用户名: 密码: 验证码:
基于神经网络和遗传算法的Atkinson循环发动机全负荷范围性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境保护己经成为全球性的问题,传统内燃机的发展面临巨大挑战,研究高效、节能和环保的发动机技术是传统内燃机产业可持续发展的必由之路。本文研究一种大几何压缩比的Atkinson循环发动机。和传统的Otto循环发动机相比,其可以实现更大膨胀比,更多的热能可以转化为机械能,因而具有更高的热效率。当Atkinson循环发动机用于混合动力轿车时,其主要工作于高燃油效率区域,从而大大降低了车辆的燃油耗。
     和原型Otto循环发动机相比,Atkinson循环发动机采用更大的几何压缩比,爆燃倾向增加,需要通过较大地推迟进气门关闭正时(Late Intake Valve Closure,LIVC)来降低有效压缩比以避免爆震。几何压缩比越大则需要的LIVC操作也越大,而全负荷时LIVC操作会降低发动机的有效排量。在设计Atkinson循环发动机时,需要确定一个最佳的儿何压缩比,在改善Atkinson循环发动机燃油经济性的同时保证全负荷扭矩不能下降过多,以免过多地降低发动机的动力性能。此外,Atkinson循环发动机主要工作于中、高负荷工况。部分负荷时的燃油经济性改善对较少混合动力车辆的燃油耗才具有实际意义。
     由于研究的Atkinson循环发动机的设计和操作参数较多,且这些参数间高度耦合、交互地影响发动机的性能,为了降低成本和提高设计、优化的效率,本文研究了基于神经网络和遗传算法进行Atkinson循环发动机全负荷范围性能优化的方法,并辅以热力循环分析作为理论指导。因此,本文的主要研究内容包括:
     (1)为了研究Atkinson循环发动机的重要设计和操作参数对发动机循环热效率的影响特性,应用有限时间热力学方法分别建立了Atkinson、Otto和Miller循环热机的不可逆循环模型。数值计算结果表明,Atkinson循环热机的循环热效率存在最佳的压缩比和峰值缸压;在一定的范围内,随着膨胀比增加,峰值缸压增加,而排气温度下降,因而循环热效率改善;当量比增加,循环热效率降低;Miller循环热机和Atkinson循环发动机实际情况比较接近,而Atkinson循环热机的循环热效率是实际发动机的效率改善极限。
     (2)研究的Atkinson循环发动机是在几何压缩比为10.6的1.8升Otto循环发动机的基础上进行设计的。本文首先建立了Otto循环发动机的外特性GT-Power仿真模型,然后利用实验数据对模型进行了精确的标定。标定后仿真的发动机扭矩和比油耗和相应实验值间的最大误差分别为2%和2.9%,同时调整爆震模型参数使爆震指数等于200时代表实际发动机发生轻微爆震。
     (3)几何压缩比,进、排气门正时,点火角和空燃比交互地影响发动机的爆震强度和最终的动力性和燃油经济性,增加了确定最佳的几何压缩比和进行操作参数优化的难度。为了更加高效、准确地进行Atkinson循环发动机的设计和操作参数优化,用人工神经网络方法建立了目标Atkinson循环发动机的优化模型,神经网络的训练和测试数据均通过GT-Power计算采集。然后联合神经网络模型和遗传算法同时进行几何压缩比和操作参数优化。经过遗传算法优化后,确定最佳几何压缩比为12.5。Atkinson循环发动机样机的台架实验结果表明,4400转以下的转速范围内,神经网络模型优化得到的点火角等操作参数和实验结果非常接近,神经网络模型优化得到的外特性扭矩、比油耗和相应实验值间的最大误差分别不超过2.2%和2.53%。
     (4)为了优化Atkinson循环发动机部分负荷时的操作参数以提高燃油经济性水平,建立了Atkinson循环发动机的万有特性GT-Power仿真模型,并利用Atkinson循环发动机样机的台架实验数据进行模型参数标定。实验结果表明,整个部分负荷区域内,GT-Power模型都可以获得较高的预测精度,最大比油耗预测误差为8.5%。然后,利用设计的基于MATLAB/GT-Power耦合的遗传算法优化方法优化发动机部分负荷操作变量以最大化燃油经济性。
     (5)根据遗传算法整个负荷范围操作参数的优化结果,总结并提出了基于进气门关闭正时(Intake Valve Closure, IVC)和电子节气门(ETC)联合的发动机负荷控制策略。在中、高负荷区域采用LIVC+ETC的负荷控制策略,在低负荷区域利用ETC控制负荷,而提前IVC正时以改善循环热效率。
     台架实验表明,经过优化并进行实验标定后,Atkinson循环发动机整个负荷范围的燃油经济性明显改善。全负荷时,在4400转以下转速范围内,和原Otto循环发动机相比,Atkinson循环发动机的最大扭矩下降不超过6%,2400转时的燃油经济性改善最大,为13%。在4400转以上转速范围内,为了保证足够的Atkinson循环发动机的额定功率,采用较小LIVC操作,同时推迟点火角和采用较浓混合气以避免爆震发生,因而燃油经济性降低,平均燃油耗增加3%。用遗传算法优化Atkinson发动机部分负荷操作参数后,部分负荷区域实验燃油经济性明显改善,最大改善为7.67%。和原Otto循环发动机相比,Atkinson循环发动机的低油耗操作区域面积明显增加,这对减少应用Atkinson循环发动机的混合动力车辆的燃油耗是非常有意义的。
The energy crisis and environment protection have become a global problem,and thus conventional internal combustion engine (ICE) face huge challenge. Studyon highly efficient, energy and environment-friendly engine technology is the onlyway for the sustainable development of the conventional ICE industry. This thesisresearches on an Atkinson cycle engine with bigger geometrical compression ratio(GCR) comparing to conventional Otto cycle engines. In this situation, the Atkinsoncycle engine can realize bigger expansion ratio, thus more heat energy is converted tomechanical energy and higher thermal efficiency is resulted. When this kind ofAtkinson cycle engine is used in a hybrid car, it can mainly work in the fuel efficientarea and greatly reduce the engine fuel consumption.
     The knock tendency for the Atkinson cycle engine increases due to the big GCR.Thus late intake valve closure (LIVC) operation is necessary to decrease the effectivecompression ratio in order to avoid the knock. Bigger the GCR is, more LIVCoperation is needed. However, at WOT (widely open throttling) operating condition,the LIVC operation would reduce the engine effective displacement. When designingthe Atkinson cycle engine, we need to determine an optimum GCR to maximize thefuel economy while maintaining enough WOT torque. Furthermore, the Atkinsoncycle engine mainly works in the medium to high load operating area, and thus thefuel economy improvement for part loads is more useful for the fiiel consumptionreduction of the hybrid car.
     The Atkinson cycle engine addressed in this thesis has many design andoperative parameters, and these parameters are highly interrelated with each other andinteractively influence the engine performances. In order to decrease cost and enhancedesign and optimization efficiency, this thesis investigates on the methodology thatoptimizes the engine performances in the entire load range of the Atkinson cycleengine based on artificial neural network (ANN) and genetic algorithm (GA).Additionally, thermodynamic cycle analysis is also conducted to provide theoreticalguidance for the design and optimization. Therefore, the main study aspects for thisthesis include:
     (1) In order to research on the effect characteristics of the important design andoperating parameters on the cycle thermal efficiency of the Atkinson cycle engine, theifnite-time thermodynamics was used to establish the irreversible cycle model for theAtkinson, Otto and Miller cycle heat engine, respectively. The following conclusionsfrom the numerical computation results could be obtained: there is an optimumcompression ratio and peak cylinder pressure that maximizes the cycle efficiency ofthe Atkinson cycle heat engine; in some range, as the expansion ratio increases, thepeak cylinder pressure increases and the exhaust temperature decreases, thusimproving the cycle thermal efficiency; as equivalence ratio increases,the cyclethermal efficiency decreases; Miller cycle heat engine is closer to the real Atkinsoncycle engine while the cycle thermal efficiency of the Atkinson cycle heat engine isthe cycle efficiency improvement extreme of the real Atkinson cycle engine.
     (2) The Atkinson cycle engine was developed based on a1.8L Otto cycle enginewith GCR of10.6. We first established the WOT GT-Power simulation model for thebaseline Otto cycle engine. Corresponding experimental data were measured andcollected to precisely calibrate the GT-Power model. The maximal error between thesimulated and experimental values for the WOT torque and BSFC in the whole enginespeed range is2%and2.9%, respectively. Calibrate the relevant parameters inGT-Power knock model to make the knock index equal to200represent the real slightknock.
     (3) The GCR, intake and exhaust valve timing, spark angle and air-fuel ratiointeractively influence the knock intensity, and final engine performance of theAtkinson engine. This increases the difficulty for determining the optimum GCR andoptimizing the operative parameters. In order to more efficiently and preciselyconduct the optimization for the design and operative parameters, the artificial neuralnetwork (ANN) method was used to establish the optimization models for the targetAtkinson cycle engine. The ANN models were trained and tested using the datacollected from the GT-Power computations. Then, the GCR and the operatingparameters were optimized by combining the ANN models and genetic algorithm(GA). Atfer optimized by the GA, the optimum GCR was determined as12.5. Theexperimental results for the prototype Atkinson cycle engine indicate that, in thespeed range below4400rpm, the predicted operating parameters such as the sparkangle by the ANN models are very close to the experimental ones. Furthermore, themaximal error between the ANN prediction and the experimental for the WOT torqueand BSFC is only2.2%and2.53%, respectively.
     (4) In order to optimize the part load operating parameters aimed at maximizingthe fuel economy, the GT-Power simulation models at a series of representativespeed-load points covering the entire speed-load operating range of the Atkinsoncycle engine were established. These GT-Power models were all precisely calibratedusing the experimental data of the prototype Atkinson cycle engine. Experimentalresults show that, in the entire part load area the GT-Power models have highprediction accuracy with the maximum BSFC prediction error of8.5%. Then, partload operating parameters for the Atkinson cycle engine were optimized by the GAthrough MATLAB/GT-Power coupling to maximize the fuel economy merit.
     (5) According to the GA optimization results for the operative parameters in theentire load range, we proposed a novel torque-based load control strategy that baseson combination of the IVC (Intake Valve Closure, IVC) timing and ETC operation.This strategy could be described as: in the medium to high load range, LIVC+ETCoperation is used to control the engine output; and in the low load range, only theETC is adopted to control the engine load while advancing the IVC timing to improveengine cycle thermal efficiency.
     The experiments in a test-bed indicate that, atfer optimized by the GA andexperimental calibrations, fuel economy in the entire load range for the Atkinsoncycle engine is obviously optimized. For the WOT operating conditions below4400rpm, the maximal torque reduction for the Atkinson cycle engine is less than6%comparing to the baseline Otto cycle engine while the maximal fuel economyimprovement for the Atkinson cycle engine is13%at2400rpm. For the WOToperating conditions above4400rpm, in order to maintain enough engine rate power,less LIVC operation is used, but the spark angle delaying and rich mixture have to beadopted to avoid the knock. Therefore, the fuel economy for the Atkinson cycleengine deteriorates with the average fuel consumption increasing as3%.
     Atfer the part load operating parameters of the Atkinson cycle engine wereoptimized by GA, part load experimental fuel economy are obviously optimized withthe maximal improvement of7.67%. Comparing to the baseline Otto cycle engine, theoperating area for the lowest fuel consumption of the Atkinson cycle engine isobviously larger, which is very useful for reducing the fiiel consumption of the hybridcar using the Atkinson cycle engine.
引文
[1]Climate Change: Basic Information. United States Environmental Protection Agency.2006-12-14;"In common usage,'global warming' often refers to the warming that can occuras a result of increased emissions of greenhouse gases from human activities."2007-02-09.
    [2]http://en.wikipedia.org/wiki/Hybrid_electric_vehicle.
    [3] littp://en.wikipedia.org/wiki/Toyota Prius?
    [4] http://en.wikipedia.org/wiki/HondaI_nsight.
    [5] http://en.wikipedia. org/wiki/Ford Fusion Hybrid?
    [6]http://en.wikipedia.org/wiki/Atkinson—cycle.
    [7]田永祥,杜爱民,陈礼墦.混合动力汽车用Atkmson循环发动机的探讨.汽车科技,200(7):32-34.
    [8]Nobuki K, Kiyoshi N, Toshihiro K. Development of New1.8-Liter Engine for Hybrid Vehicles.In: SAE Technical Paper NO.2009-01-1061.
    [9]http://www.mazda.com/mazdaspirit/skyactiv/engine/skyactiv-g.html.
    [10]任春晖,任成高.丰田轿车VVT-i系统浅析[J].农业装备与车辆工程,2006(10):35-38.
    [11]钱人一凸轮轴调节装置对汽油机节能和环保的贡献(上).汽车与配件,2003(46):24-26.
    [12]钱人一.凸轮轴调节装置对汽油机节能和环保的贡献(下).汽车与配件,2003(47):30-33.
    [13]G.B Parvate-Patil, H. Hong and B. Gordon. An Assessment of Intake and ExhaustPhilosophies for Variable Valve Timing. SAE paper2003-32-0078.
    [14]Fontana G, Galloni E. Variable valve timing for fuel economy improvement in a smallspark-ignition engine. Applied Energy2009;86:96-105.
    [15]Fontana G, Galloni E, Torela E. The Influence of Variable Valve Timing on the CombustionProcess of a Small Spark-Ignition Engine. SAE technical Paper NO.2006-01-0445,2006.
    [16]Fiorenza R, Pirelli M,Palloti P, Kapus E. VVT+Port Deactivation on a small Displacement4Cylinder16V engine: an Effective Way to Reduce Vehicle Fuel Consumption. SAE technicalPaper NO.2003-01-0020,2003.
    [17]Sellnau M, Rask E. Tow-Step Variable Valve Actuation for Fuel Economy, Emissions, andPerformance. SAE technical Paper NO.2003-01-0029,2003.
    [18]J. W. G. Turner, M. D. Bassett, R. J. Pearson, G. Pitcher and K. J. Douglas. New OperatingStrategies Afforded by Fully Variable Valve Trains. In: SAE paper NO.2004-01-1386.
    [19]Sellnau M, Sinnamon KJ, Burkhard J.2-step Variable Valve Actuation: System Optimizationand Integration on an SI Engine. SAE technical Paper NO.2006-01-0040,2006.
    [20]Nebojsa Milovanovic, Dave Blundell, Stephen Gedge and Jamie Turner. Cam ProfileSwitching (CPS) and Phasing Strategy vs Fully Variable Valve Train (FVVT) Strategy forTransitions between Spark Ignition and Controlled Auto Ignition Modes. In: SAE paper NO.2005-01-0766.
    [21]Petter Strandh, Johan Bengtsson, et al. Variable Valve Actuation for Timing Control of aHomogeneous Charge Compression Ignition Engine. In: SAE paper NO.2005-01-0147.
    [22]Fredrik Agrell, Hans-Erik Angstrom, et al. Transient Control of HCCI Combustion by aid ofVariable Valve Timing Through the use of a Engine State Corrected CA50-ControllerCombined with an Iii-Cylinder State Estimator Estimating Lambda. In: SAE paper NO.2005-01-2128.
    [23]Nebojsa Milovanovic and Rui Chen, et al. Influence of the Variable Valve Timing Strategyon the Control of a Homogeneous Charge Compression (HCCI) Engine. In: SAE paper NO.2004-01-1899.
    [24]Dale Witt, Bryan Kelly. Robust Design of a Valve Train Cam Phasing Controller usingVirtual Prototyping Techniques. In: SAE paper NO.2007-01-1640.
    [25]James F. Sinnamon. Co-Simulation Analysis of Transient Response and Control for Engineswith Variable Valvetrains. In: SAE paper NO.2007-01-1283.
    [26]Liyun Zheng, Jeremy Plenzler. Characterization of Engine Variable Cam Phaser FluidD'ynamics and Phasers Ability to Reject System Disturbances. In: SAE paper NO.2004-01-1389.
    [27]Mrdjan Jankovic, Stephen W., Magner. Variable Cam Timing: Consequences To AutomotiveEngine Control Design.15th Triennial World Congress, Barcelona, Spain.
    [28]Wang Y, Lin L, Zeng S, Huang J. Application of the Miller cycle to reduce NOx emissionsfrom the petrol engines. Appl Energy2008:85:463-474.
    [29]Wang Y, Lin L, Anthony P. An analytic study of applying Miller cycle to reduce NOxemission from petrol engine. Appl Therm Eng2007;27:1779—1789.
    [30]Shiga S, Hirooka Y, Yagi, S. Effects Of Over-Expansion Cycle In A Spark-Ignition EngineUsing Late-Closing Of Intake Valve And Its Thermodynamic Considerision Of TheMechanism. Int J Auto Tech-Korea2001;2(1):1-7.
    [31]Okamoto K, Zhang F-R, Shimogata S, Shoji F. Development of a Late Intake-Valve Closing(LIVC) Miller Cycle for Stationary Natural Gas Engines-Effects of EGR Utilization. SAEtechnical Paper NO.972948,1997.
    [32]Anderson MK, Assanis DN, Filipi ZS. First and Second Law Analyses of aNaturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure. SAE technicalPaper NO.980889,1998.
    [33]Alberto Boretti, Joseph Scalzo. Exploring the Advantages of Atkinson Effects in VariableCompression Ratio Turbo GDI Engines. In: SAE paper NO.2011-01-0367
    [34]Raynes S.H. An Atkinson cycle engine for low pollution. SAE technical Paper NO.984064,1998.
    [35]J. Benajes, J R. Serrano, S. Molina, R. Novella. Potential of Atkinson cycle combined withEGR for pollutant control in a HD diesel engine. Energy Conversion and Management50(2009):174-183
    [36]Joonsup Han, Jaehyeon Lee, Hyungmin Kim, Kihyung Lee. A Study on the Effect of ValveTiming on the Combustion and Emission Characteristics for a4-cylinder PCCI Diesel Engine.World Academy of Science, Engineering and Technology702010:862-868.
    [37]Manivannan A. Numerical and Experimental Study of Extended Expansion Concept Appliedto Lean Burn Spark Ignition Engine. International Journal of Engineering,2011(2):37-42
    [38]Yates A. The Atkinson cycle revisited for improved part-load fuel efficiency? N&OJOERNAAL APRIL1991:1-6.
    [39]David Luria, Yehuda Taitel, and Artur Stotter. The Otto-Atkinson Engine-A New Concept inAutomotive Economy. In SAE paper:1982-02-01
    [40]Saunders R.J, Abdul-Wahab E.A. Variable valve closure timing for load control and the Otto-Atkinson cycle engine. In: SAE paper NO.890677;1989.
    [41]Blakey S.C, Saunders R.J. A design and experimental study of an Otto-Atkinson cycleengine using late intake valve closing. In: SAE paper NO.910451;1991.
    [42]Boggs D.L, Hilbert H.S, Schechter M.M. The Otto-Atkinson cycle engine: Fuel economyand emissions results and hardware design. In: SAE paper NO.950089;1995.
    [43]http://en.wikipedia.org/wiki/Millerl_cyce
    [44]Mikalsen R, Wang YD, Roskilly AP. A comparison of Miller and Otto cycle natural gasengines for small scale CHP applications. Appl Energy2009;86:922-927.
    [45]Fukuzawa Y, Shimoda H, Kakuhma Y. Development of High Efficiency Miller Cycle GasEngine. Technical Review2001;38(3):146-150.
    [46]Katsuhiko Hirose,Tatehito Ueda, Toshifumi Takaoka and Yukio Kobayashi. Thehigh-expansion-ratio gasoline engine for the hybrid passenger car. JSAE Review,1999(20):13-21.
    [47]Shinichi Abe. Development of the Hybrid Vehicle and its Future Expectation. In: SAE paperNO.2000-01-C042.
    [48]Toshio Inoue, Masaki Kusada, et al. Improvement of a Highly Efficient Hybrid Vehicle andIntegrating Super Low Emissions. In: SAE paper NO.2000-01-2930.
    [49]Koichiro Muta, Makoto Yamazaki and Junji Tokieda. Development of New-GenerationHybrid System THS II-Drastic Improvement of Power Performance and Fuel Economy. In:SAE paper NO.2004-01-0064.
    [50]陈金灿,严子浚.有限时间热力学理论的特征及发展中的一些重要标志[J].厦门大学学报,2001,40(2):232-241
    [51]陈林根,孙丰瑞.有限时间热力学研究的一些进展.海军工程大学学报,2001,13(6):41-47.
    [52]Orlov VN, Berry RS. Power and efficiency limits for internal-combustion engines viamethods of finite-time thermodynamics. J Appl Phys1993;74(10):4317-22.
    [53]Bejan A. Entropy-generation minimization: the new thermodynamics of ifnite-size device andfinite-time processes. J Appl Phys1996;79(3):1191-218.
    [54]戈延林,陈林根,孙丰瑞.工质变比热对不可逆Otto循环性能的影响.工程热物理学报,2005,26:9-12
    [55]戈延林,陈林根,孙丰瑞.不可逆MUler循环的功率效率特性.热科学与技术,2004,3(1):16-20
    [56]Ge Yanlin, Chen Lingen, Sun Fengrui. Performance of an Atkinson cycle with heat transfer,friction and variable specific-heats of the working fluid. Applied Energy,2006,83:1210-1221
    [57]戈延林,陈林根,孙丰瑞.工质变比热条件下内燃机循环普适特性.工程热物理学报,2006,27(2):196-198
    [58]Ge Y, Chen L, Sun F. Effects of heat transfer and friction on the performance of anirreversible air-standard miller cycle. Int Commun Heat Mass2005;32:1045-1056.
    [59]Chen L, Sun F, Wu C. The optimal performance of an irreversible dual cycle. Appl Energ2004;79(1):3-14.
    [60]Ge Y, Chen L, Sun F, Wu C. Effects of heat transfer, friction and variable specific heats ofworking fluid on performance of an irreversible dual cycle. Energ Convers Manage2006;47:3224-34.
    [61]Ge Y, Chen L, Sun F. Finite-time thermodynamic modelling and analysis of an irreversibleOtto-cycle. Appl Energ2008;85:618-624.
    [62]Zhao YR, Chen JC. An irreversible heat engine model including threetypical thermodynamiccycles and their optimum performance analysis. International Journal of Thermal Sciences,2007,46:605-613
    [63]Zhao YR, Chen JC. Performance analysis of an irreversible Miller heat engine and itsoptimum criteria. Applied Thermal Engineering,2007,27:2051-2058
    [64]Zhao YR, Chen JC. Performance analysis and parametric optimum criteria of an irreversibleAtkinson heat-engine. Applied Energy,2006,83:789-800
    [65]Hou SS. Comparison of performances of air standard Atkinson and Otto cycles with heattransfer considerations. Energy Conversion and Management,2007,48:1683-1690
    [66]Lin JC, Hou SS. Influence of heat loss on the performance of an air-standard Atkinson cycle.Applied Energy,2007,84:904-920
    [67]Lin JC, Hou SS. Performance analysis of an air-standard Miller cycle with considerations ofheat loss as a percentage of fuel's energy, friction and variable specific heats of working fluid.International Journal of Thermal Sciences,2008,47:182—191
    [68]Ozsoysal OA. Heat loss as a percentage of fuel's energy in air standard Otto and Dieselcycles. Energ Convers Manage2006;47:1051-62.
    [69]Ozsoysal OA. Effects of combustion efficiency on a Dual cycle. Energy Conversion andManagement2009,50:2400-2406.
    [70]Ebrahimi R. Effects of mean piston speed, equivalence ratio and cylinder wall temperature onperformance of an Atkinson engine. Mathematical and Computer Modelling,2011,53:1289-1297
    [71]Al-Sarkhi A, Jaber JO, Probert SD. Efficiency of a Miller engine[M]. Applied Energy,2006,83:343-351
    [72]Al-Sarkhi A, Al-Hinti I,Abu-Nada E, Akash B. Performance evaluation of irreversible Millerengine under various specific heat models[M]. International Communications in Heat andMass Transfer,2007,34:897-906
    [73]Abu-Nada E, Al-Hinti I, Al-Sarkhi A, Akash B. Thermodynamic modelling of aspark-ignition engine: effect of temperature dependent specific heats. InternationalCommunications in Heat and Mass Transfer2006,33:1264-1272
    [74]Motta DA, Polati AV. Model-Based-Design Of An Aircratf Auto-Pilot Controller. In:3rdCTA-DLR Workshop on Data Analysis&Flight Control, September14-16,2009,S. J.Campos, SP, Brazil.
    [75]Smith PF, Prabhu SM, Friedman JH. Best practices for establishing a model based designculture. In: SAE WORLD CONGRESS,2007, Detroit. Proceeding, Warrendale.
    [76]AVL List Gmbh. ICE Physics&Chemistry, AVL FIRE, VERSION2009.
    [77]张青贵.人工神经网络导论[M].北京:中国水利水电出版社.2004:11-12.
    [78]Gamma Technologies, GT-Power U'sers Manual. Version7.0, September,2009.
    [79]Wu B, Philipi Z. Using artificial neural network for representing the air flow rate through a2.4LVVT engine. In: SAE Technical Paper, NO.2004-01-3054;2004.
    [80]Wu B. and Zoran S. Filipi, et al. Using Neural Networks to Compensate Altitude Effects onthe Air Flow Rate in Variable Valve Timing Engines. In: SAE NO.2005-01-0066.
    [81]Wu B, Prucka RG, Philipi ZS. Cam phasing optimization using artiifcial neural network assurrogate models-maximizing torque output. In: SAE Technical Paper NO.2005-01-3757;2005.
    [82]Wu B, Prucka RG, Philipi ZS. Cam phasing optimization using artificial neural network assurrogate models-fuel consumption and NOx emissions. In: SAE Technical Paper NO.2006-01-1512;2006.
    [83]Brahma I, Christopher J. Optimization of Diesel Engine Operating Parameters Using NeuralNetworks. In: SAE Technical Paper NO.2003-01-3228;2003.
    [84]Guerrier M, Cawsey P. The development of model based methodologies for gasoline ICengine calibration. In: SAE Technical Paper, NO.2004-01-1466;2004.
    [85]Kesgin U. Generic Algorithm and artificial neural network for engine optimization ofefifciency and NOx emission. FUEL2004;83:895-295.
    [86]Aly HG, Hafez AE, Ahmed HB. Application of Neural Networks for Prediction andOptimization of Emissions and Performance in a Hydrogen Fuelled Direct Injection EngineEquipped With In Cylinder Water Injection. In: SAE Technical Paper, NO.2009-01-2684;2009.
    [87]O. Cortes, G. Urquiza, J.A. Hernandez. Optimization of operating conditions for compressorperformance by means of neural network inverse. Applied Energy2009;86:2487-2493.
    [88]孙虎儿.基于祌经网络的优化设计和应用[M].北京:国防工业出版社,2009.05
    [89]Mohamed A, Heinz J. SI Engine Emissions Model Based on Dynamic Neural Network andD-Optimality. In: SAE Technical Paper NO.2005-01-0019;2005.
    [90]Kamat S, Diwanji V,Smith J. Virtual Sensing of SI Engines Using Recurrent NeuralNetworks. In: SAE Technical Paper, NO.2006-01-1348;2006.
    [91]Ivan A, Michele M. Experimental Validation of a Neural Network Based A/F Virtual Sensorfor SI Engine Control. In: SAE Technical Paper, NO.2006-01-1351;2006.
    [92]Arsie, I., Di Iorio, S.,Pianese, C.,Rizzo, G.,Sorrentino, M. RECURRENT NEURALNETWORKS FOR AIR-FUEL RATIO ESTIMATION AND CONTROL INSPARK-IGNITED ENGINES. Proceedings of the17th World Congress The InternationalFederation of Automatic Control, Seoul, Korea, July6-11,2008
    [93]Ivan Arsie, Cesare Pianese, and Marco Sorrentino. Recurrent Neural Networks for AFREstimation and Control in Spark Ignition Automotive Engines. Comput. Intel, in AutomotiveApplications, SCI132, pp.191-221.
    [94]Mark NS, Tomazic D, Tatur M. An Artiifcial Neural Network-based Approach for VirtualNOx Sensing. In: SAE Technical Paper, No.2008-01-0753;2008.
    [95]Xu K, Xie M, Tang LC, Ho SL. Application of neural networks in forecasting engine systemsreliability. Applied Soft Computing2003;2:255-268.
    [96]Grimaldi CN, Mariani F. OBD Engine Fault Detection Using a Neural Approach. In: SAETechnical Paper, No.2001-01-0559;2001.
    [97]Colin G,Bloch G, Chamaillard Y, Bloch G,and Corde G. Neural control of fast nonlinearsystems: Application to a turbocharged SI engine with VCT. IEEE Transactions On NeuralNetworks, VOL.18, NO.4,July2007,1101-1113.
    [98]Colin G, Bloch G, Chamaillard Y. Two air path observers for turbocharged SI engines withVCT. Control Eng Pract2009;17:571-578.
    [99]Gnanam G, Saeid R, et al. Neural Network Control of Air-to-Fuel Ratio in a Bi-Fuel Engine.IEEE Transactions On Systems, Man, And Cybernetics一Part C: Applications And Reviews,VOL.36,NO.5, September2006,565-667.
    [100]Papadimitriou I, Warner M, Silvestri J. Neural Network Based Fast-Running Engine Modelsfor Control-Oriented Applications. In: SAE Technical Paper, NO.2005-01-0072;2005.
    [101]Indranil B, He Y, and Christopher JR. Improvement of Neural Network Accuracy forEngine Simulations. In: SAE Technical Paper, NO.2003-01-3227;2003.
    [102]He YS and Rutland C. Application of Artificial Neural Network for Integration of AdvancedEngine Simulation Methods. Presented at the ASME ICE Division Fall2000TechnicalMeeting September25-27,2000, Peoria, IL.
    [103]Thomas W, Mohamed A. HIL-based ECU-Calibration of SI Engine with AdvancedCamshatf Variability. In: SAE Technical Paper NO,2006-01-0613;2006.
    [104]Thomas W, Mohamed A, et al. HIL-Calibration of SI Engine Cold Start and Wann-UpUsing Neural Real-Time Model. In: SAE paper NO.2004-01-1362.
    [105]Mustafa G, Yakup S, Perihan E. Artificial neural-network based modeling of variablevalve-timing in a spark-ignition engine. Applied Energy2005;81:187—197.
    [106]Najafi G, Ghobadian B, Tavakoli T, et al. Performance and exhaust emissions of a gasolineengine with ethanol blended gasoline fuels using artiifcial neural network. Applied Energy2009;86:630-639.
    [107]Kiani M, Kiani D, Ghobadian B, et al. Application of artificial neural networks for theprediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends.Energy2010;35:65-69.
    [108]Togun N, Baysec S. Prediction of torque and speciifc fuel consumption of a gasoline engineby using artificial neural networks. Applied Energy2010;87:349-355.
    [109]Talal F, Yusaf, Butts worth DR, et al. CNG-diesel engine performance and exhaust emissionanalysis with the aid of artificial neural network. Applied Energy2010;87:1661-1669.
    [110]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社.2004.1
    [111]Omran R, Younes R and Champoussin JC, et al. Genetic Algorithm for DynamicC'alibration of Engines Actuators. In: SAE paper NO.2007-01-1079.
    [112]Jose M. A, Fernando A. Combining Neural Networks and Genetic Algorithms to Predict andReduce Diesel Engine Emissions [J], IEEE Transactions on Evolutionary Computation,2007,11:46-55.
    [113]赵罡,王超,于红亮.基于神经网络和遗传算法的公差优化设计.北京航空航天大学学报,2010(5):518-523
    [114]姜述刚,石奕,张云龙,袁大宏.遗传算法在电控汽油机控制参数优化中的应用[J].内燃机学报,2000,18(4):414-418
    [115]Hiroyasu H and Miao H, et al. Genetic Algorithms Optimization of Diesel Engine Emissionsand Fuel Efficiency with Air Swirl, EGR, Injection Timing and Multiple Injections. In: SAEpaper NO.2003-01-1853
    [116]Verma R and Lakshminarayanan PA. A case study on the application of a genetic algorithmfor optimization of engine parameters [J]. Proc. IMechE Vol.220Part D: J. AutomobileEngineering,2006,471-479.
    [117]Lampinen J. Cam shape optimisation by genetic algorithm [J]. Computer-Aided Design,2003,35:727-737.
    [118]Wu MH, Lin W, and Duan SY. Investigation of a multi-objective optimization tool forengine calibration [J]. Proc. IMechE Part D: J. Automobile Engineering,2008,222:235-249.
    [119]D'Errico G, Cerri T, Pertusi G. Multi-objective optimization of internal combustion engineby means of ID fluid-dynamic models [J]. Applied Energy,2011,88:767-777.
    [120]Vossoughi GR, Rezazadeh S. Optimization of the Calibration for an Internal CombustionEngine Management System Using Multi-Objective Genetic Algorithms. IEEE Congress onEvolutionary Computation-CEC, pp.1254-1261,2005.
    [121]Farahat S, Nejad EK, and Hoseini SM. Thermodynamic Optimization of Turboshatf Engineusing Multi-Objective Genetic Algorithm. World Academy of Science, Engineering andTechnology562009.
    [122]王天友,张运泉,王利民等.无节气门负荷控制策略对汽油机性能影响的研究.内燃机学报,2009,27(3):224-230.
    [123]胡顺堂,谢辉等.可变进气门升程对汽油机泵气损失的控制及对燃烧过程的影响.燃烧科学与技术,2011,17(1):29-34.
    [124]R. Flierl and Kliiting M. The Third Generation of Valve trains—New Fully VariableValvetrains for Throttle-Free Load Control. In: SAE paper NO.2000-01-1227.
    [125]Flierl R and Kairies D, et al. Initial Experimental Results with Unthrottled Load ControlUsing a Mechanical Fully Variable Valve Lift System for High-Speed Operation. In: SAEpaper NO.2004-01-1394.
    [126]Cairns A, Blaxill H and Irlam G. Exhaust Gas Recirculation for Improved Part and FullLoad Fuel Economy in a Turbocharged Gasoline Engine. In: SAE paper NO.2006-01-0047
    [127]Osman AK, Hikinet A, Alper TC. Methods to improve efficiency of four stroke, sparkignition engines at part load. Energy Conversion&Management2005;46:3202-3220.
    [128]http://en.wikipedia.Org/wiki/Valvetronic
    [129]Luttermann C, Schiinemann E, and Klauer N. Enhanced VALVETRONIC Technology forMeeting SULEV Emission Requirements. In: SAE paper NO.2006-01-0849.
    [130]Caton JA. Results from an Engine Cycle Simulation of Compression Ratio and ExpansionRatio Effects on Engine Performance. Journal of Engineering ofr Gas Turbines and Power;September2008,Vol.130/052809-1.
    [131]Venugopalan S, Lai MC, Wu F. Experimental and Simulation Analysis of PFI-SI Engine forFuel Economy Improvement. SAE technical Paper NO.2005-01-3691,2005.
    [132]Edwards SP, Frankle GR. The Potential of a Combined Miller Cycle and Internal EGREngine for the Future Heavy Duty Truck Applications. SAE technical Paper NO.1998-01-80,1998.
    [133]http://en.wikipedia.Org/wiki/Variable displacement
    [134]严子浚,田鑫泉.不可逆卡诺热机效率和功率的界限.应用科学学报,1996,14(1):11-15.
    [135]兰旭光,訾琨.内燃机理论循环有限时间热力学理论的发展.兰州理工大学学报,2002,27(1):89-94.
    [136]Sonntag R, Borgnakke C, Van Wylen G. Fundamentals of Thermodynamics,fifth ed. Wiley,New York,1998.
    [137]Brunt MFJ., Rai H, Emtage AL. The calculation of heat release energy from engine cylinderpressure data, SAE Paper981052,1998.
    [138]Abd Alia GH, Computer simulation of a four stroke spark ignition engine, EnergyConversion&Management43(2002)1043-1061.
    [139]Rakopoulos R, Giakoumis EG. Second-law analyses applied to internal combustion enginesoperation. Prog Energ Combust2006;32:2-47.
    [140]刘文卿.实验设计[M].北京:清华大学出版社.2005.2(P6)
    [141]Haykin, S. Neural networks: a comprehensive foundation. NJ: Prentice Hall;1999.
    [142]Hertz J, Krogh A, and Palmer RG. Introduction to the theory of neural computation.Redwood City, NJ: Addison-Wesley publishing company,1991.
    [143]王旭,王宏,王文辉.人工神经元网络原理与应用[M].沈阳:东北大学出版社2007:22-23
    [144]Kalyanmoy Deb. An efifcient constraint handling method for genetic algorithms [J]. Comput.Methods Appl. Mech. Engrg,2000,186:311-338.
    [145]John B. Heywood. Internal combustion engine fundamentals.McGraw-Hill,1988.
    [146]N. Heintz, M. Mews and G. Stier, etc. An Approach to Torque-Based Engine ManagementSystems. In: SAE Paper No.2001-01-0269;2001.
    [147]Guenael Le Solliec, Fabrice Le Berr and Gilles Corde, etc. Downsized SI Engine Control: ATorque-based Design from Simulation to Vehicle. In: SAE Paper No.2007-01-1506;2007.
    [148]Raymond Turin, Rong Zhang and Man-Feng Chang. Systematic Model-Based EngineControl Design. In: SAE Paper No.2008-01-0994;2008.
    [149]Goldberg, D. Genetic algorithms in search, optimization and machine learning,1989(Addison-Wesley, Reading, Massachusetts).
    [150]云庆夏.进化算法[M].北京:冶金工业出版社.2000.5(PI)
    [151]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社.1999.5
    [152]Alonso JM, Alvarruiz F, Desantes JM, et al. Combining Neural Networks and GeneticAlgorithms to Predict and Reduce Diesel Engine Emissions. IEEE Transactions onEvolutionary Computation,2007,11:46-55.
    [153]Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained parameteroptimization problems. Evolutionary Computation4(1)(1996)1-32.
    [154]Ioannis G. Tsoulos. Solving constrained optimization problems using a novel geneticalgorithm [J]. Applied Mathematics and Computation,2009,208:273-283.
    [155]Conn, A. R.,N. I. M. Gould, and Ph. L. Toint."A Globally Convergent AugmentedLagrangian Barrier Algorithm for Optimization with General Inequality Constraints andSimple Bounds," Mathematics of Computation, Volume66, Number217, pages261-288,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700