用户名: 密码: 验证码:
面向数据的无线传感器网络节能机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络作为一种新兴的、将改变人类与物理世界交互方式的新技术,具有广阔的应用前景和巨大的研究价值。无线传感器网络研究的重要目的是在满足网络面向应用要求的前提下最大化网络生命周期,由于能量资源约束是影响网络生命周期的最根本因素,因此,针对节能机制的研究在无线传感器网络研究领域中处于核心地位。本文从传感器网络的“数据中心和面向应用”的本质特征出发,以网络数据收集应用为背景,通过分析传感器网络中数据的内涵属性和分布特征,并结合网络能耗和结构模型,从降低和均衡网络能耗的角度研究能量有效的网络运作机制。
     首先,本文面向传感器网络中时间序列数据的时域关联性特征,针对网内时间冗余数据和流量不均衡分布模式所导致的传输能量浪费和漏斗效应问题,提出了基于预测模式的时间冗余数据滤波机制和能量感知数据路由机制。其中,时间冗余数据滤波机制的设计构架由捕获数据时域变化规律的预测模块、修正预测模型的数据自学习模块和控制数据滤波操作的驱动模块组成。设计中将预测精度阈值分配规则和预测误差驱动规则引入数据滤波体系的构造,通过针对节点能量状况个性化的预测精度阈值分配和根据预测误差精确判断所获得的数据变化规律内涵信息,进一步加强了针对时间冗余数据的识别和滤波效果。能量感知数据路由机制的设计结合了蚁群优化机理自适应网络状况动态性的优势和预测模型揭示数据流量变化规律的优势,通过将节点负载因子引入蚁群优化算法中启发式因子的构造和局部信息素更新规则的设计,赋予蚂蚁代理在路由解空间探索中预知网络局域能量状况的能力,提高了数据路由构建的自适应性和能量均衡性。实验表明,本文提出的面向时间序列数据预测模式的节能机制,通过挖掘数据内涵的时域冗余度和关联性,并引入蚁群优化机理与预测模式相结合的实现方式,有效地降低和均衡了数据收集能耗。
     其次,文章面向传感器网络中应用服务质量要求所体现的数据内涵价值特征,针对网内价值冗余数据传输造成的能量浪费和监控节点生命周期缩短的问题,研究了体现服务区分性的节能数据收集机制。文章分析了网络数据价值的分类判断方法并将其形式化为数据价值因子结构,进而在数据价值因子基础上,设计了映射为集合覆盖问题的价值贡献驱动节点调度机制和价值冗余数据滤波体系结构。其中,节点调度机制的设计思想是将体现价值贡献度的数据价值因子引入混合蚁群优化算法(IMAH)中启发式因子和全局信息素更新规则的设计,从而引导人工蚂蚁在解空间探索中的价值取向,在满足覆盖要求和能量有效的基础上通过迭代方式求取全局最优解。价值区分性数据滤波体系构建的节能思想是将数据价值因子引入支持QoS的MAC层退避机制的设计,通过控制网内不同价值含量数据包的发送优先级来实现减少网内价值冗余数据传输量的滤波效果。这种面向数据价值服务区分度的节能机制根据网络应用的服务质量要求优化节能效果,区别于传统的面向数据自身统计特征的节能处理方式。仿真实验表明,本文提出的面向数据价值的节能收集机制可根据不同级别的服务质量要求自适应地控制数据收集能耗,从而提供了从网络应用QoS的角度进一步优化机制能量有效性的新思路。
     然后,文章面向数据内容关联度特征,针对传感器网络数据收集应用中网内数据内容关联度低引发的聚类结构优化问题,和网内数据内容冗余度高造成的数据传输能耗浪费问题,提出了基于关联规则挖掘的聚类构建和结构优化算法,及内容冗余数据滤波机制。根据数据内容关联程度构建聚类结构,并通过簇重组和簇自愈算法从内容关联性角度进一步优化已有聚类结构,进而在聚类结构基础上,设计了针对数据内容冗余度特征的滤波算法,依据以“内容特征码”为核心的协商机制抑制内容冗余数据的传输,减少数据收集源头的数据产生量。并在已知数据内容关联度的基础上引入分布式信源编码方式来实现簇际传输数据的无损融合。本文提出的面向数据内容相关性和冗余度特征的节能机制设计,充分考虑了传感器网络数据收集实际应用中采样数据间内容相似度高的特性。实验结果表明,引入内容关联聚类和内容冗余滤波操作后,可以进一步降低数据收集机制的能耗。
     最后,文章面向传感器网络数据的分布统计特征,针对异构残缺数据的模型估计和分布模式规律挖掘的困难性,采用依据半监督学习估计的高斯混合模型描述异构数据的统计分布特征,并在数据分布模型的基础上设计了模型匹配度驱动的自适应数据滤波机制,该机制采用基于假设检验方法的模型匹配度判断来挖掘数据序列分布模式间的相似性,通过滤除冗余的分布式流数据序列,达到减少数据收集源头冗余数据产生量的目的,进而在簇际数据传输过程中,设计了基于主元分析的聚类数据压缩算法,通过冗余属性滤波和主元方向的数据重构,在传输数据降维的基础上实现满足累计方差贡献率的数据有损压缩,降低了数据传输过程中的能耗。实验表明,本文提出的基于异构数据统计特征的节能数据收集机制,有效解决了针对多属性混合和信息残缺性异构数据的建模和冗余度提取的难题,从面向统计特征的角度为传感器网络中异构数据的节能收集方法研究提供了新的设计思路。
     本文对所提出的方案和算法进行了充分的理论分析和实验验证,结果表明本文提出的节能机制能够从面向数据特征的角度进一步提高传感器网络运行机制的能量有效性,从而为传感器网络节能机制领域的研究提供了有益的探索。
Wireless Sensor Networks as a novel technology, which could change the interactive mode between human being and physical world, has a wide application prospect and great research significance. The key purpose to study WSN is to maximize network lifetime by the premise of meeting QoS of networks. As energy resource constraint is the fundamental issue, thus the research on energy-saving mechanism is at the core position in WSN field. The dissertation focuses on essential characteristic of data-oriented and application-oriented in sensor networks, by analyzing the internal property, distribution of data, and combining energy consumption model, topologic structure of networks. For the aim of prolonging the lifetime of sensor networks, the dissertation studies energy efficient operation mechanism of sensor networks, through the research on reducing and balancing energy consumption.
     Firstly, the dissertation proposes prediction-mode-based filtering mechanism and energy-aware routing mechanism to solve the problems of waste of transmission energy cost and funnel effect respectively caused by time-redundant data and imbalanced flow distribution mode, according to the characteristic of temporal correlation on time series data in sensor networks. The design framework of filtering mechanism for time-redundant data is composed of prediction module for capturing the change law of time domain, self-learning module for updating model, and driving module for controlling data filtering operation. To build time-redundancy data filtering system, allocation rule on threshold of prediction accuracy and prediction-error-driven rule are introduced, personalized prediction threshold is allocated according to node energy status, internal information included in the data variation patterns is precisely judged and obtained based on prediction error bound, so as to further improve the recognition and filtering effect for time redundancy data. The design of energy-aware routing mechanism combines the advantages of ACO principle, which is self-adaptive to dynamic network situation, and the advantages of prediction module, which reveals the law of data flow change. By introducing node-load-factor into both construction of heuristic factor and design of local pheromone updating rule in ACO, artificial ant agents are endowed with perception ability of local energy status in WSN, and the self-adaptability and energy-cost-balance of routing construction are improved. The experiment result shows that, the above energy-saving mechanism effectively reduces and balances the energy cost of data gathering mechanism by mining the temporal redundancy and associability, and introducing ACO.
     Secondly, the dissertation studies energy-saving data gathering mechanism based on dipartite degree of service quality to solve the problems of energy waste and short life time of source node, according to QoS-oriented data value characteristic. The classified judgement methodology of data value is proposed, and formalized to the structure of data-value-factor. On the basis of data-value-factor, contribution-driven node scheduling mechanism which is mapped into SCP, and value redundancy data filtering system are designed. Contribution-driven node scheduling mechanism introduces data-value-factor into IMAH for the design of heuristic factor and global pheromone updating rule, which guides the artificial ant in solution space to obtain optimal solution based on value orientation, and further obtain the global optimization solution by iteration mode, on the premise of meeting the covering requirement. The design idea of value-diversity-based data filtering system is to transfer high-value packets with high priority and inhibit transmission of low-value packets by introducing data-value-factor into backoff mechanism in QoS-MAC layer, and finally reduces transmitted data amount, achieves filtering effect. The above energy-saving mechanism driven by QoS-oriented requirement is different from traditional modes with data statistical characteristic. The experiment result shows that, the proposed mechanism can adaptively adjust energy consumption according to different QoS levels, therefore, it is helpful to improve energy-saving effect.
     Thirdly, the dissertation proposes the methodologies for cluster construction and structure optimization based on mining data association rule, as well as content redundancy based filtering mechanism, to solve the problems of structure cluster’s optimization caused by content-low-correlation, and energy waste caused by content-highly-correlation. By using association rule to analyze the data content relevance, content-highly-correlation cluster is constructed, the existing structure of cluster through rebuilding and self-healing algorithm is further optimized. Furthermore, content-redundancy-based filtering algorithm is designed to filter the content-redundant transmitted data in cluster by building the negotiation mechanism which takes content characteristics code (CCC) as core. Then, according to known content-correlation, distributed source coding is explored for energy efficient lossless-data-fusion. The above energy-saving mechanism well considers the content-similarity-based universal phenomenon in WSN. The experiment result shows that, the energy cost is significantly decreased by introducing the content-highly-correlation cluster and the filtering operation on redundant data.
     Finally, according to the statistical-characteristic of data in WSN,GMM is adopted to describe the statistical distribution characteristics of heterogeneous and incomplete data using semi-supervised learning method, to solve the difficulty of building model for heterogeneous incomplete data and mining distribution-mode-law. Based on accurate data distribution model, adaptive filtering mechanism driven by model matching degree is proposed, it adopts hypothesis testing method to judge the similarity between different distribution patterns of data sequence, and reduces redundant data amount generated in the source of data gathering, in order to achieve the energy-saving aim by mining and filtering the redundant distributed flow data. Data compression algorithm based on cluster mode and principal component analysis (PCA) is proposed in external-cluster data communication process, by filtering the redundant attributes and data reconstruction based on PCA. On the premise of meeting the cumulative variance contribution rate, data dimensionality is reduced, and energy-saving effect is achieved. The above energy-saving mechanism effectively solved the modeling and redundancy extraction problem on multi-attribute and incomplete nature of heterogeneous data. From the statistical-trait-oriented view, the novel data gathering mechanism on incomplete heterogeneous data is proposed.
     In the dissertation, the efficiency of the proposed mechanisms and algorithms are proved by both theoretical analysis and simulation verification. Besides, the dissertation provides the helpful exploration to the data-characteristic-oriented energy-saving mechanism in WSN.
引文
[1] Akyildiz F, Su W, Sankarasubramaniam Y, Cayirci E. Wireless Sensor Networks: A Survey. Journal of Computer Networks, Elsevier. 2002, 38(4): 393-422.
    [2]任丰原,黄海宁,林闯,无线传感器网络,软件学报,2003,14(7): 1282-1291
    [3] Baronti P, Pillai P, Chook VWC et al. Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Journal of Computer Communications, Elsevier. 2007, 30(7): 1655-1695
    [4] Tubaishat M, Madria S. Sensor networks: an overview. IEEE Potentials. 2003, 22(2): 20-23
    [5] Cardei M, MacCallum D, Cheng X et al. Wireless Sensor Networks with Energy Efficient Organization. Journal of Interconnection Networks. 2002, 2(3- 4): 213-229
    [6] Tilak S, Abu-Ghazaleh NB, Heinzelman W. A taxonomy of wireless micro-sensor network models. Mobile Computing and Communications Review, 2002, 1(2): 1-8
    [7]马祖长,孙怡宁,梅涛,无线传感器网络综述,通信学报, 2004, 25(4): 114-124
    [8] Avvenuti M, Corsini P, Masci P, Vecchio A. An application adaptation layer for wireless sensor networks. Journal of Pervasive and Mobile Computing, Elsevier. 2007, 3(4): 413-438
    [9] Huang YM, Hsieh MY, Sandnes FE. Wireless Sensor Networks and Applications. IEEE Sensors Journal, Springer Berlin Heidelberg. 2008, 21: 199-219
    [10] Cheng X, Du DZ, Wang L, Xu B. Relay sensor placement in wireless sensor networks. Journal of Wireless Networks, Springer Netherlands. 2008, 14(3): 347-355
    [11] Burrell J, Brooke T, Beckwith R, Vineyard computing: sensor networks in agricultural production, IEEE Pervasive Computing. 2004, 3(1): 38–45
    [12] Nath S, Gibbons PB, Seshan S, Anderson Z. Synopsis diffusion for robust aggregation in sensor networks. ACM Transactions on Sensor Networks. 2008, 4(2): article No.7
    [13] Kumar S, Lai TH, Balogh J. On k? coverage in a mostly sleeping sensor network. Journal of Wireless Networks, Springer Netherlands, USA. 2008, 14(3): 277-294
    [14] Rhee I, Warrier A et al. Z-MAC: A Hybrid MAC for Wireless Sensor Networks. In IEEE/ACM Transactions on Networking. 2008, 16(3): 511-524
    [15] Alippi C, Galperti C, Zanchetta M. Micro Acoustic Monitoring with MEMS Accelerometers: towards a WSN Implementation. IEEE Sensors Journal. 2007: 966-969
    [16] Zheng R. On-demand power management for ad hoc networks. Journal of Ad Hoc Networks. 2005(3): 51-68
    [17] Cui L, Ju HL, Miao Y et al. Overview of wireless sensor networks. Journal of Computer Research and Development, 2005, 42(1): 163-174
    [18] Pottie GJ, Kaiser WJ, Wireless integrated sensor networks, Communications of the ACM, 2000,43(5): 51-58
    [19] Edgar HC, Wireless sensor networks: architectures and protocols, Boca Raton, Florida: CRC Press LLc,2004: 1-40
    [20] Mauri Kuorilehto, et al. A Survey of Application Distribution in Wireless Sensor Networks. EURASIP Journal on Wireless Communications and Networking 2005:5, 774-788
    [21] Jardosh S, Ranjan P. A Survey: Topology Control For Wireless Sensor Networks. In International Conference on Singal Processing, Communications and Networking. 2008: 422-427
    [22] Liu M, Gang GH, Chi MY, Jun CL, Xie L. A Distributed Energy-Efficient data Gathering and aggregation Protocol for Wireless sensor networks. Journal of Software, 2005, 12: 2106-2116
    [23] Wang MM, Cao JN, Li J, Dasi SK. Middleware for Wireless Sensor Networks: A Survey. Journal of Computer Science and Technology, Springer Boston, USA. 2008, 23(3): 305-326
    [24] Jejurikar R, Pereira C, Gupta R. Leakage Aware Dynamic Voltage Scaling for Real-Time Embedded Systems. In 41st Conference on Design Automation, 2004: 275-280.
    [25] Sinha A, Chandrakasan A. Dynamic Power Management in Wireless Sensor Networks, IEEE Design and Test of Computers, 2001, 18(2): 62-74
    [26] Benini L, Bogliolo, A.Paleologo. Policy optimization for dynamic power management. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2002,18(6): 813-833
    [27] Shen CC, Plishker W et al. An Energy-Driven Design Methodology for Distributing DSP Applications across Wireless Sensor Networks. In 28th IEEE International Real-Time Systems Symposium. 2007: 214-226
    [28] Caballero F, Merino L et al. A particle filtering method for wireless sensor network localization with an aerial robot beacon. In IEEE International Conference on Robotics and Automation. 2008: 596-601
    [29] Liu X. A Multi-Agent-Based Architecture for Enterprise Customer and Supplier Cooperation Context-Aware Information Systems. In 3rd International Conference on Autonomic and Autonomous Systems. 2007: 58
    [30] Ma X, Yang D. Online Mining in Sensor Networks. Journal of Lecture Notes in Computer Science. Springer Berlin/Heidelberg. 2004(3222): 544-550
    [31] Liu M, Cao J, Zheng Y et al. An energy-efficient protocol for data gathering and aggregation in wireless sensor networks. Journal of Supercomputing, Springer Netherlands. 2008, 43(2): 10-125
    [32] Chiasserin CF, Rao RR, Elettronica D. Improving energy saving in wireless systems by using dynamic power management. In IEEE Transactions on Wireless Communications. 2003, 2(5): 1090-1100
    [33] Halkes GP, Dam T, Langendoen KG. Comparing Energy-Saving MAC Protocols for Wireless Sensor Networks. Mobile Networks and Applications, Springer Netherlands, 2005, 10(5) : 793-791
    [34] Gao Q, Blow KJ, Holding DJ et al. Radio range adjustment for energy efficient wireless sensor networks. Journal of Ad Hoc Networks, Elsevier. 2006, 4(1): 75-82
    [35] Huang LS, Li H, et al. A load balancing multi-path routing in wireless sensor net-works. Journal of University of Science and Technology of China, 2006, 36(8): 887-892
    [36] Bruck J, Gao J, AX Jiang. MAP: Medial axis based geometric routing in sensor networks. Journal of Wireless Networks, Springer Netherlands, 2007, 13(6): 835-853
    [37] Liu Jain-Shing.Energy-efficiency clustering protocol in wireless sensor networks. Journal of Ad Hoc Networks,2005(3): 371-388
    [38] Kredo K, Mohapatra P. Medium access control in wireless sensor networks. Journal of Computer Networks, Elsevier. 2007, 51(4): 961-994
    [39] Dam T. An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proc. of the 1st International Conference on Embedded Networked Sensor Systems,2003:171-180
    [40] Dam T, Langendoen K. An Adaptive energy-efficient MAC protocol for wireless sensor networks. In Proc. of Sensys03, 2003: 171-180
    [41] Wang Y, Zhao Q, Zheng D. Energy-driven adaptive clustering data collection protocol in wireless sensor networks. In Proc. of International Conference on Intelligent Mechatronics and Automation. 2004: 599-604
    [42] Bi YZ, Xin YT, Sun LM, Wu ZM. A Power Graded Data Gathering Mechanism for Wireless Sensor Networks.自动化学报, 2006, 32(6)
    [43] Gupta H, Navda V, Das S, Chowdhary V. Efficient gathering of correlated data in sensor networks. ACM Transactions on Sensor Networks. 2008, 4(1): 1550-1560
    [44] Han Q, Mehrotra S, Venkatasubramanian N. Energy efficient data collection in distributed sensor environments. In Proc. of the 24th International Conference on Distributed Computing Systems, USA, 2004: 590-597
    [45] Chu D, Deshpande A, Hellerstein J, and Hong W. Approximate data collection in sensor networks using probabilistic models. In 22nd International Conference on Data Engineering, 2006: 48
    [46] Floréen P. Exact and approximate balanced data gathering in energy-constrained sensor networks. Journal of Theoretical Computer Science, 2005(344): 30-46
    [47] Ibriq J, Mahgoub I. Cluster-Based routing in wireless sensor networks: Issues and challenges. In Proc. of International Conference on Performance Evaluation of Computer Telecommunication Systems. 2004: 759-766
    [48] Lee BH et al. An Efficient Aggregation and Routing Algorithm Using Multi-hop Clustering in Sensor Networks. In International Conference on Computational Science. Springer Berlin/Heidelberg. 2004, 3038: 1201-1208
    [49] Choi W, Shah P, Das SK. A framework for energy-saving data gathering using two-phase clustering in wireless sensor networks. In 1st Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, USA. 2004: 203-212
    [50] Lotfinezhad M, Liang B, Sousa ES. Adaptive Cluster-Based Data Collection in Sensor Networks with Direct Sink Access. In IEEE Transactions on Mobile Computing, 2008, 7(7): 884-897
    [51] Lindsey S, Raghavendra CS. PEGASIS: Power-efficient gathering in sensor information systems. In Proc. IEEE Conference on Aerospace. 2002, 3: 1125-1130
    [52] Choi W, Das SK. A novel framework for energy-conserving data gathering in wireless sensor networks. In Proc. of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies. USA, 2005, 3: 1985-1996
    [53] Mileo A, Merico D, Bisiani R. Wireless sensor networks supporting context-aware reasoning in assisted living. In Proc. of the 1st ACM international conference on Pervasive Technologies Related to Assistive Environments. ACM, New York, USA. 2008(282): article No. 54
    [54] Liang W, Liu Y. Online Data Gathering for Maximizing Network Lifetime in Sensor Networks. IEEE transactions on mobile computing, 2007, 6(1): 2-11
    [55] Meliou A, Chu D, Hellerstein J et al. Data gathering tours in sensor networks. In Proc. of the 5th International Conference on Information Processing in sensor networks. ACM, USA, 2006: 43-50
    [56] Kalpakis K, Dasgupta K, Namjoshi P. Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Journal of Computer Networks, Elsevier. 2003, 42(6): 697-716
    [57]邓戈燕,张锋,无线结构健康监测传感器网络中的时间序列同步算法,传感技术学报,2006,19(4):1296-1300
    [58] Elson J, Romer K. Wireless Sensor Networks: A New Regime for Time Synchronization. ACM SIGCOMM Computer Communication Review. 2003, 33(1): 149-154
    [59] Kitagawa G, Non-Gaussian state-space modeling of non-stationary time series, Journal of computation and graphical statistics, USA. 1987, 82(400): 1032-1063
    [60] Kitagawa G, Gersch W. A Smoothness Priors-State Space Modeling of Time Series with Trend and Seasonality. Journal of the American Statistical Association, USA. 1984, 79 (386): 378-389
    [61]张数京,齐立心,时间序列分析简明教程,清华大学出版社,北京,2003
    [62] Baek S J, Veciana G, Su X. Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. In IEEE Journal on Selected Areas in Communications, 2004, 22: 1130-1140
    [63] Wang Q, Hassanein H, Takahara G. Stochastic Modeling of Distributed, Dynamic, Randomized Clustering Protocols for Wireless Sensor Networks. In Proc. of International Conference on Parallel Processing Workshops, 2004: 456-463
    [64] Iyengar SS, Kashyap RL, Madan RN. Distributed sensor networks- Introduction to the special section. In IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(5): 1027-1031
    [65] Stann F, Heidemann J. RMST: reliable data transport in sensor networks. In Proc. of the 1st IEEE International Workshop on Sensor Network Protocols and Applications, USA. 2003, 102-112
    [66] Drastal G A, Rivest R L et al. Mixture models for learning from incomplete data. Computational Learning Theory and Natural Learning Systems, MIT Press. 1994
    [67] Paskin M, Guestrin C, McFadden J. A robust architecture for distributed inference in sensor networks. In 4th International Symposium on Information Processing in Sensor Networks. 2005: 55-62
    [68] Olariu S, Xu Q. Information Assurance In Wireless Sensor Networks. In Proc. of the 19th IEEE International Conference on Parallel and Distributed Processing Symposium, 2005: 5
    [69] Shakkottai S. Asymptotics of query strategies over a sensor network. In IEEE the 23rd Annual Joint Conference of Computer and Communications. 2004, 1: 557
    [70] Duarte-Melo EJ, Liu M. Analysis of energy consumption and lifetime of heterogeneous wireless sensor networks. In Global Telecommunications Conference, 2002, 1: 21-25
    [71] Polastre J. Versatile low power media access for wireless sensor networks. In Proc. of the 2nd International Conference on Embedded networked sensor systems, 2004: 95-107
    [72]王叔子等,时间序列分析的工程应用,华中理工大学出版社,武汉, 1996
    [73] Lim JJ, Shin KG. Energy-efficient self-adapting online linear forecasting for wireless sensor network applications. In IEEE International Conference on Mobile Adhoc and Sensor Systems, 2005: 8
    [74] Guestrin C, Bodik P, Thibaux R, Paskin M, Madden S. Distributed regression: an efficient framework for modeling sensor network data. In Proc. of the 3rd international symposium on Information processing in sensor networks. ACM, USA. 2004: 1-10
    [75] Alfieri A, Bianco A, Brandimarte P et al. Exploiting sensor spatial redundancy to improve network lifetime[wireless sensor networks]. In Global Telecommunications Conference, 2004, 5: 3170-3176
    [76] Hurvich CM, TSAI CL. Bias of the corrected AIC criterion for underfitted regression and time series models. Mathematics & Physical Sciences,1991,78(3): 499-509
    [77] Hamilton JD. Time series analysis. Princeton University Press, 1994
    [78] Lazaridis I, Mehrotra S. Capturing sensor-generated time series with quality guarantee. In Proc. of IEEE International Conference on Data Engineering. Piscataway, NJ, USA. 2003: 429-440.
    [79] Tulone D, Madden S. PAQ: Time Series Forecasting for Approximate Query Answering in Sensor Networks. Journal of Lecture notes in computer science. Springer Berlin/Heidelberg, 2006, 3868: 21-37
    [80] Box G, Jenkins G M, Reinsel G. Time series analysis forecasting and control (3rd edition). Prentice Hall, San Francisco, USA. 1994: 89-120.
    [81] Wang X, Ma J, Wang S, Bi D. Time Series Forecasting Energy-efficient Organization of Wireless Sensor Networks. IEEE Sensors Journal. 2007, 7: 1766-1792
    [82]唐业敏,田康生,一种基于分簇的传感器网络数据查询方法,空军雷达学院学报, 2008, 2
    [83] Teng R, Zhang B, Tan Y. An Efficient Message Distribution Scheme for Data Query in Sensor Networks. In 7th International Conference on ITS. Sophia Antipolis, 2007: 1-5
    [84] Ganesan D, Ratnasamy S, Wang H, Estrin D. Coping with irregular spatio-temporal sampling in sensor networks. ACM SIGCOMM Computer Communication Review. 2004, 34(1): 125-130
    [85] Cohen L, Avrahami-Bakish G et al. Real-time data mining of non-stationary data streams from sensor networks. Information Fusion, Elsevier. 2008, 9(3): 344-353
    [86] Gupta I, Riordan D, Sampalli S. Cluster-head election using fuzzy logic for wireless sensor networks. In Proc. of the 3rd Annual Conference of Communication Networks and Services Research. 2005: 255-260
    [87] Takane Y, Young FW, Leeuw J. An individual differences additive model: An alterating least squares method with optimal scaling features. Journal of Psychometrika, Springer New York. 1980, 45(2): 183-209
    [88] Yang Tao, Toh YK, Xie L. Run-time Monitoring of Energy Consumption in Wireless Sensor Networks. In IEEE International Control and Automation. China, 2007: 1360-1365.
    [89] Cho MA, Skidmore AK. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Journal of Remote Sensing of Environment, 2006(101): 181-193
    [90]王晓曦,王秀利,周津慧,王永吉,NS2网络仿真器功能扩展方法及实现,小型微型计算机系统, 2004, 25(6): 1009-1014
    [91] Shih E . Physical layer driven protocol and algorithm design for energy-efficient wireless sensor networks. In 7th International Conference on Mobile Computing and Networking, 2001: 272-287
    [92] Mcphaden M J. Tropical atmosphere ocean project. www.pmel.noaa.gov/tao/index.shtml, 2007
    [93] Y Xu, J Winter, WC Lee. Dual prediction-based reporting for object tracking sensor networks. In 1st Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, USA. 2004: 154-163
    [94] Borgne Y, Santini S, Bontempi G. Adaptive model selection for time series prediction in wireless sensor networks. Signal Processing. 2007, http: //www.sciencedirect.com
    [95] Dai X, Xia F, Wang Z, Sun Y. An Energy-Efficient In-Network Aggregation Query Algorithm for Wireless Sensor Networks. In Proc. of the 1st International Conference on Innovative Computing, Information and Control, China, 2006, 3: 255-258
    [96] Hartl G, Li B. Infer: A Bayesian Inference Approach towards Energy Efficient Data Collection in Dense Sensor Networks. In 25th IEEE International Conference on Distributed Computing Systems, 2005: 371-380
    [97] Parpinelli RS, Lopes HS, Freitas AA. Data mining with an ant colony optimization algorithm. In IEEE Transactions on Evolutionary Computation, 2002, 6(4): 321-332
    [98] Dorigo M, Blum C. Ant colony optimization theory: A survey. Theoretical Computer Science, 2005, 344(2-3): 243-278
    [99] Li Y, Xul Z. An ant colony optimization heuristic for solving maximum independent set problems. In Proc. of the 5th International Conference on Computational Intelligence and Multimedia Applications, ICCIMA, 2003: 206-211
    [100] Dorigo M, Stützle T. The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. Springer New York, USA, 2003(57): 250-285
    [101] Dai H, Han R. A node-centric load balancing algorithm for wireless sensor networks. IEEE GLOBECOM, 2003
    [102] Hsiao PH, Hwang A et al. Load-Balancing Routing for Wireless Access Networks. In 20th Annual Joint Conference of the IEEE Computer and Communications Societies. 2001, 2: 986-995
    [103] Gupta G, Younis M. Performance evaluation of load-balanced clustering of wireless sensor networks. In 10th International Conference on Telecommunication, 2003(2): 1577-1583
    [104] Tode H, Sakai Y. Multicast routing algorithm for nodal load balancing. In 11th Annual Joint Conference of the IEEE Computer and Communications Societies, 1992(3):2086-2095
    [105] Jin X, Wang XF, Xiong Y, Yue LH. A Low Energy Cost Wireless Sensor Network Routing Algorithm Satisfying Parallel-Query Delay Constraints.电子学报:英文版, 2007, 16(3)
    [106] Zhang Y, Kuhn LD. Improvements on Ant Routing for Sensor Networks. Journal of Lecture Notes in Computer Science, 2004(3172): 154-165
    [107] Kurc T, Uysal M, Eom H et al. Efficient Performance Prediction for Large-Scale, Data-Intensive Applications. International Journal of High Performance Computing Applications. 2000, 14(3): 216-227
    [108] Yantai Shu, Minfang Yu, Jiakun Liu et al. Wireless Traffic Modeling and Prediction Using Seasonal ARIMA Models. In IEEE International Conference on Communications, 2003, 3: 1675-1679
    [109] Demirkol I, Alagoz F et al. Wireless sensor networks for intrusion detection: packet traffic modeling. IEEE Communications Letters, 2006, 10(1): 22-24
    [110] LaI D, Manjeshwar A, Herrmann F et al. Measurement and characterization of link quality metrics in energy constrained wireless sensor networks. Global Telecommunications Conference, 2003(1): 446-452.
    [111] Du W, Deng J et al. A pairwise key predistribution scheme for wireless sensor networks. ACM Transactions on Information and System Security, 2005, 8(2): 228-258
    [112] Gubner JA. Theorems and fallacies in the theory of long-range-dependent Processes. In IEEE Transactions on Information Theory, 2005, 51(3): 1234-1239
    [113] Herman T. Models of Self-Stabilization and Sensor Networks. Journal of Lecture notes in Computer Science, Springer Berlin/Heidelberg. 2004, 2918: 836
    [114] Friedlander B, Porat B. The Modified Yule-Walker Method of ARMA Spectral Estimation. IEEE Transactions on Aerospace and Electronic Systems, 1984(2): 158-173
    [115] Kalkstein D, Soven P. A green's function theory of surface states. Surface Science, Elsevier, 1971, 26(1): 85-99
    [116] Pandit SM, Wu SM. Time series and system analysis with applications. John Wiley and Sons, New York, USA. 1983: 118-199
    [117] Heinzelman, W.R, Chandrakasan, A, Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proc. of the 33rd Annual Hawaii International Conference on system Sciences, 2000, 2: 10
    [118] Cai W, Jin X, Zhang Y et al. ACO Based QoS Routing Algorithm for Wireless Sensor Networks. Journal of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2006, 4159: 419-428
    [119] Okdem S, Karaboga D. Routing in Wireless Sensor Networks Using Ant Colony Optimization. In Proc. of the 1st NASA/ESA Conference on Adaptive Adaptive Hardware and Systems, 2006: 401-404
    [120] Aslam J, Li Q, Rus R. Three Power-Aware Routing Algorithms for Sensor Network. Wireless Comm. and Mobile Computing, 2003, 3: 187-208
    [121] Dimitrios J. Vergados. Enhanced route selection for energy efficiency in wireless sensor networks. In Proc. of the 3rd ACM International Conference on Series, 2007: 333-329
    [122] Deb B, Bhatnagar S, Nath B. ReInForM: reli ACM able information forwarding using multiple paths in sensor network. In Proc. of the 28th Annual IEEE International Conference on Local Computer Networks. 2003: 406-415
    [123] Kim D, Lee W, Park BN, Kim J. A Power Balanced Multipath Routing Protocol in Wireless Ad-Hoc Sensor Networks.In Proc. of the 6th IEEE International Conference on Computer and Information Technology. 2006: 222-228
    [124] Shah R C, Rabaey J M. Energy aware routing for low energy ad hoc sensor networks. In Proc. of IEEE Wireless Communications and Networking Conference Record. IEEE Press, Orlando, USA. 2002: 350-355
    [125] Bachir A, Barthel D, F Meylan. Localized max-min remaining energy routing for WSN using delay control. In IEEE International Conference on Communications. Meylan, France, 2005(5): 3302-3306
    [126] Kimura N, Jolly V, Latifi S. Energy Restrained Data Dissemination in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2006, 2(3): 251-265
    [127] Younis M, Youssef M, Arisha K. Energy-Aware Routing in Cluster-Based Sensor Networks. In Proc. of the 10th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, 2002: 129
    [128] Zhao YJ, Govindan R, Estrin D. Residual energy scan for monitoring sensor networks. In Wireless Communications and Networking Conference, USA. 2002, 1: 356-362
    [129] Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion: a scalable and robust communication paradigm for sensor networks. In Proc. of the 6th Annual International Conference on Mobile Computing and Networking, USA. 2000: 56-67.
    [130] Akkaya K, Younis M. A survey on routing protocols for wireless sensor networks. Elsevier Engineering Information, 2005, 3(3): 325-349.
    [131] Rao A, Ratnasamy S et al. Geographic routing without location information. In Proc. of the 9th Annual International Conference on Mobile Computing and Networking. ACM, USA, 2003: 96-108
    [132] Yu Y, Govindan R, Estrin D. Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks. UCLA Computer Science Department Technical Report UCLA/CSD-TR-01-0023, 2001
    [133] Van Veen BD, Buckley KM. Beamforming: a versatile approach to spatial filtering. IEEE Signal Processing Magazine.1988, 5(2): 4-24
    [134] Wang A, Heinzelman WB et al. Energy-Scalable Protocols for Battery-Operated MicroSensor Networks. Journal of VLSI Signal Processing, Springer Netherlands. 2004, 29(3): 223-237
    [135] Abdallah M, Papadopoulos HC. Beamforming algorithms for decode-and-forward relaying in wireless networks. In Proc. of Conference on Information Sciences and Systems, 2005
    [136] Yao Y Y. Information granulation and approximation in a decision-theoretic model of rough sets, rough-neuro computing: a way to computing with words. International Journal of Computer and Information Sciences, Heidelberg: Physica-Verlag, 2002(11): 341-356
    [137]戴志锋,李元香等,粗糙集在无线传感网络中的智能信息处理研究,计算机应用研究,2007, 10
    [138] Chan H, Perrig A, Song D. Random Key Predistribution Schemes for Sensor Networks, IEEE Symposium on Security and Privacy, 2003: 197-200
    [139] Al-khdour T, Baroudi U. An Entropy-Based Throughput Metric for Fairly Evaluating WSN Routing Protocols. In IEEE International Conference on Network Protocols. China, 2007: 342-343
    [140] Lu J, Valois F et al. Quantifying Organization by Means of Entropy. IEEE Communications Letters, France. 2008, 12, (3): 185-187
    [141] Cardei M, Du DZ. Improving Wireless Sensor Network Lifetime through Power Aware Organization. Journal of Wireless Networks, Springer Netherlands, USA. 2005, 11(3): 333-340
    [142] Xu K, Wang Q et al. Optimal wireless sensor networks (WSNs) deployment: minimum cost with lifetime constraint. In IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, Canada. 2005, 3: 454-461
    [143]雷鸣,李德识等,无线传感器网络的自组织可靠性研究,复杂系统与复杂性科学, 2005, 2(2): 103-106
    [144]蒋杰,方力等,无线传感器网络最小连通覆盖集问题求解算法,软件学报,2006, 17(2): 102-111
    [145] Thai M T, Wang F. Coverage problems in wireless sensor networks: designs and analysis. International Journal of Sensor Networks,2008(3): 191-200
    [146] Lessing L, Dumitrescu I. A Comparison between ACO Algorithms for the Set Covering Problem. Journal of Lecture Notes in Computer Science, 2004, 3127: 1-12
    [147] Huang CF, Tseng YC. The coverage problem in a wireless sensor network. Mobile Networks and Applications, Springer Netherlands. 2005, 10(4): 519-528.
    [148] Han KH, Ko YB, Kim JH. A novel gradient approach for efficient data dissemination in wireless sensor networks. In IEEE the 60th Vehicular Technology Conference, South Korea. 2004, 4: 2979-2983
    [149] Powell O, Jarry A et al. Gradient Based Routing in Wireless Sensor Networks: a Mixed Strategy. Arxiv preprint cs.DC/0511083, 2005
    [150] Liu B, Towsley D. A Study of the Coverage of Large-scale Sensor Networks. In IEEE International Conference on Mobile Ad-hoc and Sensor Systems, USA. 2004: 475-483
    [151] Zhou Z, Das S, Gupta H. Connected K-coverage problem in sensor networks. In Proc. of the 13th International Conference on Computer Communications and Networks, USA. 2004: 373-378
    [152] Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor networks. In Proc. of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, USA, 2002, 3: 1567-1576
    [153] He T, Blum BM, Stankovic JA, Abdelzaher TF. AIDA: Adaptive Application Independent Data Aggregation in Wireless Sensor Networks. ACM Transaction on Embedded Computing System Special Issue on Dynamically Adaptable Embedded Systems, 2003, 3(2):426-457
    [154] Krishnamachari L, Estrin D, Wicker S. The impact of data aggregation in wireless sensor networks. In Proc. of the 22nd International Conference on Distributed Computing Systems Workshops, Austria. 2002: 575-578
    [155] Zhu H, Cao G, Yener A, Mathias AD. EDCF-DM: a novel enhanced distributed coordination function for wireless ad hoc networks. In IEEE International Conference on Communications, USA. 2004, 7: 3886-3890
    [156] Zhu H, Chlamtac I. An analytical model for IEEE 802.11 e EDCF differential services. In 12th International Conference on Computer Communications and Networks, 2003:163-168
    [157] Zhu H, Chlamtac I. Performance analysis for IEEE 802.11 e EDCF service differentiation. IEEE Transactions on Wireless Communications,2005(4):1779-1788
    [158] Cadilhac M, Hérault T et al. Evaluating Complex MAC Protocols for Sensor Networks with APMC. Journal of Electronic Notes in Theoretical Computer Science, 2007, 185: 33-46
    [159] Aslam J. Tracking a moving object with a binary sensor network. In Proc. of the 1st International Conference on Embedded Networked Sensor Systems, 2003: 150-161
    [160] Boukerche A. Energy-aware data-centric routing in microsensor networks. Proceedings of the 6th ACM international workshop on Modeling analysis and simulation of wireless and mobile systems. 2003: 42-49
    [161] Nordio A, Chiasserini CF, Muscariello A. Signal Compression and Reconstruction in Clustered Sensor Networks. In IEEE International Conference on Communications. 2008: 925-929
    [162] Mhatre V, Rosenberg C. Design guidelines for wireless sensor networks: communication, clustering and aggregation. Ad Hoc Networks, Elsevier, USA. 2004, 2(1): 45-63
    [163] Bandyopadhyay S, Coyle EJ. An energy efficient hierarchical clustering algorithm for wireless sensor networks. In 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, USA. 2003, 3: 1713-1723
    [164] Manjeshwar A, Agrawal DP. TEEN: a routing protocol for enhanced efficiency in wireless sensor networks. In Proc. of the 15th International Conference on Parallel and Distributed Processing Symposium. 2001: 2009-2015
    [165] Younis O, Fahmy S. Distributed clustering in ad-hoc sensor networks: a hybrid, energy-efficient approach. INFOCOM 2004. In 23rd Annual Joint Conference of the IEEE Computer and Communications Societies, USA. 2004, 1: 640
    [166] Ghiasi S, Srivastava A, Yang X, Sarrafzadeh M. Optimal energy aware clustering in sensor networks. IEEE Sensors Journal. 2002. 2: 258-269
    [167] Zhang Y, Wang J, Zhou L. Parallel Frequent Pattern Discovery: Challenges and Methodology. Tsinghua Science and Technology. 2007, 12(6): 719-728
    [168] Agrawal R. Fast Algorithms for Mining Association Rules in Large Databases. In Proc. of the 20th International Conference on Very Large Data Bases, 1994: 487-499
    [169] Silva J, Giannella C, Bhargava R, Kargupta H. Distributed data mining and agents. Journal of Engineering Applications of Artificial Intelligence, Elsevier. 2005, 18(7): 791-807
    [170] Zaki M, Sobh TS. NCDS: data mining for discovering interesting network characteristics. Journal of Information and Software Technology, Elsevier. 2005, 47(3): 189-198
    [171] Lazcorreta E, Botella F. Towards personalized recommendation by two-step modified Apriori data mining algorithm. Expert Systems with Applications, 2008, 35(3): 1422-1429
    [172] Liu X, Peng Y, Wang X. Simple, High-Performance Fusion Rule for Censored Decisions in Wireless Sensor Networks. Tsinghua Science & Technology, 2008, 13(1): 23-29
    [173] Le-Khac NA, Aouad LM, Kechadi MT. Knowledge map: Toward a new approach supporting the knowledge management in distributed data mining. In 3rd International Conference on Autonomic and Autonomous Systems, 2007: 443-447
    [174] Cantoni V, Lombardi L, Lombardi P. Challenges for Data Mining in Distributed Sensor Networks. In 18th International Conference on Pattern Recognition, 2006, 1: 1000-1007
    [175] Deepak A. A computational study of external-memory BFS algorithms. In Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, 2006: 601-610
    [176] Sohrabi K, Gao J. Protocols for self-organization of a wireless sensor network. Journal of Personal Communications, 2000(7): 16-27
    [177] Zhou J. A generalized approach to possibilistic clustering algorithms. International Journal of Uncertainty. Fuzziness and Knowlege-Based Systems, 2007, 15(2): 117-138
    [178] Dasgupta K, Kalpakis K, Namjoshi P. An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In IEEE Wireless Communications and Networking, 2003, 3: 1948-1953
    [179] Lehsaini M, Guyennet H, Feham M. A novel cluster-based self-organization algorithm for wireless sensor networks. In International Symposium on Collaborative Technologies and Systems, 2008: 19-26
    [180] GuoH. Simplifying dynamic programming via mode-directed tabling. Software - Practice and Experience, 2008, 38(1): 75-94
    [181] Keogh E, Ratanamahatana CA. Exact indexing of dynamic time warping. Knowledge and Information Systems, Springer London. 2005, 7(3): 358-386
    [182] Keogh EJ, Pazzani MJ. Scaling up dynamic time warping for datamining applications. In Proc. of the 6th ACM SIGKDD International Conference on Knowledge discovery and data mining. ACM, USA. 2000: 285-289
    [183] Jolly G, Kuscu MC et al. A low-energy key management protocol for wireless sensor networks. In IEEE the 8th International Symposium on Computers and Communication, 2003: 335-340
    [184] Gupta G, Younis M. Performance evaluation of load-balanced clustering of wireless sensor networks. In 10th International Conference on Telecommunications. 2003, 2: 1577-1583
    [185] Ye M, Li C et al. EECS: an energy efficient clustering scheme in wireless sensor networks. In Performance, Computing, and Communications Conference. 2005: 535-540
    [186] Kim J, Lee W et al. Effect of localized optimal clustering for reader anti-collision in RFID networks: fairness aspects to the readers. In Proc. of the 14th International Conference on Computer Communications and Networks. 2005: 497-502
    [187] Yuan W, Krishnamurthy SV, Tripathi SK. Synchronization of multiple levels of data fusion in wireless sensor networks. In Global Telecommunications Conference. 2003, 1: 221-225
    [188] Wu Q, Rao NSV et al. On Computing Mobile Agent Routes for Data Fusion in Distributed Sensor Networks. IEEE Transactions on knowledge and data engineering. 2004, 16(6): 740-753
    [189] Du W, Deng J et al. A witness-based approach for data fusion assurance in wireless sensor networks. In IEEE Global Telecommunications Conference, USA. 2003, 3: 1435-1439
    [190] A Boulis, S Ganeriwal, MB Srivastava. Aggregation in sensor networks: an energy–accuracy trade-off. Journal of Ad Hoc Networks, 2003, 1(2-3): 317-331
    [191] Tan H?, K?rpeo?lu I. Power efficient data gathering and aggregation in wireless sensor networks. ACM SIGMOD Record. 2003, 32(4): 66-71
    [192] Schurgers C, Srivastava MB. Energy efficient routing in wireless sensor networks. In IEEE Military Communications Conference. 2001, 1: 357-361
    [193] Kulik J, Heinzelman W, Balakrishnan H. Negotiation-Based Protocols for Disseminating Information in Wireless Sensor Networks. Journal of Wireless Networks, Springer Netherlands, 2002, 8(2-3): 169-185
    [194] Mina S. Distributed source coding using short to moderate length rate-compatible LDPC codes: The entire Slepian-Wolf rate region, Transactions on Communications, 2008, 56(3): 400-411
    [195] Chen J, He D, Jagmohan A et al. On the duality and difference between slepian-wolf coding and channel coding, IEEE Information Theory Workshop, 2007: 301-306
    [196] Cai X, Modestino JW. Bandwidth expansion Shannon mapping for analog error-control coding. IEEE Conference on Information Sciences and Systems, 2007: 1709-1712
    [197] Wang T. A fast parameter estimation of generalized Gaussian distribution. In Proc. of International Conference on Signal Processing. 2007: 412-417
    [198] Al-Karaki JN, Kamal AE. Routing techniques in wireless sensor networks: a survey. In IEEE Wireless Communications, 2004, 11(6): 6-28
    [199] James N, Dawn S.GEM: graph embedding for routing and data centric storage in sensor networks without geographic information.In Proc. of First ACM Conference on Embedded Networked Sensor System, Redwood. USA, 2003: 76-88
    [200] ME Tipping, CM Bishop. Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology). The Royal Statistical Society and Blackwell Publishing Ltd, UK. 2002, 61(3): 611-622.
    [201] Bontempi G, Borgne YL. An adaptive modular approach to the mining of sensor network data. In 1st International Workshop on Data Mining in Sensor Networks, 2005
    [202] Neely MJ, Modiano E. Fairness and Optimal Stochastic Control for Heterogeneous Networks. ACM Transactions on Networking, 2008(16): 396-409
    [203] Girod L, Stathopoulos T et al. A system for simulation, emulation, and deployment of heterogeneous sensor networks. In Proc. of the 2nd International Conference on Embedded networked sensor systems, ACM, USA. 2004: 201-213
    [204] Deshpande A, Guestrin C et al. Model-driven data acquisition in sensor networks. In Proc. of the 30th International Conference on Very large data bases, VLDB Endowment. 2004, 30: 588-599
    [205] Koushanfar F, Potkonjak M. A Sangiovanni. Fault Tolerance Techniques for Wireless Ad Hoc Sensor Networks. IEEE Sensors Journal, 2002
    [206] Ding N, Liu PX. Data Gathering Communication in Wireless Sensor Networks Using Ant Colony Optimization. In IEEE International Conference on Robotics and Biomimetics. 2004, 822-867
    [207] Ye N, Shao J, Wang R, Wang Z. Colony Algorithm for Wireless Sensor Networks Adaptive Data Aggregation Routing Schema. Journal of Lecture Notes in Computer Science, Springer Berlin/Heidelberg. 2007, 4688: 248-257
    [208] Chih MH, Feng L. A Case Study on Highway Flow Model Using 2-D Gaussian Mixture Modeling, Intelligent Transportation Systems Conference, 2007: 790-794
    [209] Reynolds DA, Quatieri TF, Dunn RB. Dunn. Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing, USA. 2000, 10(1-3): 19-41.
    [210] Lin CR, Su CH, Hsu CM et al. A calculation of microwave power in a MPCVD system using 2-D gaussian mixture modeling. In IEEE International Conference on Systems, Man and Cybernetics, 2007: 3006-3010
    [211] Wang CW. New Ensemble Machine Learning Method for Classification and Prediction on Gene Expression Data. In 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006: 3478-3481
    [212] Song Y, Cai Q et al. Semi-Supervised Additive Logistic Regression: A Gradient Descent Solution. Tsinghua Science and Technology, 2007, 12(6): 638-646
    [213]纪志荣,黄可明,基于EM算法的无失效数据的参数估计,福州大学学报(自然科学版),2007
    [214] Mobasher A, Taherzadeh M, Sotirov R, Khandani AK. A Near-Maximum-Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming, IEEE Transactions on Information Theory, 2007: 3869-3886
    [215] Redner RA, Walker HF. Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review, 1984, 26(2): 195-239
    [216]冯祖仁,吕娜,李良福,基于最大后验概率的图像匹配相似性指标研究,自动化学报,2007, 33(1): 1-8
    [217] Miller G, Inkret WC. Bayesian Maximum Posterior Probability Method for Interpreting Plutonium Urinalysis Data. Oxford Journals. 1996, 63(3): 189-196
    [218] Muruganathan SD, Ma DCF et al. A centralized energy-efficient routing protocol for wireless sensor networks. IEEE Communications Magazine, Canada. 2005, 43(3): 8-13
    [219] Yan J, Cheng Q et al. An Incremental Subspace Learning Algorithm to Categorize Large Scale Text Data. Journal of Lecture Notes in Computer Science, Springer Berlin/Heidelberg. 2005, 3399:52-63
    [220] Pan Z, Gu H, Talaty Nari, et al. Principal component analysis of urine metabolites detected by NMR and DESI–MS in patients with inborn errors of metabolism. Analytical and Bioanalytical Chemistry, 2007, 387(2): 539-549
    [221] Tiilikainen J , Tilli JM et al. Nonlinear fitness-space-structure adaptation and principal component analysis in genetic algorithms: an application to x-ray reflectivity analysis. Journal of Physics D: Applied Physics, 2007: 215-218
    [222] Kim KI, Jung K, Kim HJ. Face recognition using kernel principal component analysis. In IEEE Signal Processing Letters, IEEE, 2002, 9(2): 40-42
    [223] Jagadish HV, Ng RT et al. ItCompress: an iterative semantic compression algorithm. In Proc. of the 20th International Conference on Data Engineering, USA. 2004: 646-657.
    [224] Jagadish HV, J Madar, Ng R. Semantic compression and pattern extraction with fascicles. In Proc. of the International Conference on Very Large Data Bases, UK, 1999: 186-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700