用户名: 密码: 验证码:
色谱—质谱联用仪数据处理关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色谱-质谱联用仪器是色谱分离技术和质谱分析技术紧密结合的产物,在环境监测、食品安全、生命科学等领域有着广泛的应用。色谱-联用仪器作为高端分析仪器的一种,其发展与计算机技术密不可分,其数据处理技术的优劣直接影响了分析的效果。
     色谱-质谱联用仪器主要有两种形式:气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)。本论文以GC-MS和LC-MS联用仪器的数据分析为研究领域,对于GC-MS,着重研究数据的退卷积算法;对于LC-MS,以目前生命科学分析中最为常用的高效液相色谱-质谱联用(HPLC-MS)为研究对象,以蛋白质分析为着眼点,着重研究了蛋白质肽段保留时间预测模型的建立以及保留时间因子的在蛋白质鉴定中的应用。主要工作内容和创新点包括以下四个方面:
     1、GC-MS数据折返退卷积算法:在对已有GC-MS数据差分算法分析的基础上,提出了一种色谱峰分离的折返算法,着重讨论了算法中关键要素的选取原则,分析了运算后GC-MS信号对高频噪声的敏感性,通过实验验证了该分离算法的效果。以GC-MS数据的矩阵形式表示退卷积的运算过程,在色谱峰折返分离算法的基础上,提出了一种GC-MS数据的折返退卷积算法,该算法通过矩阵运算实现GC-MS数据中纯净色谱图的提纯,经实验验证该算法可以有效的提取混合物中各个成分的纯净质谱谱图,确定各成分的色谱保留时间。
     2、基于K-medoids聚类算法的GC-MS数据退卷积算法:当混合物中两种或两种以上被测物质的保留时间相差在一个扫描数内时,传统的GC-MS数据退卷积算法将无能为力,针对这种情况,本论文引入K-medoids聚类算法对GC-MS数据进行处理。K-medoids聚类退卷积算法分为:峰检测、聚类分析和色谱峰形校正三个环节,在峰检测环节提取各个质量色谱图的谱峰;在聚类分离中,对提取的质量色谱峰进行聚类分析以确定混合物中各化合物的碎片离子组成,采用Silhouette指数对聚类结果进行评价;在色谱峰形校正中,对所提取的每一种化和物的色谱峰形进行校正以提取保留时间。对真实的实验数据,采用K-medoids算法和AMDIS算法进行分析,结果证明了K-medoids聚类算法可以有效的分离AMDIS系统无法分离的重叠色谱峰,提取对应化合物的纯净质谱图。
     3、 LC-MS联用仪器是色谱质谱联用技术的重要形式,蛋白质组学是HPLC-MS的主要应用领域。在蛋白质的鉴定中,肽段的保留时间可提供除质荷比以外的另一维信息,提高鉴定的准确性,因此需要建立蛋白质肽段的保留时间预测模型。本文中模型的建立分为三个阶段:
     (1)以小样本数据集建立了C18色谱柱条件下以TFA为离子配对试剂时蛋白质肽段保留时间的初级模型。
     (2)随后采用大样本数据集,分析了肽段长度、氨基酸位置、邻位效应、氨基酸聚簇效应对肽段保留时间的影响,进一步优化了预测模型。
     (3)半胱氨酸(Cys)的烷化是蛋白质分析中不可或缺的一环,在预测模型中分别修正了碘乙酰胺、碘乙酸、4-乙烯基吡啶、丙烯酰胺和甲基三硫醚五种常用烷化剂修饰下以及未被烷化修饰的半胱氨酸的保留时间因子。
     4、通过对蛋白质保留时间预测模型中各个氨基酸保留时间因子的分析,提出了一种通过不同酸性离子配对试剂的组合进行二维HPLC分离不同带电荷数肽段的方法,经实验证明在二维HPLC中使用不同酸性离子配对试剂组合可以实现蛋白质不同带电荷数肽段的分组洗脱,基于这一分离作用,提出了一种通过二维HPLC富集蛋白质首末端肽段的方法。以人Jurcat细胞和白蚁梭菌细胞为样品,通过实验验证了该方法可以有效的实现蛋白质的羟基端和羧基端肽段的富集,从而为蛋白质的快速准确鉴定提供了一种新的途径。
Chromatography-mass spectrometry hyphenated instrument which is a closelyintegrated product of chromatography and mass spectrometry technology is widelyused in environmental monitoring, food safety, life science and many other fields. Itsdevelopment related to computer technology. The data processing technology willdirectly affect the analysis results.
     There are two main forms in chromatography-mass spectrometry area: Gaschromatography-mass spectrometry (GC-MS) and liquid chromatography-massspectrometry (LC-MS). For GC-MS, this thesis focused on the deconvolutionalgorithm. For LC-MS, it focused on protein analysis, researched the protein peptideretention time prediction model and retention time factors application in theidentification of protein. The main work in this thesis is as follow:
     1、 Back-folded deconvolution method for GC-MS data analysis. A novelback-folded method for chromatographic peak separation was presented in this thesisbased on the differential algorithm. Based on the back-folded chromatographic peakseparation algorithm and process of deconvolution in matrix form, a newdeconvolution algorithm for GC-MS data was proposed which achieve purificationpure spectrum by matrix operation. The experimental results validated that thisalgorithm can effectively extract pure mass spectra and determine the retention timefor each component in the mixture.
     2、A novel deconvolution algorithm for GC-MS data based on K-medoidsclustering analysis. When the difference of retention times of two or multiplecompounds is less then one scan, traditional deconvolution processes are unable toextract pure mass spectrum. In view of this situation, the K-medoids clusteringalgorithm was introduced to GC-MS data processing. The data analysis workflowconsists of three sequential steps: peak detection, deconvolution and chromatographicpeak shape correction. The real experimental data was analyzed using the K-medoidsalgorithm and AMDIS system. The results show that K-medoids clustering algorithmcan separated overlapped chromatographic peaks effectively which is out of theability of AMDIS system.
     3、LC-MS hyphenated instruments is an important form of chromatography-mass spectrometry technology. Proteomics is the main application field of HPLC-MS.In protein identification, retention time of peptides offers the other dimension of information beyond mass-to-charge ratios, could improve protein identificationaccuracy, therefore establishing the prediction model for retention time of proteinpeptides is needed. The establishment of this model is divided into three stages:
     (1)The primary peptide retention time prediction model using TFA as ionpairing reagent was established based on a small sample data set.
     (2)Then analyzed the influences of peptide length, amino acid position,neighbor effect, clusters of amino acids, further optimizad the prediction model basedon a larger data set.
     (3)The alkylation of cysteine is a key element in protein analysis. The retentioncoefficient for cysteine was corrected when it was alkylated by iodoacetamide,iodoacetic acid,4-vinylpyridine, acrylamide and methyl-methanethiosulfonate. Freecysteine was also concerned.
     4、Through the analysis of retention time coefficient of each amino acid in thethree model, a method for separating the peptides with different charge using differentacidic ion pairing reagent combination in two-dimensional HPLC. The experimentproved that this method could elute peptides with different charge in clusters. Basedon this separation, A novel method for enrichment of protein N terminal and Ctermina peptides was present which could provide a new way for identification ofproteins., experiments using human Jurcat cells and termite Clostridium cells assamples show that the method can effectively enriched N terminal and C terminalpeptides of protein.
引文
[1]刘国根,王丽群,龙怀中,现代仪器分析,北京:当代中国出版社,2004,4
    [2] Careri M and Mangia A. Trends in analytical atomic and molecular massspectrometry in biology and the life sciences. Analytical and BioanalyticalChemistry,2011,399(8):2585~2595
    [3] Pol J, Strohalm M, Havlicek V, et al. Molecular mass spectrometry imaging inbiomedical and life science research. Histochemistry and Cell Biology,2010,134(5):423~443
    [4] Nielen MWF, Hooijerink H, Zomer P, et al. Desorption electrospray ionizationmass spectrometry in the analysis of chemical food contaminants in food.Trac-trends in Analytical Chemistry,2011,30(2):165~180
    [5] Antignac JP, Courant F, Pinel G, et al. Mass spectrometry-based metabolomicsapplied to the chemical safety of food. Trac-trends in Analytical Chemistry,2011,30(2):292~301
    [6] Ndaw S, Denis F, Marsan P, et al. Biological monitoring of occupationalexposure to5-fluorouracil: Urinary alpha-fluoro-beta-alanine assay by highperformance liquid chromatography tandem mass spectrometry in health carepersonnel. Journal of Chromatography B-Analytical Technologies in theBiomedical and Life Sciences,2010,878(27):2630~2634
    [7] Tumey SJ,Brown TA, Hamilton TE, et al. Accelerator mass spectrometry ofstrontium-90for homeland security, environmental monitoring and humanhealth. Nuclear Instruments&Methos in Physics Research Section B-beamInteractions with Materials and Atoms,2008,266(10):2242~2245
    [8] Hernandez F, Portoles T, Pitarch E, et al. Gas chromatography coupled tohigh-resolution time-of-flight mass spectrometry to analyze trace-level organiccompounds in the environment, food safety and toxicology. Trac-trends inAnalytical Chemistry,2011,30(2):388~400
    [9] Hu WP, Langford VS, McEwan MJ, et al. Monitoring chloramines andbromamines in a humid environment using selected ion flow tube massspectrometry. Rapid Communications in Mass Spectrometry,2010,24(12):1744~1748
    [10] Perez-Trujillo FJ, Castaneda SI. Study by means of the mass spectrometry ofvolatile species in the oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe andferritic/martensitic steel samples at923K in Ar+(10to80%)H2O vaporatmosphere for new-materials design. Oxidation of Metals,2006,66(5-6):231~251
    [11] Guillong M, Hametner K, Reusser E, et al. Preliminary characterisation of newglass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laserablation-inductively coupled plasma-mass spectrometry using193nm,213nmand266nm wavelengths. Geostandards and Geoanalytical Research,2005,29(3):315~331
    [12] Takada Y, Nagano H, Suga M, et al. Detection of military explosives byatmospheric pressure chemical ionization mass spectrometry with counter-flowintroduction. Propellants Explosives Pyrotechnics,2002,27(4):224~228
    [13] Smith PA, Kluchinsky TA, Savage PB, et al. Traditional sampling withlaboratory analysis and solid phase microextraction sampling with field gaschromatography/mass spectrometry by military industrial hygienists.a Journal for the Science of Occupational and Environmental Health andSafety,2002,63(3):284~292
    [14] Schramm E, Holzer J, Putz M, et al. Real-time trace detection ofsecurity-relevant compounds in complex sample matrices by thermaldesorption-single photon ionization-ion trap mass spectrometry (TD-SPI-ITMS)Spectrometry (TD-SPI-ITMS). Analytical and Bioanalytical Chemistry,2009,395(6):1795~1807
    [15] Tumey SJ, Brown TA, Hamilton TE, et al. Accelerator mass spectrometry ofstrontium-90for homeland security, environmental monitoring and humanhealth. Nuclear Instruments&Methos in Physics Research Section B-beamInteractions with Materials and Atoms,2008,266(10):2242~2245
    [16]徐贞林,汪曣,质谱仪器,北京:机械工业出版社,1995,1
    [17]王桂友,臧斌,顾昭,质谱技术发展与应用,现代科学仪器,2009,12(6):124~128
    [18]杜平,在线质谱仪分析控制软件的开发与设计:[硕士学位论文],天津;天津大学,2009
    [19]王其冬,丁传凡,贺赛龙等,中国小型质谱仪的市场需求和产业发展分析,宁波大学学报(理工版),2007,20(4):538~541
    [20]张宝林,质谱仪软件平台的研究和开发:[硕士学位论文],吉林;吉林大学,2006
    [21]何坚,电喷雾离子源高分辨串级飞行时间质谱仪的研制及其在中草药与生物大分子分析中的应用:[博士学位论文],厦门;厦门大学,2002
    [22]盛龙生,苏焕华,郭丹滨,色谱质谱联用技术,北京:化学工业出版社,2006
    [23] Zhang ZF, Zhou XY, Wu FJ, et al., GC/MS analysis on biomedical resourcesof extractives of eucalyptus leaves for biomedical engineering. Materials andManufacturing Technology,2010,129-131:719~723
    [24] Koek MM, van der Kloet FM, Kleemann R, et al., Semi-automated non-targetprocessing in GC x GC-MS metabolomics analysis: applicability forbiomedical studies. Metabolomics,2011,7(1):1~14
    [25] Ma XH, He Jie, Liu Feng, et al. Headspace-gas chromatography/massspectrometry analysis for dimethylamine and diethylamine in waterenvironment. Research of Environmental Sciences,2010,23(1):112~115
    [26] Almeida C, Serodio P, Florencio MH, et al. New strategies to screen forendocrine-disrupting chemicals in the Portuguese marine environment utilizinglarge volume injection-capillary gas chromatography-mass spectrometrycombined with retention time locking libraries (LVI-GC-MS-RTL). Nalyticaland Bioanalytical Chemistry,2007,387(7):2569~2583
    [27] Feo ML, Eljarrat E, Barcelo D. Performance of gas chromatography/tandemmass spectrometry in the analysis of pyrethroid insecticides in environmentaland food samples. Rapid Communications in Mass Spectrometry,2011,25(7):869~876
    [28] Seo I, Shin HS. Determination of toluene and other residual solvents in variousfood packaging materials by gas chromatography/mass spectrometry(GC/MS).Food Science and Biotechnology,2010,19(6):1429~1434
    [29] Gunnar T, Engblom C, Ariniemi K. Pressure-adjusted continual flowheart-cutting for the high throughput determination of amphetamine-typestimulant drugs in whole blood by fast multidimensional gaschromatography-mass spectrometry. Journal of Chromatography,2007,A(1166):171~180
    [30]孟兆玲,齐元英,柳仁民,高效液相色谱-质谱联用技术的应用进展,化学分析计量,2006,15(6):99~102
    [31] Lee CY, Liu CC, Chen SC, et al. High-performance MEMS-based gaschromatography column with integrated micro heater. MicrosystemTechnologies-Micro-and Nanosystems-Information Storage and ProcessingSystems,2011,17(4):523~531
    [32] Maafa D,Balard H,Donnet JB. Comparison of the Superficial Properties ofPyrolysis Recycled and Standard Carbon Blacks, Using Inverse GasChromatography. KGK-Kautschuk Gummi KunstsTOFFE,2011,64(4):24~28
    [33] Tsiropoulos NG, Amvrazi EG.Determination of pesticide residues in honey bysingle-drop microextraction and gas chromatography. Journal ofAoacinternational,2011,94(2):634~644
    [34] Zeng ZD, Chin ST, Hugel HM, et al. Simultaneous deconvolution andre-construction of primary and secondary overlapping peak clusters incomprehensive two-dimensional gas chromatography. Journal ofChromatography A,2011,1218(16):2301~310
    [35] Mashayekhi HA, Abroomand-Azar P, Saber-Tehrani M, et al. Rapid andsensitive determination of biphenyl and biphenyl oxide in water samples usingdispersive liquid-liquid microextraction followed by gas chromatography.International Journal of Environmental Analytical Chemistry.2011,91(6):516~524
    [36] Paiva FV, de Souza NC, Van Haandel AC. Identification of organic andpharmaceutical compositions in hospital wastewater using a gaschromatograph coupled to mass spectrometry. Engenharia Sanitaria EAmbiental,2011,16(1):37~44
    [37] Wessels HJCT, Gloerich J, van der Biezen E, et al. Liquidchromatography-mass spectrometry-based proteomics of nitrosomonas.Methods in Enzymology: Research on Nitrification and Related Processes,Vol486, Part A,2011,486:465~482
    [38] Nita-Lazar A. Quantitative analysis of phosphorylation-based protein signalingnetworks in the immune system by mass spectrometry. Wiley InterdisciplinaryReviews-systems Biology and Medicine,2011,3(3):368~376
    [39] Zhang JJ, Zhang LJ, Zhou KY, et al. Analysis of global DNA methylation byhydrophilic interaction ultra high-pressure liquid chromatography tandem massspectrometry. Analytical Biochemistry,2011,413(2):164~170
    [40] Matsuo K. Small-scale, high-throughput method for plant N-glycanpreparation for matrix-assisted laser desorption/ionization time-of-flight massspectrometry analysis. Analytical Chemistry,2011,413(2):200~202
    [41] Hornbrook RS, Crawford JH, Edwards GD, et al. Measurements oftropospheric HO2and RO2by oxygen dilution modulation and chemicalionization mass spectrometry. Atmospheric Measurement Techniques,2011,4(4):735~756
    [42] Lu L, Deng HM, Lin ZX. Interaction Between N-Benzoyl-dehydroabietylamine Derivatives with Angiotensin III by ElectrosprayIonization Mass Spectrometry. Chemical Journal of ChineseUniversities-Chinese,2011,32(4):863~867
    [43] Vladimir A Likic. Extraction of pure components from overlapped signals ingaschromatography-mass spectrometry (GC-MS). BioData Mining,2009,2(6),1~11
    [44] Valeri L Babushok, Lgor G Zenkevich. Retention Characteristics of Peptidesin RP-LC:Peptide Retention Prediction.Chromatographia.2010,72:781~797
    [45]孟兆玲,齐元英,柳仁民,高效液相色谱-质谱联用技术的应用进展,化学分析计量,2006,15(6):99~102
    [46]刘超,王海鹏,付岩等,肽段反相色谱保留时间预测算法及其在蛋白质鉴定中的应用,色谱,2010,28(6),529~534
    [47] Pflieger D, Bigeard J, Hirt H. Isolation and characterization of plant proteincomplexes by mass spectrometry. Proteomics,2011,11(9):1824~1833
    [48] Leong YH, Ismail N, Latiff AA, et al. Determination of aflatoxins incommercial nuts and nut products using liquid chromatography tandem massspectrometry. World Mycotoxin Journal,2011,4(2):119~127
    [49] Crumpton, JB; Zhang, WY; Santos, WL. Facile analysis and sequencing oflinear and branched peptide boronic acids by MALDI mass spectrometry.Analytical Chemistry,2011,83(9):3548~3554
    [50] Alanio A, Beretti JL, Dauphin B, et al. Matrix-assisted laser desorptionionization time-of-flight mass spectrometry for fast and accurate identificationof clinically relevant aspergillus species. Clinical Microbiology and Infection,2011,17(5):750~755
    [51] Biller JE, Biemann K.Reconstruction of mass spectra, a novel approach for theutilization of gas chromatograph-mass spectrometer data. AnalyticalLetters,1974,7:515~528
    [52] Colby BN.Spectral deconvolution for overlapping GC/MS components.J AmSoc Mass Spectrum,1992,3:558~562
    [53] Dromey RG, Stefik MJ, Rindfleisch TC, Duffield AM. Extraction of massspectra free of background and neighboring component contributions from gaschromatography/mass spectrometry. Analytical Chemistry,1976,48:1368~1375
    [54] Stein SE. An integrated method for spectrum extraction and compoundidentification from gas chromatography/mass spectrometry data. AnalyticalChemistry,1999,10:770~781
    [55] Meek JL. Prediction of peptide retention times in high-pressure liquidchromatography on the basis of amino acid composition. Proceedings of theNational Academy of Sciences of the United States of America,1980,77(3):1632~1638
    [56] Bennett HP, Browne CA, Solomon S. Characterization of eight forms ofcorticotropin-like intermediary lobe peptide from the rat intermediary pituitary.The Journal of Biological Chemistry,1982,257(17):96~102
    [57] Casal V, Martin-Alvarez PJ, Herraiz T, omparative prediction of the retentionbehaviour of small peptides in several reversed-phase high-performance liquidchromatography columns by using partial least squares and multiple linearregression. Analytica Chimica Acta,1996,326(1):77~84
    [58] Ngai SM, Hodges RS. Biologically important interactions between syntheticpeptides of the N-terminal region of troponin I and troponin C. The Journal ofBiological Chemistry,1992,267(22):15~20
    [59] Palmblad M, Ramstrom M, Markides, Karin E. Prediction of chromatographicretention and protein identification in liquid chromatography/massspectrometry. Analytical Chemistry,2002,74(22):5826~5830
    [60] Palmblad M, Ramstrom M, Bailey CG. Protein identification by liquidchromatography–mass spectrometry using retention time prediction. Journalof Chromatography B,2004,803(1):131~135
    [61] Guo D, Mant CT, Taneja AK, Hodges RS. Prediction of peptide retentiontimes in reversed-phase high-performance liquid chromatography II correlationof observed and predicted peptide retention times factors and influencing theretention times of peptides. Journal of Chromatography A,1986,359:519~532
    [62] Guo D, Mant CT, Taneja AK, Hodges RS. Prediction of peptide retentiontimes in reversed-phase high-performance liquid chromatography I.Determination of retention coefficients of amino acid residues of modelsynthetic peptides. Journal of Chromatography A,1986,359:499~518
    [63] Meek JL, Rossetti ZL. Factors affecting retention and resolution of peptides inhigh-performance liquid chromatography. Journal of Chromatography A.1982,211:15~28
    [64] Browne CA, Bennett HP, Solomon S. The isolation of peptides byhigh-performance liquid chromatography using predicted elution positions.Analytical Chemistry.1982,124:201~208
    [65] Sasagawa T, Okuyama T, Teller DC. Prediction of peptide retention times inreversed-phases high-performance liquid chromatography during lineargradient elution. Journal of Chromatography.1982,240:329~340
    [66] Sakamoto Y, Kawakami N, Sasagawa T. Prediction of peptide retention times.Journal of Chromatography.1982,442:69~79
    [67] Mant CT, Burke TW, Black JA. Effect of peptide chain length on peptideretention behaviour in reversed-phase chromatography. Journal ofChromatography.1988,458:193~205
    [68] Wilkins JA, Li A, Ni H et al. Control of beta1integrin function. Localizationof stimulatory epitopes. Journal of Biochemistry.1996,271:3046~3051
    [69] Shevchenko A, Chernushevich I, Ens W et al. Rapid de novo peptidesequencing by acombination of nanoelectrospray, isotopic labeling andquadrupole/time-of-flight mass spectrometer. Mass Spectrometer.1997,11:1015~1024
    [70] Shen Y, Tolic N, Zhao R et al. High-throughput proteomics usinghigh-efficiency multiple-capillary liquid chromatography with on-linehigh-performance ESI FTICR mass spectrometry. Analytical Chemistry.2001,73:3011~3021
    [71] He F, Hendrickson CL, Marshall AG. Baseline mass resolution of peptideisobars: A record for molecular mass resolution. Analytical Chemistry.2001,73:647~650
    [72] Petritis K, Kangas LJ, Yan B et al. Improved peptide elution time predictionfor reversed-phase liquid chromatography-MS by incorporating peptidesequence information. Analytical Chemistry,2006,78(14):5026~5039
    [73] Klammer AA, Yi Xianhua, Maccoss MJ. William Stafford. Improving tandemmass spectrum identification using peptide retention time prediction acrossdiverse chromatography conditions. Analytical Chemistry,2007,79(16):6111~8
    [74] Wim G.Pool, et al. Automated Extraction of Pure Mass Spectra from GasChromatographic/Mass Spectrometric Data. Journal of MassSpectrometry,1997,32:438~443
    [75] Wim G.Pool, et al. Backfolding Applied to Differential Gas chromatographymass spectromertry as a mathematical enhancement of chromatographicresolution. Journal of Mass Spectromertry,1996,31:509~516
    [76] Gurnani P, Schorge J, Rosenblatt KP. An Extended Markov Blanket Approachto Proteomic Biomarker Detection From High-Resolution Mass SpectrometryData, Information Technology in Biomedicine,2013,13:195~206
    [77] ma an a, a y, n a, a c a-Torres M. Peakbin Selection in MassSpectrometry Data Using a Consensus Approach with Estimation ofDistribution Algorithms, Computational Biology and Bioinformatics,2011,8:760~774
    [78] Cannataro M, Barla A, Flor R, Jurman G. A Grid Environment forHigh-Throughput Proteomics, NanoBioscience,2007,6:117~123
    [79] Papanastasiou D. Belgacem O, Sudakov M, Raptakis E. Ion thermalizationusing pressure transients in a quadrupole ion trap coupled to a vacuummatrix-assisted laser desorption ionization source and a reflectrontime-of-flight mass analyzer, Review of Scientific Instruments,2009,79:103~112
    [80] Pflieger D, Bigeard J, Hirt H. Isolation and characterization of plant proteincomplexes by mass spectrometry.2011, Proteomics,11(9):1824~1833
    [81] Huczynski A, Rutkowski J, Brzezinski B. Complexes of lasalocid2-naphthylmethyl ester with monovalent metal cations studied by massspectrometry, spectroscopic and semiempirical methods. Structural Chemistry,2011,22(3):627~634
    [82] Mitra G, Muralidharan M, Pinto J, et al. Structural Perturbation of HumanHemoglobin on Glutathionylation Probed by Hydrogen-Deuterium Exchangeand MALDI Mass Spectrometry. Bioconjugate Chemistry,2011,22(4):785~793
    [83] Zong WS, Liu RT, Guo CY, et al. Novel biomarkers of protein oxidation sitesand degrees using horse cytochrome c as the target by mass spectrometry.Spectrochimica Acta Part A-Molecular and Biomolecylar Spectroscopy,2011,78(5):1581~1586
    [84] Seyler TH, Bernert JT. Analysis of4-aminobiphenyl in smoker's andnonsmoker's urine by tandem mass spectrometry. Biomarkers,2011,16(3):212~221
    [85] Wienhofer IC, Luftmann H, Studer A. Nitroxide-Mediated Copolymerizationof MMA with Styrene: Sequence Analysis of Oligomers by Using MassSpectrometry. Macromolecules,2011,44(8):2510~2523
    [86] Liang Y, Wang L, Wang ZM, et al. Ultrasonic Nebulization ExtractionCoupled with Gas Chromatography-Mass Spectrometry for Analysis ofVolatile Components in Traditional Chinese Patent Medicine. ChemicalResearch in Chinese Universities,2011,27(2):203~207
    [87] Langel K, Gunnar T, Ariniemi K, et al. A validated method for the detectionand quantitation of50drugs of abuse and medicinal drugs in oral fluid by gaschromatography-mass spectrometry. Journal of Chromatography B,2011,879(13-14):859~870
    [88] Roman IP, Chisvert A, Canals, A. Dispersive solid-phase extraction based onoleic acid-coated magnetic nanoparticles followed by gaschromatography-mass spectrometry for UV-filter determination in watersamples. Journal of Chromatography A,2011,1218(18):2467~2475
    [89] Kumazawa T, Hasegawa C, Uchigasaki S, et al. Quantitative determination ofphenothiazine derivatives in human plasma using monolithic silica solid-phaseextraction tips and gas chromatography-mass spectrometry. Journal ofChromatography A,2011,1218(18):2521~2527
    [90] Jalali-Heravi M, Moazeni RS, Sereshti H. Analysis of Iranian rosemaryessential oil: Application of gas chromatography-mass spectrometry combinedwith chemometrics. Journal of Chromatography A,2011,1218(18):2569~2576
    [91] Leong YH, Ismail N, Latiff AA, et al. Determination of aflatoxins incommercial nuts and nut products using liquid chromatography tandem massspectrometry. World Mycotoxin Journal,2011,4(2):119~127
    [92] Thunig J, Hansen SH, Janfelt C. Analysis of Secondary Plant Metabolites byIndirect Desorption Electrospray Ionization Imaging Mass Spectrometry.Analytical Chemistry,2011,83(9):3256~3259
    [93] Crumpton, JB; Zhang, WY; Santos, WL. Facile Analysis and Sequencing ofLinear and Branched Peptide Boronic Acids by MALDI Mass Spectrometry.Analytical Chemistry,2011,83(9):3548~3554
    [94] Alanio A, Beretti JL, Dauphin B, et al. Matrix-assisted laser desorptionionization time-of-flight mass spectrometry for fast and accurate identificationof clinically relevant Aspergillus species. Clinical Microbiology and Infection,2011,17(5):750~755
    [95] Seyfarth F, Wiegand C, Elsner P, et al. Identification of yeasts isolated fromdermatological patients by MALDI-TOF mass spectrometry. Journal DerDeutschem Dermatologischen Gesellschaft,2011,9:225~225
    [96] Saleeb PG, Drake SK, Murray PR, et al. Identification of Mycobacteria inSolid-Culture Media by Matrix-Assisted Laser Desorption Ionization-Time ofFlight Mass Spectrometry. Journal of Clinical Microbiology,2011,49(5):1790~1794
    [97] Wybo I, De Bel A, Soetens O, et al. Differentiation of cfiA-Negative andcfiA-Positive Bacteroides fragilis Isolates by Matrix-Assisted LaserDesorption Ionization-Time of Flight Mass Spectrometry. Journal of ClinicalMicrobiologyI,2011,49(5):1961~1964
    [98] Peer-Zada AA, Al-Qahtani MH. Advancing mass spectrometry-based clinicalproteomics in Saudi Arabia Establishing a Saudi Proteomics Society. SaudiMedical Journal,2011,32(3):225~235
    [99] Sospedra I, Soler C, Manes J, et al. Analysis of staphylococcal enterotoxin Ain milk by matrix-assisted laser desorption/ionization-time of flight massspectrometry. Analytical and Bioanalytical Chemistry,2011,400(5):1525~1531
    [100] A.Ghosh et al. Complex Mixture Analysis Using Differential GasChromatographic. Analytical Chemistry,1989,61(18):2118~2121
    [101] A.Ghosh et al. Differential Gas Chromatographic Mass Spectrometry.Analytical Chemistry,1989,61(1):73~77
    [102]宋爽,汪曣,蒋学慧等,应用差分气相色谱/质谱法提高色谱分辨率,真空科学与技术学报,2012,
    [103] Svein AM. Spectral transformations for deconvolution methods applied on gaschromatography–mass spectrometry data. Analytica Chimica Acta,2003:231~241.
    [104] Kwonmoo L, Kim J, Chung T, et al. Evolution strategy applied to globleoptimization of clusters in gene expression data of DNA microarrays.Preceedings of the2001Congress on Evolutionary Computation,2001,2:845~850
    [105]杨春梅,基因表达数据聚类分析算法的研究和应用:[博士学位论文],天津;天津大学,2006
    [106] Jiang Wenxin, Qiu Yunping, Ni Yan, et al. An automated data analysispipeline for GC-TOF-MS metabonomics studies. Journal of ProteomeResearch,2010,9(11):5974~5981
    [107] Yang Chao, He Zengyou, Yu Weichuan. Comparison of public peak detectionalgorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics,2009,10:4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700