用户名: 密码: 验证码:
一种大功率气体燃料发动机电控喷射装置的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体燃料发动机有着有害污染物和二氧化碳排放量相对少的优势,不仅在高效清洁利用能源,而且在有效利用工业可燃废气等方面均可以发挥重要作用,节能减排与环境保护推动着气体燃料发动机的技术进步与广泛应用。
     气体燃料电控喷射装置的应用,可实现多点顺序间歇供气方式在发动机各缸进气道前顺序间歇(一般在进气过程中)供入气体燃料,可以有效解决发动机进气道及进气管内回火、扫气阶段气体燃料流失等问题,改善发动机性能,适用于各类气体燃料,所需气体燃料的压力较低,特别适用于需要大流量、低压力的供气场合。为了实现在气体燃料发动机经济性、动力性及排放指标等方面达到国外先进水平,同时对各类不同成份、热值的可燃气体具有良好适应性的目标,必须深入研究作为关键技术的气体燃料电控喷射装置。论文提出了一类应用动圈式电磁直线执行器和菌型阀结构的气体燃料电控喷射装置,并通过理论分析、仿真计算以及与试验研究相结合的方法对其结构设计、流量特性、控制技术等进行了深入系统地研究,为其工程化应用以及大功率气体燃料发动机性能提升打下了良好的基础。
     论文的主要工作和研究成果包括以下几个方面:
     (1)分析了气体燃料电控喷射装置的国内外研究现状,提出了一类应用动圈式电磁直线执行器和菌型阀结构的气体燃料电控喷射装置,对喷射装置的结构、主要设计参数和控制器设计等进行了深入研究,最终研制出了气体燃料电控喷射装置样件并进行了试验验证。测试结果表明,喷射装置的过渡时间为5ms,最大气门升程可达4mm,工作稳定可靠,满足大功率气体燃料发动机对喷射装置的大流量、高响应等要求。
     (2)建立了气体燃料喷射装置的流动数值模拟计算模型,分析了稳态和非稳态工况下的流量特性并进行了试验验证。明确了电控喷射装置的流量特性随着气门升程、气门外径、压差以及气门开启时间等主要设计及控制参数变化的规律,建立了可直接用于气体燃料喷射量调节控制的气体燃料喷射量和气门总开启时间的映射关系,为气体燃料电控喷射装置在发动机上的应用打下了良好的基础。
     (3)确定了气体燃料喷射装置在发动机上的布置方案,并讨论了应用喷射装置后发动机性能改进的技术途径。设计了发动机整机控制器,提出了以发动机转速为目标的闭环控制以及模拟信号输入端口和PWM控制信号输出端口多路复用的技术方案。进一步针对应用电控喷射装置的发动机性能改善的技术途径进行了分析,并提出了发动机改进设计方案,分析了控制器综合设计应实现的功能,对发动机空燃比进行闭环控制,并给出了改进的发动机控制器方案。
     (4)建立了气体燃料发动机应用电控喷射装置后的非稳态CFD计算模型,并在此基础上研究了喷射装置不同的控制参数和安装参数对气体燃料进气和混合气形成过程的影响。分析比较了不同的喷射装置安装位置下气体燃料进气过程的变化情况,并明确了喷射装置靠近燃烧室后对提高气体燃料进气充分程度的优势。确定了气体燃料电控喷射装置喷射脉宽的调节范围,探讨了通过增加气体燃料和进气空气的压力差值来增加喷射量的方法。
     (5)完成了应用气体燃料喷射装置的大功率发动机的实机验证性试验。进行了包括发动机起动、怠速稳定性、各缸均匀性调整以及给定转速下增减不同负荷的试验,自行研制的电控喷射装置具备良好的控制特性、高响应速度和低落座速度等优势,能够将气体燃料定时、定量地喷射到发动机每一气缸靠近进气道的进气歧管内,实现多点顺序间歇的供气方式以及对各缸空燃比的实时、准确、独立的调节,验证了技术的可行性。
Gas engine has advantages of less harmful pollutants and CO2emissions. It can play an important role not only in high efficient and clean energy utilization, but also in effective utilization of combustible gas. Energy saving and environment protection can promote the gas engine technology process and application. The adoption of gas fuel electronically controlled injection device realizes multi-point sequential and intermittent supply mode so that it supplies gas fuel to engine inlets sequentially and intermittently. It can effectively solve the problems of backfire in engine inlets and gas fuel loss during scavenging phase, and as a result improve the engine performance. Gas engine is applicable to many types of gas fuel. The gas fuel pressure required is relatively low, especially suitable for large flow rate and low pressure gas supply. In order to achieve the advanced level of engine economy, power and emission index in international, and adapt all kinds of different ingredients and heat value combustible gas perfectly, further study on gas fuel electronically controlled injection device which is the core technology is necessary. This thesis puts forward a kind of adopting moving-coil electromagnetic linear actuator and bacterium type valve gas fuel electronically controlled injection device. The structural design, control strategy, performance and flow characteristics of this device are systematic and deeply studied through the methods of theoretical analysis, simulation calculation and experiment. This thesis lays a good foundation for the further research and application of the heavy-duty gas fuel engine.
     (1) The development of gas fuel injection device is analyzed in this study, and an innovation gas fuel injection device using the moving-coil electromagnetic linear actuator and mushrooms type valve structure is proposed. Then, the structure, main design parameters and controller design are deeply researched. Finally the prototype of the injection device is developed and the performance test is completed. The results show that the transition time of the injection device is controlled in5ms, and the maximum valve lift can be reached4mm. The device works stable and reliably, and the technical solution can meet the requirements of high flow rate and response of the engine.
     (2) The numerical simulation models are established in this paper. The static and transient flow characteristics of the gas fuel injection device are calculated, and the experimental validation was also completed. The variation law between injection device and the main design and control parameters such as maximum valve lift, valve diameters, pressure differences, and valve open durations is determined. The mapping relationship of the injection quantity of gas fuel and the total opening time of the valve is established, which lays a good foundation for the gas fuel electronically controlled injection device's engineering application.
     (3) The layout scheme of gas fuel injection device is determined, and the technology way to improve engine performance after the application of injection device is discussed. Engine controller is developed and control scheme is designed with engine speed as the control target. Analog signal input port and PWM signal output port multiplexing technology is adopted. Moreover, the entire function of engine controller which should realize during integrated design in advanced research is put forward and close-loop control of air fuel ratio is implemented. In the end, the improved engine controller scheme is presented.
     (4) The transient CFD numerical simulation model of a gas engine cylinder based on an electronically controlled gas fuel injection device is built, and influences to gas fuel intake and mixing process caused by control parameters and installation parameters of the gas fuel injection device are investigated. The gas fuel intake process is analyzed when the installation of gas fuel injection device is different, and the advantage of higher gas fuel intake sufficient degree is determined when the installation is close to combustion chamber. The injection pulse width regulation range of the electronically controlled gas fuel injection device is determined, and a method of increasing gas injection through increasing the pressure difference between gas fuel and air is discussed.
     (5) The real machine confirmatory test of a heavy-duty engine applied with gas fuel injection device is completed. Experiments including engine starting, idle speed stability, uniformity adjustment of each cylinder and load increasing and decreasing under given speed are conducted. The developed gas fuel injection device has the advantages of good control characteristics, high response speed and low seating speed, and can inject the gas fuel into intake manifold close to inlet port of each cylinder at fixed time with fixed quantity. Also it is capable of multi-point sequential intermittent supply method and regulating air-fuel ratio of each cylinder real-time, accurately and independently, which verifies the feasibility of the technology.
引文
[1]康逸宁.BP世界能源统计[EB/OL]. www.bp.com/statisticalreview,2010.6.
    [2]杜子学.车用能源及新型动力车的发展与研究[J].上海汽车,2007(6):3-8.
    [3]B. Dudley.2030世界能源展望[EB/OL].www.bp.com/liveassets/bp/2030-Energy-Outlook-CHN.pdf,2011.1.
    [4]C.J. Zuo, Y.J. Qian, J. Tan. An experimental study of combustion and emissions in a spark-ignition engine fueled with coal-mine methane[J]. Energy,2008, (3):445-461.
    [5]L.M. Das, R. Gulatii, P.K. Gupta. A comparative evolution of the performance characteristics of a spark innition engine using hydrogen and compressed natural gas as altenrative fuels[J]. Intenrational Jounral of Hydrogen Energy,2000(25):783-793.
    [6]ToshiyukiSuga, BenjaminKnightArai. Near-zero emission natural gas vehicle[J]. Honda CIVIC GX, SAW.972643.
    [7]王煜,刘建华.低热值混合气体燃料发动机开发研究[J].北京汽车,2008(3):3-7.
    [8]单冲.低热值气体燃料发动机的试验研究[D].北京:北京交通大学,2011.
    [9]郭建兰,杜少俊.低热值气体燃料的燃烧特性分析[J].太原理工大学学报,2009(5):303-306.
    [10]单玉梅.二甲醚发动机电控燃料喷射系统控制器的研制[D].成都:西华大学,2010.
    [11]M. Arena, F. Jehlik, R. Gross. Development of an advanced, Low-Emitting propane-fueled vehicle[R]. South Coast Air Quality Management District,2010.
    [12]陈宜亮,牟善祥.国内外气体燃料发动机技术发展与展望[J].柴油机,2003(4):11-13.
    [13]范冰.气体燃料发动机控制系统开发[D].广州:华南理工大学,2011.
    [14]时光志,盛苏建.浅析作拖轮采用液化天然报导作燃料的可行性[J].中国水运,2012(2):23-24.
    [15]姜升,李幸福,王怀玲.天然气汽车浅谈[J].农业装备与车辆工程,2010(4):31-33.
    [16]马小平,任少博.浅析天然气汽车的发展[J].农业装备与车辆工程,2011(1):1-3.
    [17]张德福,张惠明,龚英力.天然气发动机供气系统的开发研究[J].航海技术,2004(5):39-40.
    [18]窦慧莉.电控喷射稀燃天然气发动机的关键技术研究[D].长春:吉林大学,2006.
    [19]袁华智.电控汽油/CNG两用燃料发动机故障模拟试验及诊断研究[D].西安:长安大学,2010.
    [20]许健.电控天然气掺氢发动机性能研究[D].北京:北京交通大学,2008.
    [21]范龙飞.天然气发动机电控喷射系统的研究[D].北京:北京交通大学,2010.
    [22]王军雷,张正智.改革开放30年的中国汽车工业[J].汽车工业研究,2009(1):2-9.
    [23]滕勤.点燃式煤层气发动机系统建模及空燃比控制研究[D].合肥:合肥工业大学,2007.
    [24]常思勤,刘梁.高功率密度的动圈式永磁直线电机[P].中国:CN101127474B,2010-07-14.
    [25]L. Liu, S.Q. Chang. A moving coil electromagnetic valve actuator for camless engines [C], IEEE International Conference on Mechatronics and Automation, 2009:176-180.
    [26]刘梁,常思勤.一种动圈式电磁驱动气门的可行性研究[J],中国机械工程,2009,20(19):2283-2287.
    [27]周毅,杨帅,应启夏,等.电控气体喷射式LPG发动机的研究与开发[J].内燃机工程,2006(8):73-76.
    [28]王学合,黄震.LPG多点连续电喷发动机及车辆的排放试验研究[J].内燃机学报,2004(2):97-103.
    [29]D.S. Baik, Y.C. Han, W.Y. Rha, et al. A study on exhaust gas characteristics of a LPG vehicle by engine control module[R]. Research paper of Korea Kookmin Univesity, 2002.
    [30]赵晶普.BUMP燃烧室内混合气形成及缸内气流运动的研究[D].天津:天津大学,2003.
    [31]邵千钧.电控LPG发动机及其缸内直接喷射技术的研究[D].杭州:浙江大学,2003.
    [32]肖合林.LPG压燃发动机喷雾及燃烧特性研究[D].武汉:华中科技大学,2007.
    [33]曹云鹏.船用LPG发动机喷射控制系统设计技术研究[D].哈尔滨:哈尔滨工程大学,2011.
    [34]李国岫.柴油-天然气发动机电控气体燃料喷射技术的研究[J].车用发动机,2000(2):8-11.
    [35]高青,梁宝山,张纪鹏,等.天然气/柴油双燃料发动机机电控喷气技术研究[J].天然气汽车,1999(3):34-38.
    [36]方祖华.点燃式内燃机气体燃料电控喷射技术的研究[J].燃烧科学与技术,1997(1):175-181.
    [37]徐国强,高献刊,侯瑞娟.CNG柴油双燃料发动机供气技术研究[J].内燃机,2004(5):15-17.
    [38]M.U. Aslan, H.H. Masjuki, M.A. Kalam. An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle[J]. Fuel,2006(85):717-724.
    [39]刘振涛,愈晓莉,费少梅,等.天然气/柴油双燃料发动机燃气供给系统特性研究[J].内然机工程,2002(2):5-19.
    [40]郭林福,张欣,李国岫.电控顺序喷射CNG发动机喷射定时的试验研究[J].小型内燃机与摩托车,2006(3):1-4.
    [41]牛洪成.基于CAN总线技术的燃气发动机进气系统的研究[D].济南:山东大学,2009.
    [42]张幽彤,刘兴华.电控天然气一柴油机双燃料系统应用技术研究[C].代用燃料技术学术会议论文集,2000.
    [43]蒋德明.高等内燃机原理[M].西安:西安交通大学出版社,2002:293-294.
    [44]陆际清,刘峥,庄人隽.汽车发动机燃料供给与调节[M].北京:清华大学出版社,2002.
    [45]周龙保.内燃机学[M].北京:机械工业出版社,1999.
    [46]王学合,黄震.LPG多点连续电喷发动机及车辆的排放试验研究[J].内燃机学报,2004,22(2):97-103.
    [47]蔡少娌,许伯彦,梁夫友.多点电喷天然气发动机燃料喷射过程研究[J].汽车工程,2004,26(4):397-400.
    [48]杜喜云.电控多点喷射天然气发动机的开发[D].长春:吉林大学,2007.
    [49]刘兴华.天然气发动机多点顺序喷射技术的开发研究[J].内燃机工程.2003,24(3):16-19.
    [50]彭雪飞.CNG单燃料多点喷射发动机电控系统开发及性能研究[D].长春:吉林大学,2008.
    [51]K.J. Nakagawa, T. Sakura, I.F. Shoji. Study of Lean Bum Gas Engines Using Pilot Fuel for Ignition Source[A]. SAE 1998 World Congress[C]. Warrendale PA:SAE, 1998:982480.
    [52]甘海云,J.W. Post,李静波,等.斯太尔重型CNG发动机电控单元的开发[J].汽车工程,2007(29):1028-1032.
    [53]蒋德明,陈长佑,杨嘉林,等.高等车用内燃机原理[M].西安:西安交通大学出版社,2006.
    [54]薛金林,姚国忠.电控多点喷射LPG发动机的开发[J].车用发动机,2005(5):38-40.
    [55]袁银男,郭晓亮,聂春飞,等.LPG柴油双燃料发动机电控喷气系统设计[J].内燃机工程,2004,25(2):23-27.
    [56]K. Zeng, Z.H. Huang, B. Liu, et al. Combustion characteristics of a direct-injection natural gas engine under various fuel injection timings[J]. Applied Thermal Engineering,2006,26(8-9):806-813.
    [57]B. Douville, P. Ouellette, A. Touchette, et al. Performance and emissions of a two stroke engine fueled using high-pressure direct injection of natural gas[J]. SAE transaction,1998,107(3):1727-1735.
    [58]H.M. Cho, B.Q. He. Spark ignition natural gas engines-A review[J]. Energy Conversion and Management,2007,48(2):608-618.
    [59]S. Shiga, S. Ozone, H.T.C. Machacon, et al. A study of the combustion and emission characteristics of compressed-natural-gas direct-injection stratified combustion using a rapid compression machine [J]. Combustion and Flame,2002,129(1-2):1-10.
    [60]S. Goto. Advanced gas engine fueled by a coal seams methane gas[J].2001 International Coal-bed Methane Symposium, May 14-18,2001, Tuscaloosa, Alabama.
    [61]A.K. Brown, H.D. Maunder. Using landfill gas:A UK Perspective [J],1994, Renewable energy,5:774-781.
    [62]张小平,刘晓英,平涛.大功率气体发动机主要技术分析[J].柴油机,2006(28):162-164
    [63]K.C. Midkiff. Fuel composition effects on emissions from a spark-ignited engine operated on simulated biogases[J]. Transaction of the ASME vol.123, January, 2001:536-540.
    [64]S. Bari. Effect of carbon dioxide on the performance of biogas-diesel duel-fuel-fuel engine [J]. WREC1996:1007-1010.
    [65]A. Roubaud. Improving performances of a lean burn cogeneration biogas engine equipped with combustion prechambers[J]. Fuel,2004:87-90.
    [66]邹祖烨,任树芬,申金升.国外代用燃料汽车发展概览[M].北京:中国铁道出版社,1998.
    [67]张欣.电控柴油/CNG双燃料发动机燃烧过程二维数值模拟及性能试验研究[D].北京:北京交通大学,2002.
    [68]M. Battistoni, L. Foschini, L. Postrioti, et al. Development of an Electro-hydraulic Camless VVA System[A]. SAE 2007 World Congress[C]. Warrendale PA:SAE,2007: 2007-24-0088.
    [69]U.I. Ukpai. Control System Design for an Electro-hydraulic Fully Flexible Valve Actuator with Mechanical Feedback for a Camless Engine[C]. American Control Conference. New York,2007:188-193.
    [70]C. Sugimoto, H. Sakai, A. Umemoto, et al. Study on Variable Valve Timing System Using Electro-magnetic Mechanism[A]. SAE 2004 World Congress[C]. Warrendale PA:SAE,2004:2004-01-1869.
    [71]V. Picron, Y. Postel, E. Nicot, et al. Electro-magnetic Valve Actuation System:First Steps toward Mass Production[J]. SAE Paper,2008-01-1360.
    [72]徐国强,高献坤,侯瑞娟.CNG柴油双燃料发动机供气技术研究[J].内燃机,2004(5):15-17,21.
    [73]R.R. Chladny, C.R Koch. Flatness-based Tracking of an Electromechanical Variable Valve Timing Actuator with Disturbance Observer Feed forward Compensation[J]. IEEE Transactions on Control Technology,2008,16(4):652-663
    [74]V. Giglio, V. Iorio, G. Police. Analysis of Advantages and of Problems of Electromechanical Valve Actuators[J]. SAE Paper,2002-01-1105.
    [75]藤口英也,小林久德.最新电控汽油喷射[M].北京:北京理工大学出版社,2003:8-12.
    [76]M.F. Khandaker, H. Hong, L. Rodrigues. Modeling and Cont roller Design for a Voice Coil Actuated Engine Valve[C]. Proceedings of IEEE Conference on Control Applications, Toronto.2005:1234-1239.
    [77]H.S. Cho, H.K. Jung. Analysis and design of synchronous permanent magnet planar motors[J]. IEEE Trans. on Energy Conversion,2002,17(4):492-499.
    [78]M. Kohl, D. Brugger, M. Ohtsuka, et al. A ferromagnetic shape memory actuator designed for large 2D optical scanning[J]. Sensors and Actuators,2007, 135(1):92-98.
    [79]H.H. Chen, M. Taya. Design of FSMA spring actuators[C]. Smart structures and materials,2004:317-323.
    [80]R.N. Couch. Development of magnetic shape memory alloy actuators for a swashplateless helicopter rotor[D]. Marylan:university of Maryland,2006.
    [81]O. Lang, W. Salber, J. Hahn, et al. Thermodynamical and mechanical approach towards a variable valve train for the controlled auto ignition combustion process[A]. SAE 2005 World Congress[C].Warrendale PA:SAE.2005: 2005-01-0762.
    [82]V. Picron, Y. Postel, E. Icot, et al. Electro-magnetic valve actuation system:first steps toward mass production[A]. SAE 2008 World Congress[C]. Warrendale PA: SAE.2008,2008-01-1360.
    [83]M. Pischinger, W. Salber, F.V. Stay, et al. Benefits of the electromechanical valve train in vehicle operation[A]. SAE 2000 World Congress[C]. Warrendale PA:SAE. 2000,2000-01-1223.
    [84]K.S. Peterson, A.G. Stefanopoulou, J. Freudenberg. Current versus flux in the control of electromechanical valve actuators [A]. Proceedings of the 2005 American Control Conference[C]. Portland, OR, USA:AACC,2005:5021-5026.
    [85]G. Parvate-Patil. Solenoid operated variable valve timing for internal combustion engines[D]. Montreal:Department of Mechanical and Industrial Engineering, Concordia University,2005.
    [86]蔡建渝,项开新,胡绍福.一种内燃机低热值气体燃料混合装置[P].专利号:200420042845.9.
    [87]孔庆阳.煤层气在气体燃料发动机上的应用[J].内燃机,2006(4):45-47
    [88]刘志强,祝传艮.12V240焦炉煤气发动机的研制开发[J].山东内燃机,2004(4):17-20
    [89]张付军,郝利君,黄英,等.电控顺序喷射天然气专用发动机的开发[J].汽车工程,2000(5):338-341.
    [90]方祖华,侯树荣,张建华,等.天然气发动机缸内喷气技术的研究[J].汽车工程,1998(20):52-56.
    [91]郝利君,张付军,黄英等.天然气发动机的发展现状与展望[J].汽车工程,2000(1):332-337.
    [92]黄本尧,刘光林,姚桂芬.新型电磁气体燃料喷射阀及流量特性分析研究[C].中国内燃机学会、中国汽车工程学会2004年APC联合学术年会,2004.
    [93]J. Czerwinski, P. Comte, Y. Zimmerli. Investigations of the Gas Injection System on a HD-CNG-Engine[A]. SAE 2003 World Congress[C]. Warrendale PA:SAE,2003: 2003-01-0625.
    [94]HEINZMANN Gas injection valves[EB/OL].www.heinzmann.com.
    [95]Natural Gas Fuel Injection Systems[EB/OL].www.hoerbiger.com.
    [96]苗建忠,崔莉.气体燃料发动机电控燃料喷射阀[P].中国:CN1180180C,2004-12-15.
    [97]陈似竹,赵雨东.发动机电磁气门驱动动态仿真与分析[J].中国机械工程,2007,18(14):1751-1756.
    [98]夏永明,卢琴芬,叶云岳.新型双定子横向磁通直线振荡电机[J].中国电机工程学报,2007(27):104-107.
    [99]杨金明,张宙,潘剑飞.开关磁阻式平面电动机及其控制[J].中国电机工程学报,2005,25(19):116-121.
    [100]W. Gao, S. Dejima, H. Yanai, et al. A surface motor-driven planar motion stage integrated with a XYθZ surface encoder for precision positioning[J]. Precision Engineering,2004,28(3):329-337.
    [1011周赣,黄学良,周勤博,等Halbach型永磁阵列的应用综述[J].微特电机,2008(8):52-55.
    [102]赵美蓉,温丽梅.大行程纳米级步距压电电动机[J].机械工程学报,2004,4(8):119-122.
    [103]张庆新,王凤翔,李文君,等.磁控形状记忆合金直线驱动器[J].中国机械工程,2004,15(20):1787-1790.
    [104]王凤翔,张庆新,吴新杰等.磁控形状记忆合金蠕动型直线电机研究[J].中国电机工程学报,2004,24(7):141-144.
    [105]Q.X. Zhang, H.M. Zhang, Y.B. Li, et al. On a novel self-sensing actuator[C]. Proceedings of the 27th Chinese control conference, Kunming:[s.n.],2008:257-260.
    [106]李庆雷,王先逵,吴丹,等.永磁同步电机推力波动分析及改善措施[J].清华大学学报,2000,40(5):33-34.
    [107]夏永明,张丽慧,叶云岳.永磁同步直线电动机的驱动垂直运输系统[J].微特电机,2003(6):27-28.
    [108]B.G. Gu, K. Nam. A vector control scheme for a PMLSM considering a Non-uniform Flux Distribution[J]. IEEE Press,2000:393-396.
    [109]秦世耀.永磁电机气隙磁场的解析分析[J].太原理工大学学报,2002(3):121-124.
    [110]付子义,焦留成,夏永明.直线同步电动机驱动垂直运输系统出入端效应分析[J].煤炭学报,2004,29(2):243-245.
    [111]钱庆镰.动圈式永磁直线电机的磁场和电磁力[J].微特电机,2000(6):20-32.
    [112]S.Pelissier, R. Saldanha, J.P. Yonnet, et al. Optimization of a linear permanent magnet actuator[J]. Journal of Magnetism and Magnetic Materials,1991, 101(3):335-337.
    [113]J. Li. Design and development of a new piezoelectric linear Inchworm actuator[J]. Mechatronics,2005 (15):651-681.
    [114]吕超.新型压电步进直线精密驱动器结构的研究[D].长春:吉林大学,2006.
    [115]方华军,刘理天.压电折叠梁微执行器的低电压优化设计[J].传感技术学报,2008,21(3):465-468.
    [116]卜海永.电控液压可变燃气门的设计开发[D].济南:山东大学,2010.
    [117]常思勤,葛文庆.一种气体燃料电控喷射装置:中国,201110332554.8[P].2011-10-28.
    [118]L. Liu, S.Q. Chang. Improvement of valve seating performance of engine's electromagnetic valvetrain[J]. Mechatronics,2011,21(7):1234-1238.
    [119]葛文庆,常思勤,孙宾宾,等.一种大功率发动机气体燃料电控喷射装置的流量特性研究[J].南京理工大学学报,2012,36(5):669-673.
    [120]李国岫.柴油天然气发动机电控气体燃料喷射技术的研究[J].车用发动机,2000(2):8-11.
    [121]W. Kurniawan, S. Abdullah, Z. Nopiah, et al. Multi-objective Optimization of Combustion Process in a Compressed Natural Gas Direct Injection Engine using Coupled Code of CFD and Genetic Algorithm[A]. SAE 2007 World Congress[C]. Warrendale PA:SAE,2007:2007-01-1902.
    [122]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [123]江帆.Fluent高级应用于实例分析[M].北京:清华大学出版社,2008.
    [124]D. Bertoldi, C. Deschamps, A. Oliveira. A two-dimensional numerical model for a port-injected natural gas internal combustion engine[C]. SAE 2008 World Congress[C]. Warrendale PA:SAE,2008:2008-36-0364.
    [125]李树生,白书战,李林科,等.基于CAE和单缸机试验的大功率发动机整机性能开发[J].内燃机学报,2012,3(26):272-276.
    [126]赵奎翰,曲延涛,魏克宁,等.2190T天然气发动机进气系统和燃烧系统的改进研究[J].内燃机学报,1999,2(17):99-103.
    [127]张蕙明,龚英利,王强.天然气发动机混合器结构对混合过程影响的研究[J].内燃机学报,2004,22(06):498-503.
    [128]李玉峰,刘书亮,史绍熙,等.提高四气门汽油机缸内滚流强度的研究[J].内燃机学报,1999,17(03):263-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700