用户名: 密码: 验证码:
凸轮轴数控磨削工艺智能应用系统的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削加工是机械制造业重要的加工方法,大多数情况下,作为最终加工工序的磨削加工,直接决定着工件成品的质量。当前磨削加工所面临的主要问题是严重依赖操作人员的经验,磨削加工工艺方案的确定方式仍以传统的“试切”法和“经验”法为主,加工效率低,加工柔性差,磨削加工工艺知识数据难以积累和重用。凸轮轴作为汽车、内燃机、国防等众多行业所需的关键零部件,其加工的精度、效率直接影响着发动机及相关产品的质量、寿命和节能标准。本文以凸轮轴数控磨削加工为研究对象,以加工工艺最优化和智能化为目标,开发了专门针对凸轮轴数控磨削加工的工艺智能优选与数控加工软件平台,该软件平台拥有机床库、砂轮库、材质库、冷却液库、工艺辅件库等基础工艺数据库,拥有工艺实例库、元知识规则库、预报模型库等工艺智能库,软件平台在数据库的支持下能实现凸轮轴磨削加工工艺方案的智能优选和自动数控加工编程。由于该软件平台涉及的研究内容众多,本文主要针对磨削加工工艺系统运动过程的建模、凸轮轴数控磨削加工智能平台软件的体系架构、磨削工艺问题的定义、工艺系统3D虚拟磨削加工仿真、磨削加工数控自动编程等内容进行研究。具体所做的研究工作内容主要包括如下:
     建立了凸轮轴数控磨削工艺智能应用平台软件的系统框架。确立了系统的运行框架及主要功能模块,即磨削工艺专家系统模块、磨削工艺智能优选模块、磨削误差分析与智能补偿模块、工艺问题定义模块、3D虚拟磨削仿真模块、磨削速度优化与调节模块、磨削加工自动数控编程模块、通用数学模型求解模块、基础工艺核心数据库与工艺智能库模块等。并对主要构成功能的总体性要求和所采用的技术思路做了分析。
     对零件加工的工艺问题详细探讨了加工工艺问题的具体信息构成,对加工的工艺类别的具体划分作了讨论并给出了分类方法,建立了基于信息理论的制造资源信息模型和零件信息模型,在这两个模型的基础上,提出了加工工艺问题定义模块的总体结构,建立了工艺问题信息描述的通用模型,据此,结合凸轮轴具体加工工艺详细阐述了凸轮轴加工工艺问题定义模型建立的过程,建立了凸轮轴磨削工艺问题定义的理论模型,并依据该模型开发了对应的功能模块。
     对凸轮轴磨削过程3D虚拟仿真技术的开发进行了详细的理论分析和实践探讨。对3D虚拟仿真的框架进行了具体设计,规划了其主要的功能构成。建立了磨削加工工艺系统几何架构模型、磨削加工工艺系统运动模型、磨削加工工艺系统运动模型装配树等仿真理论原理模型。探讨了实现虚拟运动仿真的轨迹运动数据驱动原理与方法。通过采用OpenGL技术,实现了基于以上原理模型的凸轮轴磨削加工3D虚拟仿真环境及加工运动仿真等功能。
     确立及实现了凸轮轴磨削自动数控加工编程框架体系方案。提出了凸轮轴磨削自动数控加工编程技术框架,对砂轮走刀轨迹规划和自动计算进行了理论研究,提出了轨迹自动规划与计算方案。讨论了基于砂轮走刀轨迹的机床各运动轴的运动解析原理,并建立了机床运动的通用解析模型,依据该模型实现了机床运动仿真的数据驱动,最终依据运动驱动数据生成了数控加工程序,用于实际零件加工
     提出了凸轮轴磨削加工速度优化与调节的理论原理和技术方法。根据X-C轴联动磨床的运动原理,采用三次样条插值法,建立了凸轮转速优化调节的数值计算模型。结合具体凸轮轴零件及其磨削加工工艺方案的具体参数,计算出机床各运动轴加工过程的运动数据,在确保无工艺故障的前提下,最终把各轴的运动数据自动转换为对应数控控制系统的数控加工程序,从而进一步提高凸轮轴的加工精度、表面质量和加工效率。
     对凸轮轴数控磨削工艺智能应用软件进行了开发与实验验证。对软件整体、工艺问题定义模块、磨削加工过程3D虚拟仿真、加工速度优化与调节、磨削数控自动编程等模块进行了相应的程序设计和软件开发,实现了各功能模块的总体集成。以某型凸轮轴磨削加工为例对平台软件的合理性和有效性进行了验证。
Grinding process is an important processing method of machinery manufacturing industry. In most instances, grinding process that acts as the last manufacturing procedure directly decided the manufacturing quality of a manufactured product. At the moment, the principal problem facing the grinding process is extremely dependent upon the experiences of the worker. Grinding process solution is mainly still determined by conventional trial cut and empirical approach, which could be lower efficiency and worse flexibility and would to make it dificultly when the grinding process knowledge data be accumulated and reused. Camshaft is one of the key parts of many industries such as vehicle, internal-combustion engine, national defense and so on. Its processing accuracy and efficiency has directly influenced on the quality, life and energy-saving standard of the engines and other allied products.Tthis paper kept the camshaft NC grinding as object of study, and took process optimization and intelligentize as method. A software platform, that specially aim at camshaft NC grinding process intelligent optimum decision and digital control processing, has been developed. This software platform has a base process database and a process intelligent database. The base process database contains data of machine tool, grinding wheel, material, coolant and process auxiliary, etc. The process intelligent database stores data of process case, rule metadata, prediction model and so on. Based on the databases, the software platform can execute camshaft grinding process solution intelligent optimum decision and automatically NC programming. There was so much study content involved of the software platform that this paper could only analysis and discuss those objects as grinding process system movement modeling, system framework of camshaft NC grinding intelligent software platformware, grinding process problem definition,3D virtual machining of grinding process system, digital control grinding automactically NC programming and so on. The main study work included as follows:
     The intelligent software platform frame of camshaft digital control grinding has been built. The operating framework and the functional module of system have been defined including the expert system of grinding process module, the intelligent optimum decision of grinding process module, the error analysis and intelligent compensation module, the process problem definition module, the3D virtual grinding simulation module, the grinding speed optimization and regulating module, the automactical digital control grinding module, the general mathematical model solving module, the base process core database and process intelligent database module. The entire property of the main functional modules and the technical ideas used are also analysised.
     The process problem of workpiece was defined. The information structure detail of process problem was detailedly studied. The process classification concrete determining was discussed and a means of classification was provided. The manufacturing resources information model and part information model based on ormation theory are created. On the basis of the two models, the whole architecture of process problem was provided and the general description information model of process problem was also built. According to camshaft specific grinding process, the procedure of camshaft grinding process problem model building was elaborated, and the theoretic model of camshaft grinding process problem space has been created, and the theoretic model has also been instantiated.
     Development and implementation of camshaft grinding3D virtual simulation technology were theoretical analysised and practical researched. According to practical situation of enterprise, general requirement and overall technical architecture of camshaft grinding simulation were brought out. The framework of3D virtual simulation was specifically schemed out and the main constitutive functions were also programed. The grinding process system theoretic models including geometrical framework model, system kinematics model and the kinematics assembly tree were created. The path movement data driven principle and method of virtual kinetic simulation were discussed. The3D virtual simulation environment and realistic scene grinding movement simulation of camshaft grinding were realized by adopting OpenGL technique.
     The automatic NC programming framework architecture of camshaft digital control grinding has been confirmed and realized, and it's technical framework has been provided. The theoretical study of wheel path layout and automatical computation were done. The path automatical planning and calculational procedure have been proposed. The movement analytical principle of machine tool all motion axles, which were based on wheel path, particularly discussed. The general analytical model of axles motion was been created. The data driven of machine kinetic simulation was achieved by this model. At last, the NC program has been builded by those data of driven, and also been used to real part machining.
     The theoretical model of constant linear velocity grinding process of camshaft has been established according to the X-C Axis linkage motion principle of grinding machine. Base on this theoretical model, a numerical calculation model of grinding speed optimization and regulation has also be built by way of cubic spline fitting interpolation method. Combined with the specific camshaft part and the real parameter of the grinding processing plan, the processing motion data all of grinding machine kinematic axises were calculated. And then the motion data were automatically changed into NC processing program of specified numerical control system without processing faults.By the way, the machining precision, surface quality and processing efficiency of camshaft would further more improved.
     The camshaft digital control grinding intelligent software platform has been developed and experimental verified. The soft programming approach and interface development have been done about the overall intelligent software platform, the process problem definition module, the3D virtual grinding simulation module, the grinding speed optimization and regulating module and the automactical digital control grinding programming module, and all of models have been systematically integrated. At last, the software platform rationality and validity have inspected and verified by a certain camshaft grinding machining practice.
引文
[1]中国科学技术协会主编,中国机械工程学会编著.机械工程学科发展报告(2008-2009)(机械制造).北京:中国科学技术出版社,2009,2-15
    [2]中华人民共和国国务院,国家中长期科学和技术发展规划纲要(2006-2020年).http://www.gov.cn/jrzg/2006-02/09/content_183787.htm,2006,02,09
    [3]S Malkin.磨削技术理论与应用.蔡光起,巩亚东,宗贵亮译.沈阳:东北大学出版社,2009,201-221
    [4]Liu Q., Chen X., Wang Y.,et al. Empirical modelling of grinding force based on multivariate analysis. Journal of Materials Processing Technology,2008,203 (1-3):420-430
    [5]Warren Liao T., Chen L. J. A neural network approach for grinding processes: Modelling and optimization. International Journal of Machine Tools and Manufacture,1994,34(7):919-937
    [6]Yadav V., Jain V. K., Dixit P. M. Modeling and predicting surface roughness of the grinding process. International Journal of Machine Tools and Manufacture,2002, 42 (8):969-977
    [7]Chen X., Rowe W. B. Analysis and simulation of the grinding process. Part Ⅱ: Mechanics of grinding. International Journal of Machine Tools and Manufacture, 1996,36(8):883-896
    [8]Tonshoff H. K., Peters J., Inasaki I.,et al. Modelling and Simulation of Grinding Processes. CIRP Annals-Manufacturing Technology,1992,41 (2):677-688
    [9]Alagumurthi N., Palaniradja K., Soundararajan V. Optimization of grinding process through Design of Experiment (DOE)- A comparative study. Materials and Manufacturing Processes,2006,21 (1):19-21
    [10]Chen G., Mei X., Zheng T. Research on the key technologies of CNC noncircular camshaft grinding.2009:4528-4533.
    [11]杨慎华,张驰,寇淑清等.装配式凸轮轴制造技术现状与发展趋势.内燃机工程,2004,25(2):32-34
    [12]彭欣健,徐剑.凸轮轴加工中CBN磨削技术的应用与研究.装备制造技术,2010,(3):100-123
    [13]涂鲜萍,颉谭成.凸轮靠模廓形的设计.制造技术与机床,2004,(12):57-58
    [14]孙志永,郑军,韩秋实.数控凸轮轴磨床机械设计.制造技术与机床,2003,(10):37-38
    [15]Sun Z., Tsao T. C. Process feedback control of the noncircular turning process for camshaft machining. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2008,130 (3)
    [16]Hitchiner M., Webster J. Recent advances in camshaft and crankshaft grinding. Abrasives,2001, (APR./MAY):7-12
    [17]刘战强,黄传真,万熠.切削数据库的研究现状与发展.计算机集成制造系统,2003,9(11):937-943
    [18]Virkki-Hatakka T., Reniers G. L. L. A case-based reasoning safety decision-support tool:Nextcase/safety. Expert Systems with Applications,2009, 36(7):10374-10380
    [19]Kimura F. Product and Process Modeling as a Kernel for Virtual Manufacturing Environment. Annual of The CIRP,1993,42(1):85-93.
    [20]肖田元.虚拟制造及其在轿车数字化工程中的应用.系统仿真学报,2002(3):342-347
    [21]于位灵,万军.虚拟制造技术(VMT)的发展与应用研究.制造业自动化2008(2):1-4
    [22]王国新,宁汝新等.仿真优化在制造系统中的应用现状及发展趋势.系统仿真学报,2008,20(1):1-6
    [23]沙智华,葛研军,赵亮等.切削加工仿真建模技术研究.系统仿真学报,2005,17(4):789-792
    [24]龚祝平.基于复杂性思维的制造信息系统建模研究[博士学位论文].广州:华南理工大学.2007.
    [25]李阳,赵永成,魏兰.数控加工仿真技术研究综述.系统仿真技术,2008,4(2):111-116
    [26]纪玉坤,曹利新.基于UG的五轴数控机床加工仿真.计算机仿真,2006,23(1):215-218
    [27]虞文武,靳敏,张小强.基于Pro/E的螺旋面钻尖刃磨机床运动仿真.煤矿机械,2007,28(1):46-48
    [28]刘洪贵,易传云.数字化齿面展成加工运动仿真研究.工具技术,2004,38(5):11-13
    [29]Wu Nanxing, Sun Qinghong, et al.Kinematics simulation and application for machine tool based on multi-body system theory.Journal of Southeast University(English Edition),2004,20(2):162-164
    [30]张天其,于忠海,张晓峰.数控机床三维建模与加工仿真技术研究.机械工程师,2009,(1):62-63
    [31]王小彬,王太勇等.虚拟制造中数控加工过程三维仿真技术的研究.机床与液压.2004(6):13-15
    [32]周静,陆宝春.数控仿真系统三维建模技术研究.机床与液压,2007,35(4):68-70
    [33]郝娟,张建民,王增平.6-PSS并联加工机加工过程仿真研究.机械与电子,2001,1(1):35-36
    [34]郑魁敬,赵永生.基于OpenGL的并联机床律模与运动仿直枯术.工具技术.2006,40(2):16-20
    [35]石丽娜.基于Web的球头刀铣削过程物理仿真系统开发[硕士学位论文].天津:河北工业大学,2007
    [36]王德跃.VERICUT软件在五轴高速铣加工中的应用.航天制造技术,2010(2):86-88
    [37]曲洪萍,胡德计,李充宁.数控加工仿真技术发展分析.中国新技术新产品,2009(15):143-143
    [38]高峰.在钻铣镗类加工中心上零件加工工艺优化的研究和系统实现[硕士学位论文].西安:西安交通大学.2002.
    [39]张杰.基于几何特征推理的轴类零件加工工艺生成方法与系统研究[硕士学位论文].上海:上海交通大学.2006.
    [40]巢炎.基于公差约束的CAPP的关键技术研究[博士学位论文].杭州:浙江大学机械与能源工程学院.2006.
    [41]卢慧敏.齿轮类零件CAPP专家系统的开发与研究[硕士学位论文].郑州:郑州大学.2007.
    [42]谢莉.计算机辅助可重构机床运动功能方案设计[硕士学位论文].西安:西安理工大学.2008.
    [43]葛军.离合器压盘特征识别关键技术研究[硕士学位论文].武汉:武汉理工大学.2010.
    [44]曲学军,席平.加工仿真系统中弯管类零件加工工艺信息的自动提取.计算机仿真,2002,19(5):78-80
    [45]杨敏,苏炜.可扩展的箱体类零件工艺知识管理.电子设计工程,2010,18(7):74-76
    [46]臼井英治.切削磨削加工学.高希正,刘德忠译.北京:机械工业出版社,1982,60-198
    [47]任敬心,华定安.磨削原理.西安:西安工业大学出版社,1988,1-91
    [48]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003,22-26
    [49]Chen X., Rowe W. B. Analysis and simulation of the grinding process. Part I: Generation of the grinding wheel surface. International Journal of Machine Tools and Manufacture,1996,36 (8):871-882
    [50]Hecker R. L., Liang S. Y. Predictive modeling of surface roughness in grinding. International Journal of Machine Tools and Manufacture,2003,43 (8):755-761
    [51]Warnecke G., Zitt U. Kinematic simulation for analyzing and predicting high-performance grinding processes. CIRP Annals- Manufacturing Technology, 1998,47(1):265-x254
    [52]Cooper W. L., Lavine A. S. Grinding process size effect and kinematics numerical analysis. Journal of Manufacturing Science and Engineering, Transactions of the ASME,2000,122 (1):59-69
    [53]Gong Y. D., Wang B., Wang W. S. The simulation of grinding wheels and ground surface roughness based on virtual reality technology. Journal of Materials Processing Technology,2002,129 (1-3):123-126
    [54]Domala Krishna-Vinod, Salisbury Erik J., Moon Kee S.,et al. Three-dimensional geometric model for the surface texture generated by a single pass of the wheel in a surface grinding process.1995:363-375.
    [55]Doman D. A., Warkentin A., Bauer R. A survey of recent grinding wheel topography models. International Journal of Machine Tools and Manufacture, 2006,46 (3-4):343-352
    [56]Lichun L., Jizai F., Peklenik J. A Study of Grinding Force Mathematical Model. CIRP Annals-Manufacturing Technology,1980,29 (1):245-249
    [57]Malkin S. Grinding Technology theory and applications of machining with abrasives.1989. Society of manufacturing engineers,1989, (275):23-68
    [58]李力钧,付杰才.磨削力的数学模型的研究.机械工程学报.1981.17(4):31-41
    [59]Tang J., Du J., Chen Y. Modeling and experimental study of grinding forces in surface grinding. Journal of Materials Processing Technology,2009,209 (6):2847-2854
    [60]王颖淑,丁宁.外圆纵向磨削加工磨削力模型.长春大学学报,2005,15(6):1-3
    [61]Rowe W. B., Black S. C. E., Mills B.,et al. Grinding temperatures and energy partitioning. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1997,453 (1960):1083-1104
    [62]Rowe W. B., Black S. C. E., Mills B.,et al. Analysis of grinding temperatures by energy partitioning. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,1996,210 (6):579-588
    [63]Guo C., Wu Y., Varghese V.,et al. Temperatures and energy partition for grinding with vitrified CBN wheels. CIRP Annals-Manufacturing Technology,1999,48 (1):247-250
    [64]赵恒华,蔡光起,李长河等.高效深磨中磨削温度和表面烧伤研究.中国机械工程,2004,15(22):2048-2051
    [65]Anderson D., Warkentin A., Bauer R. Experimental validation of numerical thermal models for dry grinding. Journal of Materials Processing Technology, 2008,204 (1-3):269-278
    [66]Ghosh S., Chattopadhyay A. B., Paul S. Modelling of specific energy requirement during high-efficiency deep grinding. International Journal of Machine Tools and Manufacture,2008,48 (11):1242-1253
    [67]Agarwal S., Venkateswara Rao P. A new surface roughness prediction model for ceramic grinding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2005,219 (11):811-821
    [68]修世超,李长河,蔡光起.磨削加工表面粗糙度理论模型修正方法.东北大学学报(自然科学版),2005,26(8):770-773
    [69]Johnson E. C., Rui L., Shih A. J.,et al. Design of experiments based force modeling of the face grinding process.2008:241-248.
    [70]Vashista. M, Paul. S. Study of the effect of process parameters in high-speed grinding on surface integrity by Barkhausen noise analysis. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2008,222(12):1625-1637
    [71]郭黎滨,崔海,王立权等.基于均匀设计的水下金刚石绳锯磨削力研究.哈尔滨工程大学学报,2007,28(8):720-723
    [72]Klocke F., Beck T., Hoppe S.,et al. Examples of FEM application in manufacturing technology. Journal of Materials Processing Technology,2002, 120 (1-3):450-457
    [73]Rentsch R., Inasaki I. Investigation of Surface Integrity by Molecular Dynamics Simulation. CIRP Annals- Manufacturing Technology,1995,44 (1):295-298
    [74]林滨,吴辉,于思远等.纳米磨削过程中加工表面形成与材料去除机理的分子动力学仿真.纳米技术与精密工程,2004,2(2):136-140
    [75]赵恒华,蔡光起.纳米加工分子动力学仿真应用及实例.制造技术与机床,2008,(8):33-36
    [76]郭晓光,郭东明,康仁科等.单晶硅磨削过程分子动力学仿真并行算法.机械工程学报,2008,44(2):108-122
    [77]毛聪.平面磨削温度场及热损伤的研究:[博士学位论文].长沙:湖南大学,2008,80-96
    [78]王霖,葛培琪.基于有限元法的湿式磨削温度场分析.机械工程学报,2002,38(9):155-158
    [79]邓朝晖,荆琦,安磊.纳米结构WC/12Co涂层精密平面磨削表面残余应力有限元模拟与试验.机械工程学报,2008,44(7):58-62
    [80]夏语冰.无心外圆磨削仿真系统开发[硕士学位论文].无锡:江南大学,2008.
    [81]丁建国.虚拟数控外圆磨床磨削加工的初步研究[硕士学位论文].天津:河北工业大学,2007.
    [82]王伏林,陈静.数字化齿面磨削加工虚拟仿真研究.机械制造,2007,45(3):40-43
    [83]蔡磊.法向直廓蜗杆磨削运动仿真的研究:[硕士学位论文].武汉:武汉理工大学,2006
    [84]辜斌.低刚度、变截面轴电解磨削加工仿真技术[硕士学位论文].成都:西华大学,2008.
    [85]许顺强,廖文和等.基于ACIS和HOOPS平台的数控磨削加工仿真系统的开发.机械制造与自动化,2006,35(2):98-100
    [86]陈东祥,田延岭.超精密磨削加工表面形貌建模与仿真方法.机械工程学报,2010,46(13):186-191
    [87]葛培琪,王珉.基于改进BP网络的磨削加工数值仿真研究.工具技术,2006,40(4):28-31
    [88]王岚.工程陶瓷磨削加工仿真系统平台设计与开发[硕士学位论文].天津:天津大学,2007.
    [89]张云勇,刘韵洁,张智江.基于IPv6的下一代互联网.电子工业出版社.2004.7
    [90]田帅.螺旋曲面数控成形磨削自动编程技术的研究:[硕士学位论文].沈阳:沈阳工业大学,2006
    [91]朱明.基于ACIS的非圆曲面磨削自动编程关键技术的研究与实现:[硕士学位论文].南京:南京航空航天大学,2005
    [92]何耀雄.回转刀具数控磨削加工理论与编程技术的研究:[博士学位论文].武汉:华中理工大学,1999
    [93]王风云.基于Windows的磨削加工数控系统关键技术研究:[硕士学位论文].济南:山东大学,2004
    [94]张殿明,肖正扬,张伟.刀具螺旋槽磨削加工及其数控编程.大连轻工业学院学报,2006,25(4):299-302
    [95]丁仕燕,徐家文.数控超声磨削陶瓷型面自动编程系统研制.山东大学学报(工学版),2006,36(5):25-29
    [96]刘战强,武文革,万熠.高速切削数据库与数控编程技术.北京:国防工业出版社,2009,1-8
    [97]W. Brian Rowe, Li Yan, I. lnasaki, et al. Applications of Artificial Intelligence in Grinding. CIRP Annals- Manufacturing Technology,1994,43 (2):521-531
    [98]Choi T,Shin YC.Generalized intelligent grinding advisory system.Int. J. Prod. Res.,2007,45 (8):1899-1932
    [99]Cai R,Rowe WB,Moruzzi JL, et al.Intelligent grinding assistant (IGA)-System development part i intelligent grinding database.Int. J. Adv. Manuf. Technol.,2007,35 (1-2):75-85
    [100]袁巨龙,邓朝晖,熊万里等.高效磨削技术与装备进展及展望.航空制造技术,2010,(5):66-70
    [101]盛晓敏,宓海青,陈涛等.汽车凸轮轴的高速精密磨削加工关键技术.新技术新工艺,2006,8:61-64
    [102]何七荣,潘展,徐琳.凸轮轴型面简易数控磨削技术.新技术新工艺,2004,12:37-37
    [103]韩正铜,刘勤年.外圆磨削加工质量分析与控制.煤矿机械,1999,6:30-31
    [104]龚时华.凸轮轴高速磨削加工控制系统关键技术:[博士学位论文].武汉:华中科技大学,2008,1-15
    [105]Jackson M. J., Davis C. J., Hitchiner M. P.,et al. High-speed grinding with CBN grinding wheels- applications and future technology. Journal of Materials Processing Technology,2001,110 (1):78-88
    [106]Shimizu J., Zhou L. B., Eda H. Simulation and experimental analysis of super high-speed grinding of ductile material. Journal of Materials Processing Technology,2002,129 (1-3):19-24
    [107]侯亚丽,李长河,卢秉恒.超高速磨削相关技术与工业应用.轴承,2009,(3):51-56
    [108]冯宝富,蔡光起.超高速磨削的发展及关键技术.机械工程师,2002,(1):5-9
    [109]Xiu S. C., Cai G. Q., Li C. H. Study on surface finish mechanism in quick-point grinding. International Journal of Computer Applications in Technology,2007, 29(2-4):163-167
    [110]彭克立,黄险峰,刘涛.一种实用型数控凸轮轴磨床的磨削工作原理分析.制造技术与机床,2008,4:163-16
    [111]Portas G. N., Perkins D. R., Crookall J. R. A High Performance CNC Machine for Grinding Camshaft Profiles. CIRP Annals- Manufacturing Technology,1983, 32(1):331-333
    [112]章振华.切点跟踪及其关键技术在凸轮轴磨削中的应用:[硕士学位论文].长沙:湖南大学,2006,22-31
    [113]肖真健.数控磨床磨削凸轮轴类零件的数学模型与试验研究:[硕士学位论文].长沙:湖南大学,2001,34-45
    [114]章振华,周志雄,胡惜时.凸轮轴磨削的误差补偿新研究.金刚石与磨料磨具工程,2006,(2),65-67
    [115]韩秋实,王红军.基于pc的无靠模数控凸轮轴磨床.北京机械工业学院学报,1998,13(4):13-17
    [116]邓朝晖,李建,张晓红等.凸轮升程转换通用数学模型与试验研究.现代制造工程,2009,(6):91-94
    [117]刘兴富.凸轮测头转换与当量转角-升程问题探索.航空精密制造技术,2000,36(6):39-41
    [118]杨连生.内燃机设计.北京:机械工业出版社,1991,46-87
    [119]高安津,陈功军.不同形状挺杆对应的升程分析.汽车科技,2007,(2):30-33
    [120]张建琪.非圆轴工件恒线速度磨削加工的研究.机械制造,2003,41(12):30-32
    [121]周志雄,罗红平,许洪第等.切点跟踪磨削法中工件的刚度误差分析及其补偿.机械工程学报,2003,39(6):98-101
    [122]韩秋实,许宝杰,王红军等.磨削时凸轮转动变速规律的研究.机械工艺师,2000,(4):14-15
    [123]贾振元,傅南红,王振国等.凸轮轴变转速数控磨削方法的数学解析.大连理工大学学报,2000,40(3):320-322
    [124]李勇.影响数控凸轮轴磨削加工精度若干因素的研究:[博士学位论文].武汉:华中科技大学,2004,23-35
    [125]王淑君,韩秋实,钟建琳.基于恒磨除率的凸轮轴变速磨削研究.北京机械工业学院学报(综合版),2006,21(2):9-12
    [126]杨占玺,韩秋实,孙志永.基于PMAC的凸轮轴变速磨削加工研究.组合机床与自动化加工技术,2005,(7):87-94
    [127]钟建琳,韩秋实.保持磨除率恒定凸轮轴变速磨削的研究.机械设计与制造,2006,(9):78-79
    [128]张迎春,李修仁.由磨削力确定磨削凸轮时的变速规律.机床与液压,2001,(3):86-87
    [129]孙志永,楮大雁.数控凸轮轴磨床加工中的一些仿真技术.制造技术与机床,2006,(6):97-99
    [130]陈荣莲,程维明等.重型凸轮磨削温度场的仿真与实验研究.中国机械工程,2009,20(20):2431-2434
    [131]谢卫其,刘亮,陈荣莲.凸轮磨削中热耗的分析与研究.机械工程师,2010,(1):101-103
    [132]李勇,段正澄,胡伦骥.凸轮轴横磨结合纵磨磨削工艺所产生问题的分析与研究.机械科学与技术,2007,26(6):812-816
    [133]黄文生,毛国勇,张建生.数控凸轮磨削加工硬件与算法设计.制造业自动化,2009,31(12):37-40
    [134]邓朝晖,曾建雄.凸轮轴数控虚拟磨削技术的研究.现代制造工程,201 0,(1):55-59
    [135]曾建雄.凸轮轴数控磨削自动编程系统的开发及虚拟磨削技术研究:[硕士学位论文].长沙:湖南大学,2009
    [136]刘哲.车磨复合机床数控系统软件开发及凸轮磨削关键技术研究:[硕士学位论文].北京:北京信息科技大学,2008
    [137]常国强.凸轮磨削数学模型及编程方法研究:[硕士学位论文].沈阳:东北大学,2007
    [138]刘钢.具有模糊自适应控制能力的凸轮轴磨床数控加工软件系统的设计与分析:[硕士学位论文].北京:北京机械工业学院,1999.
    [139]侯亚丽,李长河,蔡光起.发动机曲轴凸轮轴CBN高速磨削加工.煤矿机械,2009,30(2):115-117
    [140]许第洪,孙宗禹,周志雄等.切点跟踪磨削法运动模型的研究.机械工程学报.2002,38(8):67-73.
    [141]余顺,陈庭,李志明等.凸轮数控磨削加工的通用数学模型研究.湖北工业大学学报.2005,20(3):97-99.
    [142]王红军,韩秋实,李光林等.数控凸轮轴磨床磨削参数智能化选择模型研究.制造技术与机床.2003,(11):34-37.
    [143]高峰,颜利湘,王清标等.西门子840D数控系统在CNC8312全数控凸轮轴磨床中的应用.数字设计与数字制造.2006,(9):23-25.
    [144]邓朝晖,张晓红,曹德芳等.基于实例推理的凸轮轴数控磨削工艺专家系统.机械工程学报.2010,46(21):178-186
    [145]张晓红.凸轮轴数控磨削工艺智能专家系统的研究及软件开发:[博士学位论文].长沙:湖南大学,2010.
    [146]Deng ZH, Zhang XH, Liu W, et al. A hybrid model using genetic algorithm and neural network for process parameters optimization in NC camshaft grinding. International Journal of Advanced Manufacturing Technology,2009, (45):859-866.
    [147]Deng ZH, Cao DF, Zhang XH, et al. Application of a Case-Based Process Expert System for NC Camshaft Grinding.Advanced Materials Research,2010, (10): 126-128.
    [148]Okafor A. C., Ertekin Y. M. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools and Manufacture,2000, 40(8):1199-1213.
    [149]曹德芳,万林林,邓朝晖.凸轮轴零件的参数化虚拟磨削加工.机械制造,2008.46(528):23-25.
    [150]D.F. Cao, Z.H. Deng, L.L.Wan, et al. Process Information Parameterization of Camshaft Part for Virtual High-speed Grinding. Advanced Materials Research, 2011,(188):652-656
    [151]曹德芳,王娟,邓朝晖.凸轮轴虚拟磨削加工三维实景的建立.金刚石与磨料磨具工程,2008.8(166)62-65.
    [152]张映锋,江平宇.e-制造系统的制造资源动态配置过程研究.计算机集成制造系统,2006(1):87-83
    [153]朱名铨,张树生等.虚拟制造系统与实现.西北工业大学出版社,2001,10
    [154]李玉忠,陈泽琳,杨振野.基于知识的虚拟设计研究.中国机械工程,2004(9):809-812
    [155]Lee W B, Cheung C F, Li J G. Applications of Virtual Manufacturing in Materials Processing. Journal of Materials Processing Technology,2001,11(3): 416-423
    [156]赵骥,朱名铨.虚拟生产线框架及其实现.中国机械工程,2000,11(6):671-674
    [157]徐建国,张友良.加工过程的可视化仿真.中国机械工程,2006,17(12):1265-1269
    [158]潘宝俊,唐文献.数控机床加工程序编制及设计制造一体化.北京:中国标准出版社,1998
    [159]叶蔷华.数字控制技术.北京:清华大学出版社,2002
    [160]张殿明,肖正扬,张伟.刀具螺旋槽磨削加工及其数控编程.大连轻工业学院学报,2006,25(4):299-302.
    [161]王媛媛,姚斌,张德云等.多线型组合平面刀具的自动编程磨削技术.工具技术,2010,44(3):48-50.
    [162]李桅,唐小琦,何耀雄等.盘形凸轮曲线数控编程的新型计算方法.机床与液压,2001,(2):21-22.
    [163]王太勇,张志强等.复杂参数曲面高精度刀具轨迹规划算法.机械工程学报.2007,43(12):109-113
    [164]Jun C S. Kim D S, Park S. A new curve based approach to poyhedral machining. Computer-Aided Design,2002,34(5):379-389
    [165]陈晓兵,廖文和.三角网格表面等残留高度刀轨生成算法.计算机辅助设计与图形学学报,2009,21(12):1800-1804
    [166]LO C C. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter[J]. Computer-Aided Design,1999,31:557-566.
    [167]任秉银,唐余勇.数控加工中的几何建模理论及其应用.哈尔滨工业大学出版社,2000
    [168]Ruegg A. A generalized kinematics model for three-to-five-axis milling machines and their implementation in a CNC.Annals of the CIRP,1992, 41(1):547-550.
    [169]Soons J A, Theuws F C,Schellekends P H.Modeling the errors of multi-axis machines: a general methodology. Precision Engineering,1992,14(1):2-11.
    [170]Eman K F, Wu B T. A generalized geometric error for multi-axis. CIRP, 1987.36(1)253-256.
    [171]Srivastava A K,Veldhuis S C, Elbestawit M A. Modelling geometric and thermal errors in a five-axis CNC machine tool. Int J M Tools Manufact, 1995,(35)9:1321-1337.
    [172]王刚,赵万生等.数控机床通用后置处理程序的开发.机械,2000,27(3):4-6
    [173]黎坚,周艳红等.多坐标数控机床通用运动学模型的建立.中国机械工程,1999,19(1):4-6
    [174]陈涛,彭芳瑜,周云飞.基于结构误差补偿的多坐标机床后置变换.中国制造业信息化,2003,32(2):88-90
    [175]刘雄伟.数控加工理论与编程技术.北京:机械工业出版社,2000,5
    [176]Mayer J E,Fang G P, Efficient High Strength Finish Grinding of Ceramics, Annals of The CIRP 1995 44(1)297-282
    [177]李佳,徐燕申,彭泽民CAD/CAM中五轴NC加工后处理关键技术研究.天津大学学报,1998(3):284-289
    [178]实用数控加工技术编委会.实用数控加工技术.北京:兵器工业出版社,1995.4
    [179]彭芳瑜,彭程等.七轴五联动车铣机床的恒表面进给速度控制.机械与电子,2002(5):23-25
    [180]罗红平,周志雄,孙宗禹等.凸轮轴切点跟踪磨削加工策略.湖南大学学报,2002,(6):61-66.
    [181]邓朝晖,王娟,曹德芳等.凸轮轴磨削加工过程的动态优化和仿真.湖南大学学报,2009,36(5):21-25
    [182]周济,周艳红.数控加工技术.北京:国防工业出版社,2002
    [183]Guzel B U,Lazoglu I.Increasing Productivity inSculpture Surface Machining Via off Line Piecewise Variable Feed-rate Scheduling Based on the Force System ModelEJ2.International Journal of Machine Tools&Manufacture,2004,44:21-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700