抗震分析空间效应,中国铁道科学,2002,23(6):90-94.
    [383]Davernport A G.Note on the distribution of the largest value of a random function with application to gust loading.Proc.Inst.Civil Eng.,1961,28(2):87-196.
    [384]黄海新,张哲.多点激励下自锚式斜拉悬吊协作体系桥地震反应分析,地震工程与工程振动,2007,27(5):124-128.
    [385]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001.
    [386]Nicos M,Constantinous M C,Dargush G F.Analytical model of viscoelastic fluid dampers[J].Journal of Structural Engineering,1993,119(11):3310-3325.
    [387]王志强,范立础.东海大桥粘滞阻尼器参数研究[J].中国公路学报,2005,18(3):37-42.
    [388]周云.粘滞阻尼减震结构设计[M].武汉:武汉理工大学出版社,2006.
    [389]龙旭,吴斌等.抗震结构的阻尼减震效果分析[J].世界地震工程,2001,17(1).
    [390]林新阳,周福霖.消能减震的基本原理和实际应用[J].世界地震工程,2002,18(3)
    [391]陈政清.桥梁风工程.北京:人民交通出版社,2005.
    [392]埃米尔·希缪,罗伯特·H·斯坎伦著,刘尚培,项海帆,谢霁明译.风对结构的作用-风工程导论.上海:同济大学出版社,1992.
    [393]中交公路规划设计院.公路桥梁抗风设计规范(JTG/T D60-01).北京:人民交通出社,2004.
    [394]R.H.Scanlan,J.J.Tomko.Airfoil and bridge deck flutter derivatives.Journal of the Engineering Mechanics Division,ASCE,1971,97(EM6):1171-1737.
    [395]A.G.Davenport.Buffeting of a suspension bridge by storm winds.J.Struct.Div.,ASCE,1962,88(3):233-268.
    [396]Namini.A.H.Finite element-based flutter analysis of cable-suspended bridge.J.Struct.Engrg.[J].ASCE,1992,118(6):1509-1526.
    [397]张新军.大跨径桥梁三维非线性颤振分析[D].上海:同济大学桥梁系,2000.
    [398]陈艾荣,宋锦忠.镇江扬州长江大桥抗风性能研究报告[R].同济大学土木工程防灾国家重点实验室,2000
    [399]BoonyapinyoV,Yamada H,Miyata T.Wind-induced Nonlinear Lateral torsional Buckling of Cable-stayed Bridges[J].J.Struct.Engrg.,ASCE,1994.120(2):486-506.
    [400]Jain A,Jones N P,Scanlan R H.Coupled Aeroelastic and AerodynamicResponse Analysis of Long-span Bridge[J].J.Wind Engrg.Indust.Aeralyn.1996,60:69-80.
    [401]Miles J W.On structural fatigue under random loading.Journal of Aeron Science,1954,21:753-768.
    [402]Vanmarcke E H,Lai S S-P.Strong motion duration and RMS amplitude of earthquake records.BSSA,1980,7(4):1293-1307.
    [403]Park Y J,Ang A H-S.A mechanistic seismic damage model for reinforced concrete.Engineering Structures,1983,111:722-739.
    [404]李杰,李国强编著.地震工程学导论[M].北京:地震出版社,1992年.
    [405]Berrah M K,Kausel E.A modal combination rule for spatially varying seismic motions[J].Earthquake Eng.Struct.Dyn.,1993,22(9):791-800.
    [406]Berrah M K,Kausel E.Response spectrum analysis of structures subjected to spatially varying motions[J].Earthquake Eng.Struct.Dyn.1993,21(6):461-470.
    [407]Gupta A K.Response spectrum methods in seismic analysis and design of structures [M].Blackwell,Cambridge,MA,1990.
    [408]Kiureghian A D,Neuenhofer A.Response spectrum method for multi-support seismic excitations[J].Earthquake Eng.Struct.Dyn.,1992,21:713-740.
    [409]Heredia-Zavoni E.Vanmarcke E H Journal of the Engineering Mechanic Seismic random-vibration analysis of multi-support structure systems[J].Journal of the Engineering Mechanic,1994,12(5):1107-1128.
    [410]Yamamura N,Tanaka H.Response analysis of flexible MDF system for multiple-support seismic excitations[J].Earthquake Eng.Struct.Dyn.,1992,19:345-357.
    [411]Ernesto H Z,Vanmarcke E H.Seismic random vibration analysis of multi-support structural systems.ASCE,Journal of Engineering Mechanics,1994,120:1107-1128.
    [412]Harichandran R S,Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time.Journal of Engineering Mechanics,ASCE,1986,112(2):154-175.
    [413]Kiureghian A D,Neuenhofer A.Response spectrum method for multi-support seismic excitaions.Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [414]Housner G W.Characteristic of strong motion earthquakes.Bull.Seism.Soc,Am.,1947,37:17-31.
    [415]Kanai K.Semi-empirical formula for seismic characteristic of the ground.东京大学地震研究所汇报,1957,35(2).
    [416]胡聿贤,周锡元.弹性体系在平稳和非平稳化地面运动下的反应.地震工程研究所报告集,第一集,1962.
    [417]Kaul M K.Stochastic characterization fo earthquake through their response spectrum.Earthquake Engineering and Structure Dynamics,1978,6(5):497-510.
    [418]Lin J H,Zhang Y H,Zhao Y,Zhong W X.Seismic spatial effects of long-span bridges.WCCM-V Vienna,2002,2:335.
    [419]李生勇.自锚式悬索桥结构可靠度研究:(博士学位论文).大连:大连理工大学,2007.
    [420]Yamamura N,Tanaka H.Response analysis of flexible MDF system for multiple-support seismic excitations.Earthquake Engineering Structure Dynamics.1990,19:345-357.
    [421]Brunean M.Evaluation of system reliability methods for cable-stayed bridge design.J.Struct.Engrg.,ASCE,1992,118(4):1106-1120.
    [422]Cornell C A.Bounds on the reliability of structural systems.J.Struct.Div.,ASCE,1967,93(ST1).
    [423]Ditilevsen O.Narrow reliability bounds for structural systems.J.Struct.Mech.,1979,7(4):453-472.
    [424]Das P C.Reliability analysis of bridges:past and potential applications.Bridge Assessment Management and Design,1994,133-138.
    [425]Frangopol D M,et al.Lifecyle cost design of deteriorating structures.J.Struct.Eng·,ASCE,1997,123(10):1390-1401.
    [426]Ghosn M.Development of design factors for redundant concrete bridges.Probabilistic Mechanics and Structural Reliability,1996,716-719.
    [427]Head P R.The performance of bridge 'system' the next frontier for design and assessment.The Structure Engineer,1991,69(17):310-316.
    [428]Kam J C P,et al.A review of structural system reliability analysis for offshore structures.C.MAE-1995(1271) 1-12.
    [429]Karamchandani A,Cornell C A.Structural system reliability methods.Standford University Report,1987,JABEE Center,No.83.
    [430]Mandel E D,et al.Implementation of LRFD bridge specifications:consultant perspective.Structural Engineering World Wide,1998.
    [431]Kamei M,Maruyama T,Tanaka H.Japan.Konohana Bridge.Japan(IABSE) Structural Engineering International SEI,1992,2(1).
    [432]Feng Y S.A method for computing system reliability with high accuracy.Computers & Structures,1989,33(1):1-5.
    [433]Thoft-Christensen P,Murotsu Y.Application of structural systems reliability theory.Spring-Verlag,Berlin,Heidelberg,New York,Tokyo,1986.
    [434]姚继涛,赵国藩,浦聿修.二维标准正态联合概率计算.建筑结构学报,1996,17(4):10-19.
    [435]刘宁著.可靠度随即有限元法及其工程应用[M].北京:中国水利水电出版社,2001年.
    [436]秦权,林道锦,梅刚著.结构可靠度随机有限元一理论及工程应用[M].北京:清华大学出版社,2006年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700