用户名: 密码: 验证码:
车内挥发性有机物污染的分析评价及吸附光催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车内空气环境中挥发性有机物(VOC)是影响车内空气品质的主要污染物之一,毒性高、危害大,是引起“驾车综合症、新车味道”的主要因素。如何改善车内空气质量,如何控制车内VOC污染已迫在眉睫。本研究从长沙市车内空气污染调查入手,采样分析了125辆汽车内VOC的污染浓度。
     抽样调查发现车内苯、甲苯、乙苯、二甲苯、对/间二甲苯、邻二甲苯、苯乙烯、乙酸正丁酯、十一烷与TVOC浓度均值各是83.6、215.9、75.6、184.3、117.6、66.7.25.0.29.1.62.9与1459.6μg/m3,车内苯、甲苯、二甲苯与TVOC浓度超过国家室内空气质量标准限值的比例依次是14.4%、65.6%、37.6%与92.0%。研究还表明车内游离VOC浓度与车内温度、车内湿度或者汽车排量成正比,与车内体积、车龄或者总里程成反比,随通风方式、运行速度、车内气流、采样地点或者车辆档次的不同而变化。就车内VOC污染程度而言,汽油车>柴油车,真皮内饰车>非真皮内饰车,空调车>非空调车,小轿车>出租车>公交车,车内吸烟远远大于非吸烟。
     通过逐步回归法得出车内VOC质量浓度与13个影响因子之间的最优回归方程,其中Y苯=16.8+1.8X温度+0.46X湿度-1.29X车龄+6.46X内饰;通过因素分析发现车内VOC浓度的13个影响因子可由三个主成分反映出75.3%,使用聚类分析表明车龄与温度聚类最紧密,最后综合得出车内VOC浓度的最大影响因子是车龄,其次是车内温度。通过曲线拟合表明车内VOC浓度与车龄成一元三次方程函数关系,其中Y甲苯=332.87-13.27X年龄+0.41(X车龄)2-0.01(X车龄)3;与车内温度成自然对数函数关系,其中Y=甲苯=-695.81+262.27ln(X温度)。
     进一步还发现车内游离VOC污染对车内空气品质的损失率随车内温度的升高而变大,随车龄的增加而变小,随同—VOC浓度的增大而升高,随不同VOC浓度超标倍数的增多而变大,小轿车>出租车>公交车。车内空气中VOC污染的平均等级为轻污染,清洁、末污染、轻污染、中污染与重污染车的数量比例依次占1.6%、16.0%、66.4%、16.0%与0.0%。通过计算得出车内VOC污染损失率评价公式中的mi与ai为常数,分别是5.89与32.45。
     基于健康风险评价公式,反推导得出车内空气中苯的危险致癌浓度(CD)与暴露者的寿命(AL)、体重(BE)、暴露频率(EF)、暴露时间(ET)、呼吸速率(IR)、暴露年限(LT)的函数方程为CD=1.40×AL×BE÷EF÷ET÷IR÷LT。当车内游离苯污染的致癌风险为1×10-4时,车内男性乘客、女性乘客、男性司机与女性司机的CD分别是450、470、67.5与70.4μg/m3。车内VOC污染的非致癌危险指数都低于基准值1,对车内驾乘人员都不构成非致癌风险;苯对司机的致癌风险较高,平均值为1.21×104,需采取控制措施。车内VOC的非致癌危险与苯的致癌风险程度都是男性司机>女性司机>男性乘客>女性乘客,原因是由于男性呼吸率高于女性而平均寿命低于女性,司机每天的暴露时间比乘客的长。
     采用振荡浸渍法合成了Pt/TiO2/ACF复合材料,净化试验结果表明:载铂量为1.0%时,效果最佳;延长反应时间或者增加净化材料用量,可提高降解率;阳光照射导致复合材料对车内苯、甲苯、乙苯、二甲苯、苯乙烯与TVOC浓度的平均去除率分别是76.1%、75.5%、74.7%、75.9%、76.2%与76.3%;车内游离VOC在Pt/TiO2/ACF材料上的净化,形成了吸附-催化-吸附-催化的良性循环;Pt的沉积提高了TiO2光催化性,也增强了Pt/TiO2/ACF材料对车内空气中VOC污染的吸附光催化净化效率。
Volatile Organic Compounds (VOC) are one of the most important pollutants of Automotive Indoor Air Quality (AIAQ) and the primary factor on "Automobile Driving Syndrome, New Car Smell" because of their high toxicity and harm. So, how to improve the AIAQ and to control the in-car VOC pollution is to be imminent. In this research, the investigation of in-car air pollution in Changsha and the VOC mass concentrations in interior air of125vehicles were obtained.
     The mean levels of airborne benzene, toluene, ethylbenzene, xylenes, p/m-xylene, o-xylene, styrene, butyl acetate, undecane and TVOC in cars were83.6,215.9,75.6,184.3,117.6,66.7,25.0,29.1,62.9and1459.6μg/m3, respectively, through the sample investigation. The rates of cars tested where the interior concentrations exceeded the limit levels of Chinese Indoor Air Quality Standard were14.4%for benzene,65.6%for toluene,37.6%for xylenes and92.0%for TVOC. The VOC levels increased when in-car temperature, exhaust volume or relative humidity increased, and decreased when car age, interior volume or travel distance rose. The VOC pollution was higher in leather trims cars than in non-leather trims ones, in air-conditioned cars than in non-air-conditioned ones, in gas cars than in diesel oil ones, in saloon cars than in taxis or buses, and changed with the differences of ventilation modes, vehicular grades, driving speed, sampling space or interior airflow speed. Smoking caused in-car VOC mass concentrations to increase greatly.
     Through stepwise of multiple linear regression analysis, the optimal regression equations between VOC levels and13influencing factors were drawn, for example, Ybenzene=16.8+1.8X3+0.46X4-1.29X6+6.46X7; with principal component analysis, the13factors had three principal components and the percentage of total variance achieved75.3%; through cluster analysis, the strongest subcluster included the car age and interior temperature. In conclusion, car age (X6) is the most important factors influencing the in-car VOC concentrations, followed by interior temperature (X3). With the curve estimation, the cubic equation of a variable is between in-car VOC levels and car age such as Ytoluene=332.87-13.27X6+0.41(X6)2-0.01(X6)3, and the nature logarithm function is between in-car VOC concentrations and temperature such as Yxylenes=-695.81+262.27ln(X3).
     The pollution loss rate of AIAQ increased when the interior temperature, the same VOC level or the exceeding standard times of different VOC levels increased, and decreased when the car age rose. As for the average rank of AIAQ, the sampled cars were the light pollution; the heavy, middling, light, clean and no pollution car was0.0%,16.0%,66.4%,16.0%and1.6%, respectively. The mi and bi are constant, and is5.89and32.45in turn in the equation of pollution loss rate.
     With the health risk assessment, the non-carcinogenic danger coefficient (HI) of in-car VOC pollution by far is lower than the datum value (1), and does not harm the personnel; the benzene carcinogenic risk (Rz) to drivers is dangerous and the mean value is1.21×10-4. To the man driver, the Rz or HI of VOC is biggest, followed by that of woman driver, man passenger and woman passenger because the feminine mean lifetime excels in the male, but the breathing rate is lower than the masculine result and the exposure time of driver is longer than that of passenger. Through calculating, CD=1-40×AL×BE÷EF÷ET÷IR÷LT and in the equation, the CD, AL, BE, EF, ET, IR and LT is the dangerous levels, lifetime, body weights, exposure frequency, exposure time, inhalation rate and exposure duration, respectively. When the Rz is1×10-4, the Co for man passengers, woman passengers, man drivers and woman drivers is450,470,67.5and70.4μg/m3in turn.
     Through the vibration and impregnation method, the compound material of Pt/TiO2/ACF was synthesized. When the platinum quantity is1.0%, the effect is best; to lengthen the reaction time or increase used amount, the purification efficiency is higher. The elimination rate of in-car benzene, toluene, ethylbenzene, xylenes, styrene and TVOC density respectively is76.1%,75.5%,74.7%,75.9%,76.2%and76.3%with sunlight illumination; the purification efficiency of the material to in-car VOC has formed the positive cycle of adsorption-catalysis-adsorption-catalysis. The Pt deposition enhanced the TiO2photochemical catalysis and strengthened the purification efficiency of the compound materials to in-car VOC pollution.
引文
[1]王晓格,赵新建.车内空气挥发性有机物的检测与限值建议.环境污染与防治,2008,30(9):97-99
    [2]国家标准化委员会.GB/T 18883-2002室内空气质量标准.北京:中国标准出版社,2003,5-6
    [3]刘艳霖,王国胜.深圳家用汽车车内空气污染状况调查分析.科技信息,2010,2(17): 367-368
    [4]梅丽芳.汽车白车身零部件激光三维切割与搭接焊研究:[湖南大学博士学位论文].长沙:湖南大学机械与运载工程学院,2010,4-5
    [5]Kim S R, Dominici F, Buckley T J. Concentrations of vehicle-related air pollutants in an urban parking garage. Environmental Research,2007,105(3): 291-299
    [6]Dominici F, Peng R D, Bell M L, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Journal of the American Medical Association,2006,295:1127-1134
    [7]Laden F, Schwartz J, Speizer F E, et al. Reduction in fine particulate air pollution and mortality:Extended follow-up of the Harvard Six Cities study. American journal of respiratory and critical care medicine,2006,173:667-672
    [8]Chuang K J, Chan C C, Su T C, et al. Associations between particulate sulfate and organic carbon exposures and heart rate variability in patients with or at risk for cardiovascular diseases. Journal of occupational and environmental medicine,2007,49:610-617
    [9]Janssen N A, Lanki T, Hoek G, et al. Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients. Occupational and environmental medicine, 2005,62:868-877
    [10]Ruth Barro, Jorge Regueiro, Maria Llompart, Carmen Garcia-Jares. Analysis of industrial contaminants in indoor air:Part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Journal of Chromatography A,2009,1216(3):540-566
    [11]Liu J, Mu Y, Zhang Y, et al. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing. Science of the Total Environment,2009,408(1):109-116
    [12]Wang P, Zhao W. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China. Atmospheric Research,2008,89(3): 289-297
    [13]Buczynska A J, Krata A, Stranger M, et al. Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmospheric Environment,2009,43(2): 311-318
    [14]Lai C, Chang C, Wang C, et al. Emissions of liquefied petroleum gas (LPG) from motor vehicles. Atmospheric Environment,2009,43(7):1456-1463
    [15]Johnson T V. Diesel emission control in review. In:SAE World Congress. Detroit,2001,214-223
    [16]Dipankar D, Avinash K A, Mukesh S, et al. Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine. Atmospheric Environment,2006,40:5586-5595
    [17]Cao J J, Leel S C, Kochy Fung, et al. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol and Air Quality Research,2006,6(2):106-122
    [18]Elias V, Leonidas N, Zissis S. Theoretical investigation of the nucleation mode formation downstream of diesel after-treatment devices. Aerosol and Air Quality Research,2008,8(1):37-63
    [19]Geiss O, Tirendi S, Barrero J, et al. Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars. Environment International,2009,35:1188-1195
    [20]Yoshida T, Matsunaga I, Tomioka K, et al. Interior Air Pollution in Automotive Cabins by Volatile Organic Compounds Diffusing from Interior Materials:I. Survey of 101 Types of Japanese Domestically Produced Cars for Private Use. Indoor and Built Environment,2006,15(5):425-444
    [21]Esteve F A, Pastor A, Guardia M. Assessing air quality inside vehicles and at filling stations by monitoring benzene, toluene, ethylbenzene and xylenes with the use of semipermeable devices. Analytica Chimica Acta,2007,593(1): 108-116
    [22]Parra M A, Elustondo D, Bermejo R, et al. Exposure to volatile organic compounds (VOC) in public buses of Pamplona, Northern Spain. Science of the Total Environment,2008,404(1):18-25
    [23]You K W, Ge Y S, Hu B, et al. Measurement of in-vehicle volatile organic compounds under static conditions. Journal of Environmental sciences,2007, 19(10):1208-1213
    [24]Yoshida T, Matsunaga I. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for Private use. Environment international,2006,32(1):58-79
    [25]Chien Y C. Variations in amounts and potential sources of volatile organic chemicals in new cars. Science of the Total Environment,2007,382(2-3): 228-239
    [26]Hsu D, Huang H. Concentrations of volatile organic compounds, carbon monoxide, carbon dioxide and particulate matter in buses on highways in Taiwan. Atmospheric Environment,2009,43(36):5723-5730
    [27]Yuan B, Shao M, Lu S, et al. Source profiles of volatile organic compounds associated with solvent use in Beijing, China. Atmospheric Environment,2010, 44(15):1919-1926
    [28]Lau A K, Yuan Z, Yu J Z, et al. Source apportionment of ambient volatile organic compounds in Hong Kong. Science of the Total Environment,2010,408: 4138-4149
    [29]Oanh N T, Martel M, Pongkiatkul P, et al. Determination of fleet hourly emission and on-road vehicle emission factor using integrated monitoring and modeling approach. Atmospheric Research,2008,89:223-232
    [30]Saborit J M, Aquilina N J, Meddings C, et al. Measurement of Personal Exposure to Volatile Organic Compounds and Particle Associated PAH in Three UK Regions. Environmental Science & Technology,2009,43:4582-4588
    [31]Nelson P F, Tibbett A R, Day S J. Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles. Atmospheric Environment,2008, 42(21):5291-5303
    [32]Buczynska A J, Krata A, Stranger M, et al. Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmospheric Environment,2009,43: 311-318
    [33]Hoque R R, Khillare P S, Agarwal T, et al. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Science of the Total Environment,2008,392:30-40
    [34]Olson D A, Hammond D M, Seila R L, et al. Spatial gradients and source apportionment of volatile organic compounds near roadways. Atmospheric Environment,2009,43(35):5647-5653
    [35]Nakashima Y, Kamei N, Kobayashi S, et al. Total OH reactivity and VOC analyses for gasoline vehicular exhaust with a chassis dynamometer. Atmospheric Environment,2010,44(4):468-475
    [36]郑聪.环境烟草烟雾引起的室内空气污染的定量研究:[湖南大学硕士学位论文].长沙:湖南大学,2007,43-44
    [37]Jo W, Lee J, Kim M. Head-space, small-chamber and in-vehicle tests for volatile organic compounds (VOCs) emitted from air fresheners for the Korean market. Chemosphere,2008,70(10):1827-1834
    [38]Wang S, Majeed M A, Chu P, et al. Characterizing relationships between personal exposures to VOCs and socioeconomic, demographic, behavioral variables. Atmospheric Environment,2009,43(14):2296-2302
    [39]Rivedal E, Leithe E. The benzene metabolite trans, trans-muconaldehyde blocks gap junction intercellular communication by cross-linking connexin43. Toxicology and Applied Pharmacology,2008,232(3):463-468
    [40]Gordon C J, Samsam T E, Oshiro W M, et al. Cardiovascular effects of oral toluene exposure in the rat monitored by radiotelemetry. Neurotoxicology and Teratology,2007,29(2):228-235
    [41]Hogie M, Guerbet M, Reber A. The toxic effects of toluene on the optokinetic nystagmus in pigmented rats. Ecotoxicology and Environmental Safety,2009, 72(3):872-878
    [42]Feltens R, Mogel I, Carmen R, et al. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro. Toxicology and Applied Pharmacology, 2010,242(1):100-108
    [43]陈冠英.汽车环境与驾乘人员的安全健康.北京:中国劳动社会保障出版社,2008,66-67
    [44]Zhang G, Li T, Luo M, et al. Air pollution in the microenvironment of parked new cars. Building and Environment,2008,43(3):315-319
    [45]陈利杰.新车内空气中几种有害物质污染状况调查.环境与健康,2007,23(7):536-537
    [46]尤可为,葛蕴珊,冯波,等.轿车内微环境空气污染状况的实验研究.北京理工大学学报,2008,28(4):310-313
    [47]Pang X, Mu Y. Characteristics of carbonyl compounds in public vehicles of Beijing city:Concentrations, sources, and personal exposures. Atmospheric Environment,2007,41(9):1819-1824
    [48]徐立恒,张明,徐茜.家用车内空气苯系物污染状况及健康风险分析.中国 计量学院学报,2010,21(1):67-70
    [49]姚超英,童宏胜,郭牧遥.杭州市公共交通司机苯系物暴露与健康风险的评价.职业与健康,2009,25(3):239-241
    [50]Marion J F, Brent D K. Measurement of volatile organic compounds inside automobiles. Journal of Exposure Analysis and Environmental Epidemiology, 2003,13(1):31-34
    [51]Shiohara N, Fernandez A A, Jimenez S B, et al. The commuter's exposure to volatile chemicals and carcinogenic risk in Mexico City. Atmospheric Environment,2005,39(19):3481-3489
    [52]Riediker M, Williams R, Devlin R, et al. Exposure to Particulate Matter, Volatile Organic Compounds, and Other Air Pollutants Inside Patrol Cars. Environmental Science & Technology,2003,37(10):2084-2093
    [53]Schupp T, Bolt H M, Jaeckh R, et al. Benzene and its methyl-derivatives: Derivation of maximum exposure levels in automobiles. Toxicology Letters, 2006,160(2):93-104
    [54]Betts K. Spending time in vehicles can increase PBDE exposure. Environmental Science & Technology,2008,42(17):6311
    [55]Mandalakis M, Stephanou E G, Horii Y, et al. Emerging Contaminants in Car Interiors:Evaluating the Impact of Airborne PBDEs and PBDD/Fs. Environmental Science & Technology,2008,42(17):6431-6436
    [56]Buters J T, Schober W, Gutermuth J, et al. Toxicity of Parked Motor Vehicle Indoor Air. Environmental Science & Technology,2007,41(7):2622-2629
    [57]Yoshida T, Matsunaga I, Tomioka K, et al. Interior Air Pollution in Automotive Cabins by Volatile Organic Compounds Diffusing from Interior Materials:Ⅱ. Influence of Manufacturer, Specifications and Usage Status on Air Pollution, and Estimation of Air Pollution Levels in Initial Phases of Delivery as a New Car. Indoor and Built Environment,2006,15(5):445-462
    [58]Kim K, Lee B, Kim S, et al. Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior. Journal of Hazardous Materials,2011,187:37-43
    [59]方海峰.面向循环经济的汽车产品回收利用若干问题研究:[湖南大学博士学位论文].长沙:湖南大学机械与运载工程学院,2009,80-95
    [60]Jo W, Park J, Chun H. Photocatalytic destruction of VOCs for in-vehicle air cleaning. Journal of Photochemistry and Photobiology A:Chemistry,2002, 148(1-3):109-119
    [61]马才伏,阳小良.长沙市交通拥堵现状及建议.公路与汽车,2008,(2):59-62
    [62]国家环境保护总局.HJ/T 400-2007车内挥发性有机物和醛酮类物质采样测定方法.北京:中国环境科学出版社,2008,2-3
    [63]穆肃,周春宏.热脱附/毛细管气相色谱/质谱法测定车内空气中挥发性有机物.环境科学与管理,2009,34(3):148-150
    [64]尤可为,葛蕴珊,王务林,等.车内污染物的测定和数值模拟研究.汽车工程,2010,32(8):727-730
    [65]赵寿堂,宁占武,胡玢,等.车内空气中挥发性有机物的研究.环境污染治理技术与设备,2005,6(9):51-53
    [66]Xiaokai Chen, Guoqiang Zhang, Quan Zhang, etc. Mass Concentrations of BTEX inside Air Environment of Buses in Changsha, China. Building and Environment,2011,46(1):421-427
    [67]陈小开,张国强,戴金财.轿车内苯系物的质量浓度特征.汽车工程,2010,32(11):1006-1010
    [68]葛蕴珊,王军方,尤可为.车内空气挥发性有机物浓度测量.汽车工程,2009,31(3):271-273
    [69]Ongwandee M, Chavalparit O. Commuter exposure to BTEX in public transportation modes in Bangkok, Thailand. Journal of Environmental Sciences, 2010,22(3):397-404
    [70]McNabola A, Broderick B M, Gill L W. Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin:Personal exposure and uptake. Atmospheric Environment,2008,42(26):6496-6512
    [71]Sabin L D, Behrentz E, Winer A M, et al. Characterizing the range of children's air pollutant exposure during school bus commutes. Journal of Exposure Analysis and Environmental Epidemiology,2005,15:377-387
    [72]Zhang Q, Zhu Y. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas. Atmospheric Environment,2010, 44(2):253-261
    [73]Li S, Chen S, Zhu L, et al. Concentrations and risk assessment of selected monoaromatic hydrocarbons in buses and bus stations of Hangzhou, China. Science of the Total Environment,2009,407,2004-2011
    [74]Li T, Bai Y, Liu Z, et al. Air quality in passenger cars of the ground railway transit system in Beijing, China. Science of the Total Environment,2006, 367(1):89-95
    [75]Tru V T, Oanh N T. Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmospheric Environment,2007,41(36):7685-7697
    [76]McNabola A, Broderick B M, Gill L W. The impacts of inter-vehicle spacing on in-vehicle air pollution concentrations in idling urban traffic conditions. Transportation Research Part D:Transport and Environment,2009,14(8): 567-575
    [77]Cai C, Geng F, Tie X, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China. Atmospheric Environment,2010,44:5005-5014
    [78]Knibbs L D, Dear R J, Atkinson S E. Field study of air change and flow rate in six automobiles. Indoor Air,2009,19:303-313
    [79]Som D, Dutta C, Chatterjee A, et al. Studies on commuters' exposure to BTEX in passenger cars in Kolkata, India. Science of the Total Environment,2007, 372:426-432
    [80]Chang C, Chen B. Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust. Journal of Hazardous Materials,2008,153(3):1262-1269
    [81]Jo W, Yu C. Public Bus and Taxicab Drivers' Work-Time Exposure to Aromatic Volatile Organic Compounds. Environmental Research,2001,86(1):66-72
    [82]Murena F. Air quality nearby road traffic tunnel portals:BTEX monitoring. Journal of Environmental Sciences,2007,19:578-583
    [83]Cheung C S, Di Y, Huang Z. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol. Atmospheric Environment,2008, 42(39):8843-8851
    [84]Wohrnschimmel H, Zuk M, Martinez G, et al. The impact of a Bus Rapid Transit system on commuters' exposure to Benzene, CO, PM2.5 and PM10 in Mexico City. Atmospheric Environment,2008,42(35):8194-8203
    [85]Wang H, Fu L, Lin X, et al. A bottom-up methodology to estimate vehicle emissions for the Beijing urban area. Science of the Total Environment,2009, 407,1947-1953
    [86]Pandian S, Gokhale S, Ghoshal A K. Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections. Transportation Research Part D:Transport and Environment,2009,14(3):180-196
    [87]江思力,杨智聪,钟嶷,等.广州市小汽车车厢内空气有机物污染状况调查.疾病监测,2006,21(6):309-312
    [88]Gallagher M, Dalton P, Sitvarin L, et al. Sensory and Analytical Evaluations of Paints With and Without Texanol. Environmental Science & Technology,2008, 42(1):243-248
    [89]Jia C, Batterman S, Godwin C. VOCs in industrial, urban and suburban neighborhoods Part 2:Factors affecting indoor and outdoor concentrations. Atmospheric Environment,2008,42(9):2101-2116
    [90]Loh M M, Houseman E A, Gray G M, et al. Measured Concentrations of VOCs in Several Non-Residential Microenvironments in the United States. Environmental Science & Technology,2006,40 (22):6903-6911
    [91]谢觉新.环境烟草烟气对室内空气有机污染影响的研究:[中科院博士学位论文].广州:中国科学院广州地球化学研究所有机地球化学国家重点实验室,2003,62-63
    [92]江思力,朱继蕤,杨轶戬,等.广州市公共汽车车厢内空气有机物污染状况调查.热带医学杂志,2006,6(11):1189-1191
    [93]杜譞,傅立新,邱月明,等.北京市交通微环境汽车尾气污染的浓度特征.中国环境科学,2009,29(1):26-30
    [94]宋广生.车内环境污染防控指南.北京:机械工业出版社,2009,31-32
    [95]Chan A T, Chung M W. Indoor-outdoor Air Quality Relationships in Vehicle: Effect of Driving Environment and Ventilation Modes. Atmospheric Environment,2003,37:3795-3808
    [96]袁丽丽,李孜军,阳富强,等.污染损失率法在室内空气品质评价中的应用.安全与环境工程,2007,14(3):11-14
    [97]张淑琴,白艳丽,张洪林.模糊数学在室内空气质量评价中的应用.环境科学与管理,2006,31(9):188-190
    [98]刘建龙.基于随机理论的住宅室内环境健康风险评价及模拟方法研究:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2007,17-21
    [99]Lee C W, Dai Y T, Chien C H, et al. Characteristics and health impacts of volatile organic compounds in pohotocopy centers. Environmental Research, 2006,100:139-149
    [100]World Health Organization. WHO Strategy on Air quality and Health, Occupational and Environmental Health Protection of the Human Environment. Revised final draft, Geneva,2001,5
    [101]Bennett A. Strategies and technologies:Controlling indoor air quality. Filtration & Separation,2009,46(4):14-17
    [102]Tanaka Y, Suganuma M Y, Tanaka M, et al. Effects of heat treatment on photocatalytic property of sol-gel derived poly crystalline TiO2. Journal of Sol-Gel Science and Technology,2001,22(1-2):83-89
    [103]Wang L, Zhang Q, Sakurai M, et al. Development of a Pt/TiO2 catalyst on an anodic alumite film for catalytic decomposition of formaldehyde at room temperature. Catalysis Communications,2007,8(12):2171-2175
    [104]Jo W, Kim J. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. Journal of Hazardous Materials,2009,164(1):360-366
    [105]Ao C H. Photodogradation of indoor air pollutants by photocatalyst TiO2:[Ph.D. dissertation]. Hong Kong:Hong Kong Polytechnic University,2005,131-140
    [106]Mo J, Zhang Y, Xu Q, et al. Photocatalytic purification of volatile organic compounds in indoor air:A literature review. Atmospheric Environment,2009, 43:2229-2246
    [107]Guo T, Bai Z, Wu C, et al. Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers:PCO rate and intermediates accumulation. Applied Catalysis B:Environmental,2008,79: 171-178
    [108]Xu D, Huang Z, Kang F, et al. Effect of heat treatment on adsorption performance and photocatalytic activity of TiO2-mounted activated carbon cloths. Catalysis Today,2008,139:64-68
    [109]Ye S, Li M, Song X, et al. Enhanced photocatalytic decomposition of gaseous ozone in cold storage environments using a TiO2/ACF film. Chemical Engineering Journal,2011,167(1):28-34
    [110]Carratalal J, Lillo M A, Linares A, et al. Activated Carbons for the Removal of Low-Concentration Gaseous Toluene at the Semipilot Scale. Industrial & Engineering Chemistry Research,2009,48:2066-2075
    [111]Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports,2008,63:515-582
    [112]李红星.几种形貌可控半导体纳米材料的合成及其光电性质研究:[湖南大学博士学位论文].长沙:湖南大学物理与微电子科学学院,2010,3-4
    [113]Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry,2004,32:33-177
    [114]Thompson T L. Photocatalysis on Titanium Dioxide Surfaces:[Ph.D. dissertation]. Pittsburgh:University of Pittsburgh,2006,3-4
    [115]Gong X, Selloni A, Batzill M, et al. Steps on anatase TiO2(101). Nature,2006, 5:665-670
    [116]Pyrgiotakis G. Titania carbon nanotube composites for enhanced photocatalysis: [Ph.D. dissertation]. Florida:University of Florida,2006,131-140
    [117]Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453:638-641
    [118]McCormick J. Chemistry of TiO2 nanoparticles:[Ph.D. dissertation]. Delaware: University of Delaware,2006,8-79
    [119]Burdett J K, Hughbanks T, Miller G J. Structural-electronic relationships in inorganic solids:powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society,1987,109(12):3639-3646
    [120]Shannon R D, Pask J A. Topotaxy in the anatase-rutile transformation. American Mineralogist,1964,1707(11-12):49-55
    [121]Kyotani T. Control of pore structure in carbon. Carbon,2000,38:269-286
    [122]Ao C H, Lee S C. Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Applied Catalysis B:Environmental,2003,44:191-205
    [123]Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmospheric Environment,2008,42:4101-4112
    [124]Sun R, Xi Z, Chao F, et al. Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor. Atmospheric Environment, 2007,41:6853-6859
    [125]韩锐,关强,张邢磊.汽车乘务舱半物理环境模拟的甲醛光净化效果分析.中国安全科学学报,2007,17(11):130-133
    [126]Pecchi C, Reyes P, Sanhueza P, et al. Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts. Chemosphere,2001,43(3): 141-146
    [127]Nakaoka Y, Nosaka Y. ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. Journal of Photochemistry and Photobiology A-Chemistry,1997,110(3):299-305
    [128]Mills A, LeHunte S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A-Chemistry,1997,108(1):1-35
    [129]Linsebigler A L, Guangquan L, Yate J T. Photoeatalysis on TiO2 surfaces: principles, mechanisms, and deleted results. Chemical Reviews,1995,95: 735-735
    [130]Puma G L, Bono A, Krishnaiah D, et al. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition:A review paper. Journal of Hazardous Materials,2008,157:209-219
    [131]Young C, Lim M T, Chiang K, et al. Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Applied Catalysis B:Environmental,2008,78:1-10
    [132]Liotta L F. Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B:Environmental,2010,100:403-412
    [133]Zeng Y, Wu W, Lee S, et al. Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol. Catalysis Communications,2007,8:906-912
    [134]Ishibai Y, Sato J, Nishikawa T, et al. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification:Role of TiO2 substrate for high photocatalytic activity. Applied Catalysis B:Environmental,2008,79:117-121
    [135]Li D, Chen Z, Chen Y, et al. A New Route for Degradation of Volatile Organic Compounds under Visible Light:Using the Bifunctional Photocatalyst Pt/TiO2-xNx in H2-O2 Atmosphere. Environmental Science & Technology,2008, 42:2130-2135
    [136]Zhang C, He H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catalysis Today,2007, 126(34):345-350
    [137]Zhang C, He H, Tanaka K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B:Environmental,2006,65(1-2):37-43
    [138]Ishibai Y, Sato J, Nishikawa T, et al. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification:Role of TiO2 substrate for high photocatalytic activity. Applied Catalysis B:Environmental,2008,79:117-121
    [139]Mo D, Ye D. Surface study of composite photocatalyst based on plasma modified activated carbon fibers with TiO2. Surface & Coatings Technology, 2009,203:1154-1160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700