用户名: 密码: 验证码:
低维纳米结构中微弱光电信号传输的基本物理问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们对信息高效存储和准确处理的需要,促使作为信息技术和微电子工业基础的现代集成电路技术向更高集成度、更快运算速度、更低功耗方向发展。作为微电子技术基础的微米结构已经成为制约信息技术高速发展的瓶颈,人们急于寻找一条崭新的道路,使信息的处理发生质的改变。如今,以介观金属环、石墨烯、光子晶体波导、纳米金属等离子体波导、微波传输线、光学纳米光纤等为典型代表的低维纳米结构,由于他们的量子效应具有很强的可控性,使得他们在微电子、光电子器件、超高密度存储、量子计算机的物理实现等方面具有潜在的应用价值。因此,研究低维纳米结构中的量子相干输运,是目前物理学研究中最活跃和最具生命力的前沿领域之一。
     在本论文中,我们采用量子波导理论,着重研究了介观金属环在周期性磁通驱动下的量子输运特性、低能激发电子在石墨烯的相干传输和一维光波导中的单光子相干输运等物理学前沿问题,研究发现周期性势垒驱动下的介观环系统中出现了光子辅助隧穿,并且在环上形成了明显的电流密度波;石墨烯闭环中的持续电流具有显著的尺寸效应;以及光子与二能级原子之间的耦合强度对共振光子的输运特性起着决定性作用等。研究成果有助于设计制作下一代量子开关、量子分束器等纳米元件。
     具体研究了以下五个方面的内容:
     第三章研究了周期性磁通驱动的介观金属环中的光子辅助隧穿。采用量子波导理论和Floquet散射理论,研究了介观环中的电子在含时磁通驱动下的动力学行为。数值结果显示,不同于静磁通驱动时的情况,电子的透射率在整数倍振荡能量时出现了涨落。这是由于电子在周期性磁通作用下,产生了一系列的边带,使得电子通过光子辅助隧穿的方式从介观环中透射出去。研究结果表明,光子辅助隧穿与动磁场的幅度和振荡频率有关。由于光子辅助隧穿明显地依赖于振荡磁通的频率,因此,双库开环系统可以用来实现对频率的精确测量,即可以通过测量电子透射率出现跳跃时的能量,从而计算出磁场的频率。
     第四章研究了单库介观环在周期性磁场驱动下的电流密度波。我们采用量子波导理论和Floquet散射理论,系统地研究了电子在单环单库结构中的传输行为。研究发现当介观环在周期性磁通的驱动下,电极和环上将出现振荡的电流密度波,说明在只有一个库的电极上可以出现电流。因此,我们的数值结果指出通过调节动磁通的幅度,可以调控光子的辅助隧穿效应。当动磁通很弱时,具有不同能量的入射电子均被完全反射回来。然而强的动磁通使得反射率不再为100%。这是由于入射电子在光子辅助隧穿效应的作用下,通过吸收或发射光子,在不同的Floquet边带之间发生跃迁,导致在单库单环的电极中出现电流。
     第五章研究了Dirac粒子在石墨烯结中的交流响应。采用无质量的Dirac方程和Tien-Gordon理论,系统地研究了准粒子在石墨烯结中的交流响应。当结的两边同时被外加时间周期性的外场驱动时,数值结果表明电子透射率的时间相关性与电子的入射角度有关。当电子垂直入射到石墨烯结上时,由于Klein隧穿的作用,使得其透射率始终为1,与外加势垒的高度、频率、相位等无关。当电子以一定的角度入射时,其透射率明显地依赖于势垒的高度、频率和相位。同时通过研究不同边带间的电子透射率,发现在本系统中同样存在光子辅助隧穿现象。
     第六章研究石墨烯闭环的尺寸效应。采用无质量的Dirac方程,引入无穷大强制边界条件,讨论了石墨烯闭环中的Aharonov-Bohm效应。数值计算表明,外加磁通对时间反演对称性和电子的谷简并性均有影响。由于石墨烯特殊的空间反幺正对称性,使得其持续电流出现不同于金属环中的振荡特性。并且发现简并能级差和持续电流的涨落幅度等与石墨烯闭环的半径和宽度有关。这说明可以通过改变石墨烯的几何尺寸来调控它的时间反演对称性和谷简并性。
     第七章研究了光子在一维光波导中的可控输运特性。光子在一维波导中被二能级原子散射时,光子透射率与耦合强度之间有直接的依赖关系。与对称耦合不同的是,我们的数值结果表明共振光子的透射率可以通过改变不同方向光子与二能级原子之间的耦合强度,从而使光子的透射率从0调节到100%。究其物理根源来自于光子被二能级原子散射之后能量和动量的再分配。因此,共振光子的透射率不仅与光子的频率有关,还与不同传输方向的光子与二能级原子之间的耦合强度有关。
The need of efficient storage and accurate processing of information urges the modern integrated circuit technology, which is the base of information technology and microelectronics industry, to develop toward higher integration level, faster computing speed, and lower power consumption. However, the micron-sized structures of microelectronic technology is said to have become the bottleneck that restricts the rapid development of information technology. Thus, scientists are anxious to find a revolutionary way to overcome this limitation, which makes the low-dimensional nano structure become the key subject investigated in such fields as modern condensed matter physics, and quantum information. Nowadays, mesoscopic metal rings, graphene, photonic crystal waveguides, nano-metal plasma waveguide, microwave transmission lines, and optical nano-fibers are considered to have potential application in next generation of devices. Because of their controllable quantum effects, the study of the quantum coherent transporting along these low-dimensional nanostructures is one of the active domains in microelectronics, optoelectronics, ultra-high density storage, and quantum computers.
     In this thesis, we adopt the quantum waveguide theory to investigate the single electron transport along a mesocopic ring driven by time-period magnetic fluxes, Driac fermions transmission along Graphene junction driven by two ac signals, and the single photon transport along a nano quantum optical wavguide. We find that photon assisted tunneling reveals when the mesoscopic ring driven by time-period fluxes and current density waves appear along the mesoscopic ring and the lead connected the ring and the source; The time-depend transmission of the Dirac particles in Graphene nano junction has direct relation on the input angle of the electron; The transmission probabilities of the injected photon can by adjusted by the coupling strength between the photon and the two-level atom. We believe that the findings of our studies will have great effect on the potential experimental schemes of all-optical switches and quantum beam splitters.
     In chapter3, the photon-assisted tunneling of the elctron transport along the mesoscopic ring driven by time-period fluxes is investigated. We used the quantum waveguide theory combined by the Floquet scattering theorem to investigate the electron transport along an open mesoscopic ring with two leads driven by a time-periodic magnetic flux. Numerical results showed the photon-assisted tunnelings are insensitive of the amplitude of the applied static magnetic flux. The dynamic component of the applied flux induces the photon-assisted tunnelings; i.e., the number of the appeared transmission peaks. The photon-assisted tunneling investigated could be utilized to measure the frequency of the applied oscillating external field.
     In chapter4, current density wave along the mesoscopic ring is studied. We used the quantum waveguide theory combined with the Floquet scattering theorem to investigate electron transport along an open mesoscopic ring with only one lead driven by a time-periodic magnetic flux. We showed particularly that a current density wave could be excited along the open ring threaded by the time-periodic magnetic flux, and a net current could also be generated in the lead connected to only an electron reservoir. Numerical results showed that the amplitude of the dynamic fluxes can modulate the photon-assisted process between the lead and the ring. When the dynamic amplitude is relatively small, the electrons with different energies are reflected back to the lead and the current in the ring is not influenced. However, with the increase of the amplitude of the dynamic flux, the reflection coefficient could be less than unit.
     In chapter5, Dirac particles response the ac driven signal in Graphene in considered. By utilizing the massless Dirac equation and Tien-Gordon theory, we have investigated the quasi-particles transporting through a graphene junction driven by two different time-periodic ac signals. Our numerical results show that the time-oscillating behaviors of transmissions depend on the particles' incident angles. Due to the Klein tunneling, the transmission probabilities for the normal incidence are insensitive to static potentials, phases, and driven frequencies. However, when the electrons are incident with a fixed angle, the probabilities begin to oscillate with time.
     In chapter6, we investigate the size effect in closed graphene ring. We adopt the massless Dirac equation, combined by the infinite mass boundary condition, to investigate the Aharonov-Bohm effect in a closed graphene ring driven by magnetic flux. The numerical results clearly suggest that the applied magnetic flux breaks the time reversal symmetry and lifts the valley degeneracy in graphene ring. Particularly, the energy level, the energy difference between two valleys, and the absolute amplitude of the oscillating persistent current are all sensitive to the values of the radius and the width.
     In chapter7, the single photon transport aong the one dimensional qautum optical waveguide is ivestigated. We study the single-photon transport along a one-dimensional optical waveguide containing an asymmetrically-coupled two-level aotm. Differing from the symmetric coupling cases discussed previously, we showed that the transmission probabilities of the incident single photons can vary from0to100%, depending on its asymmetrical couplings with the two-level aotm. This phenomenon is related to the redistribution of energy and momentum of photons after the scattering by the two-level aotm, as the present photon-atom interaction loses the usual spatial-symmetry. When the incident photon and the two-level aotm is on resonance, the amplitude of the excited spectra can still be adjusted by the coupling strength.
引文
[1]L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Lou, M. Shen, I. Maxwell, and Eric Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature.2003,426:816-819.
    [2]A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic. Efficient photonic crystal cavity-waveguide couplers. Appl. Phys. Lett.2007,90:073102.
    [3]A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic. Dipole induced transparency in waveguide coupled photonic crystal cavities. Opt. Expr.2008, 16:12154-12162.
    [4]D. E. Chang, A. S. S(?)rensen, P. R. Hemmer, and M. D. Lukin. Quantum Optics with Surface Plasmons. Phys. Rev. Lett.2006,97:053002.
    [5]O. V. Astafiev, A. A. Abdumalikov, Jr., A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai. Ultimate on-chip quantum amplifier. Phys. Rev. Lett.2010,104(18): 183603.
    [6]E. Vetsch, D. Reitz, G. Sague, R. Schmidt, S. T. Dawkins, and A. Rauschenbeute. Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber. Phys. Rev. Lett.2010,104:203603.
    [7]K. J. Vahala. Optical microcavities. Nature.2003,424:839-846.
    [8]V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson. All-optical control of light on a silicon chip. Nature.2004,431:1081-1084.
    [9]J. T. Shen, Introduction to Naono-photonic Devices (Lectures).
    [10]阎守胜,甘子钊著.介观物理,北京大学出版社,1995.
    [11]高迎芳.介观环中的量子输运.山西大学博士学位论文,2005:4-7.
    [12]顾本源,顾雷.“介观”系统中的量子相干性和输运.物理.19(10):586-590.
    [13]李华钟,周义昌.正常态介观环上的持续电流.物理学进展.1995,15(14):391-404.
    [14]R.Landauer. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev.1957,1:223-231.
    [15]Y. Anaernov nad D.Bohm. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev.1959,115:485-491.
    [16]M. Buttiker, Y. Imry, and R. Landauer. Josephson behavior in small normal one-dimensional rings. Phys. Lett.1983,96A (7):365-367.
    [17]M. Buttiker, Y. Imry, T. Landauer, and S. Pinhas. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B.1985,31: 6207-6215.
    [18]M. V. Berry. On Algebraically Special Perturbations of Black Holes. Proc. R. Soc. London A.1984,392:45-47.
    [19]A. G. Aronov and Y. B. Lyanda-Geller. Spin-orbit Berry phase in conducting rings. Phys. Rev. Lett.1993,70:343-346.
    [20]J. B. Xia. Quantum waveguide theoty for mesoscopic structures. Phys. Rev. B.1992,45: 3593-3599.
    [21]P. S. Deo and A. M. Jayannavar. Quantum waveguide transport in serial stub and loop structures. Phys. Re.v B.1994,50:11629-11639.
    [22]D.Yu.Shavrin and Yu.VShvarin. Magnetic-flux quantization in a cylindrical film of a normal metal. JETP Lett.1981,34:272-275.
    [23]B. L. Altshuler, A. G. Aronov, and B. Z. Spivak. The Aronov-Bohm Effect in Disordered Conductors. JETP Lett.1981,33:94.
    [24]R. A. Webb, S.Washbum, C. R. Umbaeh, and R. B. Laibowitz. Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings. Phys. Rev. Lett.1985,54: 2696-2699.
    [25]L. P. Levy, G. Dolna, J. Dunsmuir, and H. Bouehiat. Magnetization of mesoscopic copper rings:Evidence for persistent currents. Phys. Rev. Lett.1990,64:2074-2077.
    [26]V. Chnadrasekhar, R. A. Webb, M. J. Brady, M. B. Ketehen, W. J. Gallasher, and A. Kleinsasser. Magnetic response of a single, isolated gold loop. Phys. Rev. Lett.1991, 67:3578-3581.
    [27]D.Mailly, C. Chapelier, and A. Benoit. Experimental observation of persistent currents in GaAs-AlGaAs single loop. Phys. Rev. Lett.1993,70:2020-2023.
    [28]A.Yacoby, M.Heiblum, D.Mahalu, and H.Shtrikman. Coherence and Phase Sensitive Measurements in a Quantum Dot. Phys. Rev. Lett.1995,74:4047-4050.
    [29]A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. G. E. Harris. Persistent Currents in Normal Metal Rings. Science.2009, 326:272-275.
    [30]S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo. Observation of Aharonov-Bohm conductance oscillations in a graphene ring. Phys. Rev. B.2008,77:085413.
    [31]M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn. Investigation of the Aharonov-Bohm effect in a gated graphene ring. Physica Status Solidi (b).2009,246:2756-2759.
    [32]P. Recher, B. Trauzettel, A. Rycerz, Y. M. Blanter, C. W. J. Beenakker, and A. F. Morpurgo. Aharonov-Bohm effect and broken valley degeneracy in graphene rings. Phys. Rev. B.2007,76:235404.
    [33]D. A. Bahamon, A. L. C. Pereira, and P. A. Schulz. Inner and outer edge states in graphene rings:A numerical investigation. Phys. Rev. B.2009,79:125414.
    [34]P. R. Wallace. The band theory of graphite. Phys. Rev.1947,71:622.
    [35]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science.2004,306:666-669.
    [36]张德华.石墨烯纳米器件的量子输运研究.华中科技大学博士学位论文.2011:2-4.
    [37]M. I. Katsnelson, K. S. Novoselov, and A. K. Geim. Chiral tunnelling and the Klein paradox in grapheme. Nat. Phys.2006,2:620-625.
    [38]D. S. L. Abergela, V. Apalkovb, J. Berashevicha, K. Zieglerc, andTapash Chakrabortya. Advances in Physics.2010,59(4):261-482.
    [39]杨蓉,高敏,潘毅,郭海明,时东霞,高鸿钧Graphene的制备与结构特性.物理.2009,38(6):371-377.
    [40]陈建毅,张洪亮,黄丽平,武斌,魏大程,刘云圻.溶液法制备Graphene物理.2009,38(6):387-394.
    [41]毛金海,张海刚,刘奇,时东霞,高鸿钧.Graphene的物理性质与器件应用.物理.2009,38(6):378-386.
    [42]T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg. Controlling the Electronic Structure of Bilayer Graphene. Science.2006,313:951-954.
    [43]J. B. Oostinga, H. B. Heersche, L. Liu, A. F. Morpurgo, and L. M. K. Vandersypen. Gate-induced insulating state in bilayer grapheme devices. Nature Materials.2008,7: 151.
    [44]Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and Ph. Avouris. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters.2009,9: 422-426.
    [45]C. Stampfer, E. Schurtenberger, F. Molitor, J. Guttinger, T. Ihn, and K. Ensslin. Tunable Graphene Single Electron Transistor. Nano Lett.2008,8:2378-2383.
    [46]N. M. Gabor, Justin C. W. Song, Qiong Ma, Nityan L. Nair, Thiti Taychatanapat, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, and Pablo Jarillo-Herrero. Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. Science.2011,334:648-652.
    [47]J. S. Arellano, L. M. Molina, A. Rubio and J. A. Alonso. Density functional study of adsorption of molecular hydrogen on graphene layers. Journal of Chemical Physics. 2000,112(18):8114-8119.
    [48]Y.-W. Son, M. L. Cohen, and S. G. LouieSon. Half-metallic graphene nanoribbons. Nature,2006,444:347-349.
    [49]D. Gunlycke, D. A. Areshkin, J. Li, John W. Mintmire, and C. T. White. Graphene Nanostrip Digital Memory Device. Nano Letters.2007,7:3608-3611.
    [50]韩鹏昱,刘伟,谢亚红,张希成.石墨烯与太赫兹科学.物理.2009,38(6):395-400.
    [51]赵立华.纳米尺度光波导及微结构若干性质研究.南开大学博士学位论文.2010:7-13.
    [52]李广波.玻璃基硅光波导及纳米波导研究.浙江大学硕士学位论文.2006:19-21.
    [53]M. Law, D. Sirbuly, J. Johnson, J. Goldberger, R. Saykally, and P. Yang. Nanoribbon waveguides for sub-wavelength photonics integration. Science.2004,305:1269-1273.
    [54]Q. F. Xu, V. R. Almeida, Roberto R. Pnaepucei, and M. Lipson. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett.2004,29(14):1626-1628.
    [55]韩张化.基于表面等离子体及半导体准一维纳米结构的光子器件研究.浙江大学博士学位论文.2008:3-5.
    [56]S. John. Strong loealization of photons in certain disordered dielectric superlattiees. Phys. Rev. Lett.1987,58:2486-2489.
    [57]E.Yablonovitch. Inhibited sponianeous emission in solid-state physics and electronies. Phys. Rev. Lett.1987,58:2059-2062.
    [58]K. M. Ho, C.T.Chan, and C. M. Soukoulis. Existenee of a photonic gap in periodie dielectric structures. Phys. Rev. Lett.1990,65:3152-3155.
    [59]E.Yablonovitch, T. J. Gmitter, and K. M. Leung. Photonic band structure:The face-centered-cubic case employing nonspheriealatoms. Phys. Rev. Lett.1991,67: 2295-2298.
    [60]W. J. Li and L. E. Reichl. Floquet scattering through a time-periodic potential. Phys. Rev.B.1999,60(23):15732-15741.
    [61]S. T. Shen and S. H. Fan. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett.2005,30(15):2001-2003.
    [62]Shanhui Fan. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Appl. Phys. Lett.2002,80(6):908-910.
    [63]T. P. Pareek, A. M. Jayannavar. Persistent currents in coupled mesoscopic rings. Phys. Rev. B.1996,54(9):6376-6381; S. K. Joshi, D. Sahoo, A. M. Jayannavar. Aharonov-Bohm oscillations and spin-polarized transport in a mesoscopic ring with a magnetic impurity. Phys. Rev. B.2001,64(7):075320(1)-075320(5); S. Bandopadhyay, P. S. Deo, and A. M. Jayannavar. Quantum current magnification in a multichannel mesoscopic ring. Phys. Rev. B.2004,70(7):075315(1)-075315(9).
    [64]L. F. Wei, S. J. Wang, H. Y. Jia, and Q. L. Jie. Fano Resonance and Persistent Currents in a Mesoscopic Open Ring with a Flux Loop in Side -Branch. Chin. Phys. Lett.1998, 15(2):128-130.
    [65]J. Yi, J. H. Wei, J. Hong, and S. I. Lee. Giant persistent currents in the open Aharonov-Bohm rings. Phys. Rev. B.2001,65(3):033305(1)-033305(4); W. Park, J. Hong. Analysis of coherent current flows in the multiply connected open Aharonov-Bohm rings. Phys. Rev. B.2004,69(3):035319(1)-035319(7).
    [66]G. Platero, R. Aguado. Photon-assisted transport in semiconductor nanostructures. Phys. Rep.2004,359:1-157.
    [67]M. Wagner. Quenching of resonant transmission through an oscillating quantum well. Phys. Rev. B.1994,49(23):16544-16547.
    [68]H. Drexler, J. S. Scott, S. J. Allen, K. L. Campman, and A. C. Gossard. Photon-assisted tunneling in a resonant tunneling diode:Stimulated emission and absorption in the THz range. Appl. Phys. Lett.1995,67(19):2816-2818.
    [69]B. J. Keay, S. J. Allen, Jr., J. Galan, J. P. Kaminski, K. L. Campman, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell. Photon-assisted electric field domains and multiphoton assisted tunneling in semiconductor superlattices. Phys. Rev. Lett.1995, 75(22):4098-4101; B. J. Keay, S. Zeuner, S. J. Allen, Jr., K. D. Maranowski, A. C. Gossard, U. Bhattacharya, and M. J. W. Rodwell. Dynamic localization, absoulute negative conductance, and stimulated, multipohoton emission in sequential resonant tunneling semiconductor superlattices. Phys. Rev. Lett.1995,75(22):4102-4105.
    [70]M. Buttiker, R. Landauer. Traversal time for tunneling. Phys. Rev. Lett.1982,49(23): 1739-1742; M. Buttiker. Larmor precession and the traversal time for tunneling. Phys. Rev. B.1983,27(10):6178-6188;M. Moskalets, M. Buttiker. Floquet states and persistent-current transitions in a mesoscopic ring. Phys. Rev. B.2002,66(24): 245321(1)-245321(5).
    [71]S. W. Kim. Floquet scattering in parametric electron pumps. Phys. Rev. B.2002,66(23): 235304(1)-235304(6).
    [72]C. S. Tang, C. S. Chu. Quantum transport in the presence of a finite-range time-modulated potential. Phys. Rev. B.1996,53(8):4838-4844.
    [73]S. L. Zhu and Z. D. Wang. Charge pumping in a quantum wire driven by a series of local time-periodic potentials. Phys. Rev. B.2002,65(15):155313(1)-155313(5).
    [74]C. X. Zhang, Y. H. Nie, and J. Q. Liang. Photon-assisted electron transmission resonance through a quantum well with spin-orbit coupling. Phys. Rev. B.2006,73(8): 085307(1)-085307(5).
    [75]C. Z. Ye, C. X. Zhang, Y. H. Nie, and J. Q. Liang. Field-assisted resonance tunneling through a symmetric double-barrier structure with spin-orbit coupling. Phys. Rev. B. 2007,76(3):035345(1)-035345(7).
    [76]M. Ahsan Zeb, K. Sabeeh, and M. Tahir. Chiral tunneling through a time-periodic potential in monolayer grapheme. Phys. Rev. B.2008,78(16):165420(1)-165420(7).
    [77]D. Shin, H. Oymak, and J. Hong. Phonon-photon-assisted tunnelling through an Aharonov-Bohm ring. J. Phys:Condens. Matter.2007,19:226211(1)-226211(14); L. Arrachea. Current oscillations in a metallic ring threaded by a time-dependent magnetic flux. Phys. Rev. B.2002,66(4):045315(1)-045315(11).
    [78]D. Shin, J. Hong. Electron transport in the Aharonov-Bohm pump. Phys. Rev. B.2004, 70(7):073301(1)-073301(4).
    [79]D. Shin and J. Hong. Momentum filtering by photon-assisted tunneling in a connected Aharonov-Bohm ring. Phys. Rev. B.2005,72(11):113307(1)-113307(4).
    [80]J. H. Shirley. Solution of the Schrdinger Equation with a Hamiltonian Periodic in Time. Phys. Rev.1965,138(4B):B979-B987.
    [81]M. Holthaus and D. Hone. Quantum wells and superlattices in strong time-dependent fields. Phys. Rev. B.1993,47(11):6499-6508.
    [82]T. Fromherz. Floquet states and intersubband absorption in strongly driven double quantum wells. Phys. Rev. B.1997,56(8):4772-4777.
    [83]M. Jaaskelainen, F. Corvino, and C. P. Search. Quantum pumping of electrons by a moving modulated potential. Phys. Rev. B.2008,77(15):155319(1)-155319(8).
    [84]P. F. Bagwell, R. K. Lake. Resonances in transmission through an oscillating barrier. Phys. Rev. B.1992,46(23):15329-15336.
    [85]E. N. Bulgakov, A. F. Sadreev. Mesoscopic ring under the influence of time-periodical flux Aharonov-Bohm oscillations and transmission of wave packets. Phys. Rev. B. 1995,52(16):11938-11944.
    [86]G. Platero and R. Aguado. Photoassisted Transport in Nanostructures. Phys. Rep.395,1 (2004).
    [87]P. K. Tien and J. P. Gordon. Multipohton process observed in interaction of microwave fields with the tunneling between superconductor filml. Phys. Rev.1963,129(2): 647:651.
    [88]T. C. L. G. Sollner,W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck. Resonant tunneling through quantum wells at frequencies up to 2.5THz. Appl. Phys. Lett.1983,43(6):588-590.
    [89]L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. McEuen, Y. Nagamune, J. Motohisa, and H. Sakaki. Observation of photon assisted tunneling through a quantum dot. Phys. Rev. Lett.1994,73(25):3443-3446.
    [90]Q. F. Sun, J. Wang, and T. H. Lin. Photon-assisted Andreev tunneling through a mesoscopic hybrid system. Phys. Rev. B.1999,59(20):13126-13138.
    [91]H. K. Zhao and J. Wang. Photon-assisted shot noise in the mesoscopic system with a toroidal carbon nanotube coupled to normal-metal leads perturbed by ac fields. Phys. Rev. B.2006,74(24):245401 (1)-245401 (11).
    [92]P. A. Orellana and M. Pacheco. Photon-assisted transport in a carbon nanotube calculated using Green's function techniques. Phys. Rev. B.2007,75(11):115427 (1)-115427(5).
    [93]S. E. Shafranjuk. Sensing an electromagnetic field with photon-assisted Fano resonance in a two-branch carbon nanotube junction. Phys. Rev. B.2007,76(8):085317(1)-085317(6).
    [94]B. Trauzettel, Y. M. Blanter, and A. F. Morpurgo. Photon-assisted electron transport in graphene:Scattering theory analysis. Phys. Rev. B.2007,75(3):035305 (1)-035305 (5).
    [95]D. Takai and K. Ohta. Structure of persistent current in the presence of a magnetic flux and an electrostatic potential. Phys. Rev. B.1993,48(19):14318-14324.
    [96]C. Benjamin and A. M. Jayannavar. Current magnification effect in mesoscopic systems at equilibrium. Phys. Rev. B.2001,64(23):233406(1)-233406(4).
    [97]L. Arrachea. Current oscillations in a metallic ring threaded by a time-dependent magnetic flux. Phys. Rev. B.2002,66(4):045315(1)-045315(11); L. Arrachea. dc response of a dissipative driven mesoscopic ring. Phys. Rev. B.2004,70(15):155407 (1)-155407 (10); F. Foieri, L. Arrachea, and M. J. Sanchez. Multifloquet to Single Electronic Channel Transition in the Transport Properties of a Resistive 1D Driven Disordered Ring. Phys. Rev. Lett.2007,99(26):266601 (1)-266601 (4).
    [98]M. Buttiker. samall normal-metal loop coupled to an electron reservoir. Phys. Rev. B. 1985,32(3):1846-1849.
    [99]M. Moskalets, M. Buttiker. Floquet states and persistent-current transitions in a mesoscopic ring. Phys. Rev. B.2002,66(24):245321(1)-245321(5).
    [100]H. Bluhm, N. C. Koschnick, J. A. Bert, M. E. Huber, and K. A. Moler. Persistent Currents in Normal Metal Rings. Phys. Rev. Lett.2009,102(13):136802(1)-136802(4).
    [101]A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. G. E. Harris. Persistent Currents in Normal Metal Rings. Science. 2009,326:272-275.
    [102]A. K. Geim and K. S. Novoselov. The rise of grapheme. Nat. Mater.2007,6:183-191.
    [103]A.K. Geim. Graphene:Status and Prospects. Science.2009,324:1530-1534.
    [104]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of grapheme. Rev. Mod. Phys.2009,81(1):109-162.
    [105]K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in grapheme. Nature (London).2005,438:197-200.
    [106]Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum Hall effect and Berry's phase in grapheme. Nature (London).2005,438: 201-204.
    [107]C. W. J. Beenakker. Specular Andreev Reflection in Graphene. Phys. Rev. Lett.2006, 97(6):067007(1)-(4).
    [108]S. Bhattacharjee, K. Sengupta. Tunneling Conductance of Graphene NIS Junctions. Phys. Rev. Lett.2006,97(21):217001(1)-(4).
    [109]V. A. Yampolskii, S. Savelev, and F. Nori. Voltage-driven quantum oscillations in grapheme. New J. Phys.2008,10:053024(1)-(9).
    [110]Z. Y. Li, H. Y. Qian, J. Wu, B. L. Gu, and W. H. Duan. Role of Symmetry in the Transport Properties of Graphene Nanoribbons under Bias. Phys. Rev. Lett.2008, 100(20):206802(1)-(4).
    [111]T. Yokoyama. Controllable spin transport in ferromagnetic graphene junctions. Phys. Rev. B.2008,77(7):073413(1)-(4).
    [112]Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori. Transport and localization in periodic and disordered graphene superlattices. Phys. Rev. B.2009,79(7): 075123(1)-(11).
    [113]A. Schuessler, P. M. Ostrovsky, I.V. Gornyi, and A. D. Mirlin. Analytic theory of ballistic transport in disordered grapheme. Phys. Rev. B.2009,79(7):075405(1)-(23).
    [114]L. DellAnna and A. D. Martino. Multiple magnetic barriers in grapheme. Phys. Rev. B. 2009,79(4):045420(1)-(9).
    [115]S. A. Mikhailov. Non-linear electromagnetic response of grapheme. Europhys. Lett. 2007,79:27002(1)-(4).
    [116]T. M. Rusin and W. Zawadzki. Zitterbewegung of electrons in graphene in a magnetic field. Phys. Rev. B.2008,78(12):125419(1)-(9).
    [117]F. J. Lopez-Rodrguez and G.G. Naumis. Analytic solution for electrons and holes in graphene under electromagnetic waves:Gap appearance and nonlinear effects. Phys. Rev. B.2008,78(20):201406(R)(1)-(4).
    [118]J. C. Slonczewski and P. R. Weiss. Band structure of graphite. Phys. Rev.1958,109(2): 272-279.
    [119]G. W. Semenoff. Condensed matter simulation of a three dimensional anomaly. Phys. Rev. Lett.1984,53(26):2449-2452.
    [120]F. D. M. Haldane. Model for a quantum Hall effect without Landau levels:condensed matter realization of the parity anomaly. Phys. Rev. Lett.1988,61(18):2015-2018.
    [121]P. K. Tien and J. P. Gordon. Multipohton process observed in interaction of microwave fields with the tunneling between superconductor filml. Phys. Rev.1963,129(2): 647:651.
    [122]J. Gonzalez, F. Guinea, and M.A.H. Vozmediano. Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction. Phys. Rev. B.1999,59(4): R2474-R2477.
    [123]C. L. Kane and E. J. Mele. Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes. Phys. Rev. Lett.2004,93(19):197402(1)-(4).
    [124]M. I. Katsnelson. Zitterbewegung, chirality, and minimal conductivity in grapheme. Eur.Phys.J.B.2006,51:157-160.
    [125]H. Haugen, D. Huertas-Hernando, and A. Brataas. Spin transport in proximity-induced ferromagnetic grapheme. Phys. Rev. B.2008,77(11):115406(1)-(8).
    [126]E. B. Sonin. Charge transport and shot noise in a ballistic graphene sheet. Phys. Rev. B.2008,77(23):233408(1)-(4).
    [127]N. O. Birge. Sensing a small but persistent current. Science.2009,326:244-245.
    [128]S. Das Sarma, Shaffique Adam, E. H. Hwang, and E. Rossi. Electronic transport in two-dimensional grapheme. Rev. Mod. Phys.2011,83(2):407-470.
    [129]W. S. Bao, S. Y. Liu, X. L. Lei, and C. M. Wang. Nonlinear dc transport in grapheme. J. Phys.:Condens. Matter.2009,21:305302 (1)-305302 (5).
    [130]M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, and T. Ihn. Investigation of the Aharonov-Bohm effect in a gated graphene ring. Phys. Status Solidi B.2009,246(27):2756-2759.
    [131]T. Luo, A. P. Iyengar, H. A. Fertig, and L. Brey. Effective time-reversal symmetry breaking and energy spectra of graphene armchair rings. Phy. Rev. B.2009,80(16): 165310(1)-165310 (10).
    [132]A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker. Valley filter and valley valve in grapheme. Nat. Phys.2007,3:172-175.
    [133]A. R. Akhmerov and C. W. J. Beenakker. Detection of Valley Polarization in Graphene by a Superconducting Contact. Phys. Rev. Lett.2007,98(15):157003.
    [134]J. Gonzalez, F. Guinea, and M. A. H. Vozmediano. Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction. Phys. Rev. B.1999,59(4):R2474-R2477.
    [135]C. L. Kane and E. J. Mele. Electron Interactions and Scaling Relations for Optical Excitations in Carbon Nanotubes. Phys. Rev. Lett.2004,93(19):197402.
    [136]D. Loss and P. Goldbart. Period and amplitude halving in mesoscopic rings with spin. Phys. Rev. B.1991,43(16):13762-13765.
    [137]J. F. Weisz, P. Kishore, and F. V. Kusmartsev. Persistent current in isolated mesoscopic rings. Phys. Rev. B.1994,49(12):8126-8131.
    [138]T. Fang, A. Konar, H. Xing, and D. Jena. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett.2007,91(9):092109 (1)-092109 (3).
    [139]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S.Boebinger, P. Kim, and A. K. Geim. Room-Temperature Quantum Hall Effect in Graphene. Science.2007,315:1379.
    [140]P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys.2007,79(1): 135-174.
    [141]M. Rosenblit, P. Horak, S. Helsby, and R. Folman. Single-atom detection using whispering-gallery modes of microdisk resonators. Phys. Rev. A.2004,70(5):053808 (1)-053808 (10).
    [142]P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic. Single-photon all-optical switching using waveguide-cavity quantum electrodynamics. Phys. Rev. A.2006,74(4):043818(1)-043818(5).
    [143]G. Romero, J. J. Garcia-Ripoll, and E. Solano. Microwave Photon Detector in Circuit QED. Phys. Rev. Lett.2009,102(17):173602 (1)-173602 (4).
    [144]K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature.2005,436: 87-90.
    [145]T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J.Kimble. Observation of strong coupling between one atom and a monolithic microresonator. Nature.2006,443:671-674.
    [146]K. Srinivasan and O. Painter. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Nature.2007,450:862-865.
    [147]M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan. Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion. Nat. Photon.2010,4:786-791.
    [148]K. Ishizaki and S. Noda. Manipulation of photons at the surface of three-dimensional photonic crystals. Nautre.2009,460:367-371.
    [149]A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature.2004,431: 162-167.
    [150]J. M. Raimond, M. Brune, and S. Haroche. Colloquium:Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys.2001,73(3):565 -582.
    [151]O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Yu. A. Paskin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai. Resonance fluorescence of a single artificial atom. Science.2010,327:840
    [152]O. V. Astafiev, A. A. Abdumalikov, Jr., A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai. Ultimate on-chip quantum amplifier. Phy. Rev. Lett.2010,104(18): 183603(1)-183603 (4).
    [153]A. A. Abdumalikov, Jr., O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai. Electromagnetically induced transparency on a single artificial atom. Phy. Rev. Lett.2010,104(19):193601 (1):193601 (4).
    [154]S. T. Shen and S. H. Fan. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett.2005,95(21): 213001 (1)-213001 (4).
    [155]L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett.2008, 101(10):100501 (1)-100501 (4).
    [156]P. Kolchin, R. F. Oulton, and X. Zhang. Nonlinear quantum optics in a waveguide: distinct single photons strongly interacting at the single atom level. Phys. Rev. Lett. 2011,106(11):113601 (1)-113601 (4).
    [157]D. Witthaut and A. S. S(?)rensen. Photon scattering by a three-level emitter in a one-dimensional waveguide. New J. Phys.2010,12:043052 (1)-043052 (18).
    [158]D. Roy. Few-photon optical diode. Phys. Rev. B.2010,81(15):155117 (1)-155117 (5).
    [159]R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev.1954,93(1): 99-110.
    [160]I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish. Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire:Beyond the dipole approximation. Opt. Expr.2009,17(20):17570-17581.
    [161]J. Schelter, P. Recher, and B. Trauzettel. The Aharonov-Bohm effect in graphene rings. arXiv:1201.6200.2012:1-11.
    [162]S. D. Liu, M. T. Cheng, Z. J. Yang, and Q. Q. Wang. Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter. Opt. Lett.2008,33: 851.
    [163]G. Y. Chen, N. Lambert, C. H. Chou, Y. N. Chen, and F. Nori. Surface plasmons in a metal nanowire coupled to colloidal quantum dots:Scattering properties and quantum entanglement. Phys. Rev. B.2011,84:045310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700