用户名: 密码: 验证码:
二茂铁桥联聚倍半硅氧烷修饰电极的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二茂铁桥联聚倍半硅氧烷(Ferrcene-bridged polysilsesquioxanes)是新型的二茂铁衍生物。利用此聚合物制备的化学修饰电极稳定性高、重现性好,更重要的是能实现电极表面的结构设计,获得结构可控的高性能化学修饰电极。
     本论文在大量文献调研及课题组前期工作的基础上,以课题组合成的1,1’-双[(2三乙氧基硅基)乙基]二茂铁单体(1,1'-bis[(2-triethoxylsilyl)ethyl]ferrocene, BTEF)为前驱物,与正硅酸乙酯(TEOS)、聚乙烯醇(PVA)经共溶胶-凝胶过程制备了两种二茂铁桥联聚倍半硅氧烷修饰电极:BTEF/TEOS/GCE和BTEF/PVA/GCE;优化了修饰电极的制备条件;采用循环伏安(CV)法,研究了修饰电极的电化学特性;并将修饰电极成功应用于抗坏血酸(H2A)的测定,特别是优化了水体系中测定H2A的条件(如电位扫描速度v、体系pH等)并探讨了催化反应机理。
     具体研究结果如下:
     1.用温和型催化剂催化溶胶-凝胶过程制备的BTEF/TEOS/GCE膜修饰电极的电化学性能要优于强酸、强碱催化下制备的修饰电极。其中,尤以NH4F为催化剂制备的修饰电极性能最好,峰电流大,电位差小,电极反应的可逆性及稳定性好。
     2.PVA的加入对溶胶又起到稳定及分散的作用,在溶胶-凝胶中加入少量的PVA,可以使胶体粒子大小均匀,孔径分布集中,胶体稳定性提高。优化结果:PVA的用量为300μL(V总=10 mL)时BTEF/PVA/GCE修饰电极性能最好,峰电流大,电位差小。
     3.支持电解质的离子尺寸和离子价态对电极性能有很大影响,不论是BTEF/TEOS/GCE还是BTEF/PVA/GCE膜修饰电极,NaC104为支持电解质时,修饰电极在水中具有较宽电位视窗,具有较好的可逆性及稳定性。
     4.扫描速度v对两种修饰电极的电化学反应过程有着显著影响。其中BTEF/TEOS/GCE膜修饰电极在低扫描速率下(0.01-0.1 V·s-1),CV峰形尖锐,峰形比较对称,峰电位Ep随扫描速度的变化较小,可逆性较好,相对时间充裕,传荷过程受物理扩散和表面过程两种因素共同作用;在高扫描速率下(0.1-1.0V·s-1),CV峰发生明显的宽化,可逆性下降,电极反应为扩散和电子转移速率同时控制的过程。而BTEF/PVA/GCE在整个考察范围内C0.01~1.0V·s-1),CV峰均发生明显的宽化,可逆性下降,电极反应为扩散和电子转移速率同时控制的过程。
     5.两种修饰电极均具有很好的电极稳定性,其中BTEF/TEOS/GCE的稳定性略优于BTEF/PVA/GCE,在不除氧的情况下连续扫描50次,电极电位不发生变化,峰电流分别下降4.95%、5.58%。
     6.pH是影响H2A测定的重要因素。其原因首先是不同pH下,H2A的存在形式不同;再者,pH对所制备的修饰电极本身性能有影响。从化学修饰电极的电催化用于分析目的必须具备的条件[①降低底物的过电位,尽可能的减小干扰及背景电流;②增大电流响应,降低检出限]出发,两种修饰电极均在pH=8.0时的0.1mol·L-1 NaClO4磷酸缓冲溶液中对H2A有较好的电催化氧化效果。
Ferrocene bridged polysilsesquioxanes is a novel ferrocene detivatives. Chemical modified electrode which prepared by this polymer has high stability, good reproducibility. Morever, to a certain extent, we can get high-performance chemically modified electrode easily by introduction of other species or control the reaction conditions in the sol-gel process.
     In this thesis, We used a novel bridged monomer,(EtO)3Si-C2H4-Fc-C2H4-Si(OEt)3 (1,1'-bis[(2-triethoxylsilyl)ethyl]ferrocene, BTEF), to fabricate a series of GCE via sol-gel process. The sols were obtained respectively by co-hydrolysis of BTEF with TEOS and co-hydrolysis of BTEF with poly(vinylalcohol) (PVA). We optimized the preparation conditions and studied the electrochemical characteristics of the two modified electrodes by cyclic voltammetry (CV) method. In particular, we optimized the determination conditions of ascorbic acid(H2A), such as the scan rates v, system pH, etc.,and explored the mechanism of electrocatalytic reaction. The two ferrocene modified electrodes were shown excellent electrocatalytic response. The related exploration will laid an important foundation for the further application in practice.
     The research results were as follows:
     1.The type of catalyst has an influnce on the performance of BTEF/TEOS/GCE. The mild catalyst is benefit of getting a better reversible and stable modified electrode than the acid or alkali catalyst. The results shown that optimized catalyst for the preparation of BTEF/TEOS/GCE is NH4F.
     2.PVA has played a role of stabilizer and dispersion in the sol process. Adding a right amount of PVA, we can get uniform size of colloidal particles and pore size. The results shown that optimized dosage for BTEF/PVA/GCE is 300μL(Vtotal=10 mL).
     3.The ion size and valence of the supportting electrolyte have an influnce on the reversible and stable properties of BTEF/TEOS/GCE and BTEF/PVA/GCE. The results indecating that the optimized supporting electrolyte in aqueous solution is NaC104.
     4.The scan rates has a significant influnce on the two modified electrodes.The result shown that for BTEF/PVA/GCE,at the scan rate between 10 and 1000 mVs-1,a diffusion-controlled process plays the leading role in the charge transfer process. However, for BTEF/TEOS/GCE, at lower scan rates (between 10 and 100 mVs-1),a surface process plays the dominant role, while, at higher scan rates (between 100 and 1000 mVs-1) the charge transport process occurs mainly by a diffusion-controlled process.
     5.After successive 50 time's cyclic voltammetric, there is no peak potential shift, and the peak current of BTEF/PVA/GCE and BTEF/TEOS/GCE only decreased 5.58%,4.95% respectively, and the electrochemical reversibility of the ferrocene modified electrodes are not affected. Noteworthily, all the experiments were conducted under aerobic conditions. The results indicate that the ferrocene bridged polysilsesquioxanes films have good stability in aqueous.
     6. pH is an important factor in the oxidation of H2A. Firstly, pH can influnce the existence forms of H2A. Secondly, pH also has an influnce on the electrochemical performance of the two modified electrodes.It is well-known that chemically modified electrodes for analytical purpose must meet two conditions,①can reduce the overpotential of the substrate, the interference and background current;②can increase the current response, reducing the detection limit. The results suggest that the two modified electrodes all have a better electrocatalytic oxidation effect on H2A in 0.1 mol·L-1 NaClO4 phosphate buffer solution at pH=8.0.
引文
[1]董绍俊,车广礼,谢远武.化学修饰电极(修订版)[M].北京:科学出版社,2003.
    [2]金利通,仝威,徐金瑞,等.化学修饰电极[M].上海:华东师范大学出版社,1992.
    [3]郁章玉,吴数新,郭道军.玻碳电极的预处理方法[J].化学世界,2001,1:6-9.
    [4]张汉昌,左孝兵,王兆荣.电化学预处理修饰的玻碳电极[J].分析仪器,1997,1:2-7.
    [5]张占军,宋桂兰.玻碳电极预处理条件研究[J].河北机电学院学报,1995,12(1):58-61.
    [6]纪华民,汪尔康.电化学预处理玻碳电极上的电催化[J].化学学报,1989,47:.867-872.
    [7]庄瑞舫,杨铁柱.化学修饰电极的制备方法[J].化学传感器,1988,8(1):1-9.
    [8]王升富.化学修饰电极的研制方法[J].黄冈师专学报(自然科学版),1993,13(2):79-84.
    [9]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用[J].化学研究与应用,2006,18(4):337-342.
    [10]王志贤等.化学修饰电极的制备及其药物分析应用的研究进展[J].化学传感器,2007,27(4):8-15.
    [11]GASS A E G, GAVIS G, FRANCIS G D, et al. Ferrocene-Mediated Enzyme Electrode for Amperometric Determinatrion of Glucose[J].Anal Chem.,1984,56(4): 6673-6678.
    [12]GORTON L, KARAN H I, HALE P D, et al. A Glucose Electrod Based on Carbon Paste Chemically Modified with a Ferrocene-Containing Siloxane Polyer and Glucose Oxidase Coated with a Poly(ester-sulfonic acid) Cation-Exchanger[J]. Anal Chim Acta.,1990,228(1):234-237.
    [13]JONSSON G, GORTON L, PETTERON L. Mediate Electron Transfer from Glucose Oxidase at A Ferrocene-Modified Graphite Electrode[J].Electroanalysis,1989,1(1): 49-52.
    [14]彭孝军,王积涛.含二茂铁电子传递体的葡萄糖氧化酶电极研究[J].南开大学学报(自然科学),1996,29(4):322-355.
    [15]朱邦尚,应太林,张晓岚,漆德瑶.β-CDP-1,11二甲基二茂铁主客体葡萄糖生物传感器[J].上海大学学报(自然科学版),1999,5(4):353-357.
    [16]刘盛辉,莫卫民,陈帆.β-环糊精聚合物-二茂铁安培型葡萄糖氧化酶电极[J].分析测试学报,1999,18(4):42-45.
    [17]陈灿辉,李红,刘彩红.二茂铁及其衍生物修饰电极的研究[J].电子器件,2004,27(3):522-526.
    [18]杨庆华,叶宪曾,陶家洵.二茂铁单羧基衍生物/Nafion修饰电极对多巴胺的电化学行为[J].北京大学学报(自然科学版),1999,35(6):38-44.
    [19]张军,邓培红等.二茂铁修饰碳黑电极同时测定多巴胺和抗坏血酸[J].分析试验室,2004,23(9):67-69.
    [20]SHOUFENG JIAO, MAOGUO LI, et al. Fabrication of Fc-SWNTs Modified Glassy Carbon Electrode for Selective and Sensitive Determination of Dopamine in the Presence of AA and UA[J].Electrochimica Acta.,2007,52:5939-5944.
    [21]阚显文,张文芝,邓湘辉等.抗坏血酸在β-环糊精/二茂铁甲酸修饰电极上的电化学行为及测定[J].分析化学,2005,33(11):1573-1576.
    [22]JIANGGUO WANG, ZHENGYAN WU, et al. Electrocatalytic Oxidation of Ascorbic Acid by Ferrocene in Lipid Film Cast on a Glassy Carbon Electrode [J]. Electroanalysis,2001,13(13):1093-1097.
    [23]LENYS FERN'ANDEZ,HERMES CARRERO. Electrochemical Evaluation of Ferrocene Carboxylic Acids Confined on Surfactant-Clay Modified Glassy Carbon Electrodes Oxidation of Ascorbic Acid and Uric Acid [J].Electrochimica Acta.,2005, 50:1233-1240.
    [24]张伟,张文芝,陶海升等.二茂铁/β-环糊精/碳纳米管复合修饰电极制备、表征及对尿酸的催化氧化[J].安徽师范大学学报(自然科学版),2006,29(5):458-462.
    [25]FANG B, JIAO S,LI M, et al.Simultaneous Determination of Uric Acid and Ascorbic Acid at a Ferrocenium-Thioglycollate Modified Electrode[J].Anal. Bioanal. Chem.,2006,386:2117-2122.
    [26]JEAN CHRYSOSTOME NDAMANISHA, LIPING GUO.Electrochemical Determination of Uric Acid at Ordered Mesoporous Carbon Functionalized with Ferrocenecarboxylic Acid-Modified Electrode[J].Biosensors and Bioelectronics, 2008,23:1680-1685.
    [27]孙微,卢丹青,李一峻,等.PVC-碳糊修饰电极的研制[J].分析试验室,2003,22(6):40-43.
    [28]邹明珠,杨海泉等.聚乙烯二茂铁修饰电极测定抗坏血酸[J].高等化学学报,1985,6(2)
    [29]ZHAN G Cheng-ru(张成如),YAN G Kong-zhang(杨孔章),.J IN Wen-rui(金文睿).一种新的共轭桥联双二茂铁衍生物的单层LB膜及其电催化效应[J].Chemical Journal of Chinese Universities(高等学校化学学报)[J].1995,16(12):1935.
    [30]王晓蕾,张国荣等.二茂铁修饰碳糊电极对抗坏血酸的电催化作用的研究[J].化学传感器,1999,19(2):39-43.
    [31]邓子峰,朱仲良等.二茂铁修饰青椒籽碳糊电极测定抗坏血酸[J].分析化学研究简报,1999,27(3):323-325.
    [32]ZHANG GUORONG, WANG XIAOLEI, et al.β-Cyclodextrin-Ferrocene Inclusion Complex Modified Carbon Paste Electrode for Amperometric Determination of Ascorbic Acid[J]. Talanta,2000,51:1019-1025.
    [33]王晓蕾,张国荣,史兴旺,等.β-环糊精与二茂铁包合物修饰碳糊电极上抗坏血酸的催化氧化波研究[J].高等学校化学学报,2000,21(9):1383-1385.
    [34]RAOOF J-B, OJANI R, KIANI A.Carbon Paste Electrode Spiked with Ferrocene Carboxylic Acid and its Application to the Electrocatalytic Determination of Ascorbic Acid[J].J. Electroanal. Chem.,2001,515:45-51.
    [35]武雪梅,栾积毅,李敬芬,武冬梅.酞菁包埋二茂铁聚合膜修饰电极对抗坏血酸的电催化[J].黑龙江医科大学,2003,26(4):17-18.
    [36]李亚卓,张素霞,李晓芳,孙长青.基于溶胶-凝胶技术的聚烯丙胺基二茂铁化学修饰电极的组装及其抗坏血酸的电催化氧化[J].高等学校化学学报,2003,24(8):1373-1376.
    [37]SHENGFU WANG, DAN DU.Differential Pulse Voltammetry Determination of Ascorbic Acid with Ferrocene-L-cysteine Self-Assembled Supramolecular Film Modified Eelectrode[J].Sensors and Actuators,2004,B97:373-378.
    [38]LIU A, ANZAI J.Ferrocene-Containing Polyelectrolyte Multilayer Film-Covered Electrodes:Electrocatalytic Determination of Ascorbic Acid and Use of Inner Blocking Layers to Improve the Upper Detection Limit of the Electrodes[J].Anal. Bioanal. Chem.,2004,380:98-103.
    [39]王琦,赵艳霞,张国荣.花椰菜二茂铁修饰碳糊电极对抗坏血酸的电催化作用的研究[J].化学传感器,2004,24(1):55-58.
    [40]谢友斌,刘红英,邓湘辉等.二茂铁甲酸/L-半胱氨酸修饰金电极的制备及对抗坏血酸的电催化测定[J].安徽师范大学学报(自然科学版),2006,29(3):258-261.
    [41]J. B. RAOOF, R. OJANI, HADI BEITOLLAHI, R. HOSSIENZADEH. Electrocatalytic Determination of Ascorbic Acid at the Surface of 2,7-Bis(ferrocenyl ethyl)fluoren-9-one Modified Carbon PasteElectrode [J].Electroanalysis,2006, 18(12):1193-1201.
    [42]BIN FANG, WENZHI ZHANG, et al. Fabrication and Application of a Novel Modified Electrode Based on Cyclodextrin/Ferrocenecarboxylic Acid Inclusion Complex [J].Sensors and Actuators,2006, B 117:230-235.
    [43]王琦.猕猴桃浆修饰碳糊电极对抗坏血酸的电催化作用的研究[J].聊城大学学报(自然科学版),2007,20(3):53-55.
    [44]王琦.猕猴桃浆修饰碳糊电极测定抗坏血酸[J].济南大学学报(自然科学版),2007,21(2):151-153.
    [45]白莉,郑志祥,高作宁.二茂铁修饰碳糊电极对抗坏血酸的电催化氧化及电分析方法研究[J].化学传感器,2007,27(3):53-57.
    [46]邱建丁,邓敏强,梁汝萍.聚乙烯二茂铁碳纳米管复合物的制备及其对抗坏血酸的电催化测定[J].南昌大学学报,2008,32(5):443-446.
    [47]姚慧琴,韩晓霞,高作宁等.二茂铁甲基季铵盐对异烟肼的电催化氧化及其电分析方法研究[J].分析试验室,2005,24(12):29-33.
    [48]姚慧琴,史可人,高作宁.铂电极上二茂铁甲基季铵盐电催化氧化异烟肼的电化学及其动力学性质研究[J].分析测试学报,2007,26(3):339-342.
    [49]邓湘辉,阚显文等.二茂铁L-半胱氨酸修饰电极的电化学行为及电催化性能[J].物理化学学报,2005,21(12):1399-1402.
    [50]白莉,高作宁.L-半胱氨酸乙酰二茂铁修饰碳糊电极上的电催化氧化及其电化学动力学性质研究[J].分析测试学报,2008,27(3):273-276.
    [51]王聪,王广凤,陈道磊等.芦丁在二茂铁酰胺/纳米金修饰电极上的电催化行为研究[J].安徽师范大学学报(自然科学版),2007,30(1):52-55.
    [52]杜丹,王升富.二茂铁-磷钼酸电荷转移修饰电极的制备及电化学性能的研究[J].分析科学学报,2001,17(1):21-24.
    [53]张修华,王升富,崔仁发,杜丹.二茂铁-磷钼钨杂多酸超分子膜电极电化学性能的研究[J].湖北大学学报(自然科学版),2002,24(1):1-4.
    [54]穆绍林,杨一飞,谭志安.过氧化氢在磺酸二茂铁掺杂的聚苯胺上的电催化氧化[J].物理化学学报,2003,19(7):588-592.
    [55]王慧云,郁章玉,孙勤枢等.SOD-二茂铁修饰电极的电化学行为[J].化学研究与应用,2004,16(1):66-68.
    [56]高作宁,马金福,熊楚明.乙酰二茂铁对亚硫酸盐的电催化氧化及其在锅炉水中亚硫酸盐的测定[J].2007,43(10):849-851.
    [57]白莉,高作宁.亚硫酸盐在二茂铁修饰碳糊电极上的电催化氧化及电化学动力学性质研究[J].分析试验室,2008,27(5):80-83.
    [58]LOY DA, SHEA KJ.Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials[J].Chem Rev.,1995,95:1431-1442.
    [59]HOFFMANN F,CORNELIUS M,MORELL J,FROBA M. Silica-Based Mesoporous Organic-Inoganic Hybrid Materials[J].Angew Chem Int Ed.,2006,45: 3216-3251.
    [60]INAGAKI S, GUAN S,FUKUSHIMA Y, OHSUNA T, TERASAKI O. Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inoganic Oxide in Their Frameworks[J].J Am Chem Soc.,1999,121:9611-9614.
    [61]ASEFA T, MACLACHLAN MJ, COOMBS N, OZIN GA. Periodic Mesoporous Organosilicas with Organic Groups Inside the Channel Walls[J].Nature,1999,402: 867-871.
    [62]YOSHINA-ISHII C, ASEFA T, COOMBS N,MACLACHLAN MJ, Ozin GA. Periodic Mesoporous Organosilicas, PMOs:Fusion of Organic and Inorganic Chemistry'inside'the Channel Walls of Hexagonal Mesoporous Silica[J].Chem Commun.,1999,24:2539-2540.
    [63]WAN Y, ZHAO DY. On the Controllable Soft-Templating Approach to Mesoporous Silicates[J].Chem Rev.,2006,107:2821-2860.
    [64]SHEA KJ, LOY DA. Bridged Polysilsesquioxanes. Molecular-engineered Hybrid Organic-Inorganic materials [J].Chem Mater.,2001,13:3306-3319.
    [65]王艳萍,张铁明,高春光,等.二茂铁桥联聚倍半硅氧烷修饰电极的制备及循环伏安表征[J].化学与生物工程,2008,25(6):18-20.
    [66]ZHANG TM, Gao CG, YANG HQ, et al. Synthesis of a Ferrocene-Containing Ordered Mesoporous Organosilica and its Catalytic Activity [J].Porous Mater.,2009, Doi:10.1007/s10934-009-9334-z Published online:29 September 2009
    [67]VAN STAVEREN DR, METZLER-NOLTE N.Bioorganometallic Chemistry of Ferrocene[J].Chem Rev.,2004,104:5931-5985.
    [68]VOROTYNTSEV MA,GRACAYK M,LISOWSKA-OLEKSIAK A,GOUX J, MOISE C.Reactions of Solute Species at an Electrode Modified with Titanocene Functionalized Polypyrrole Film:Ferrocene and Titanocene Dichloride[J].J Solid State Electrochem.,2004,8(10):818-827.
    [69]RAOOF JB, OJANI R, KOLBADINEZHAD M. Voltammetric Sensor for Glutathione Determination Based on Ferrocene-Modified Carbon Paste Electrode[J]. J Solid State Electrochem.,2009,13:1411-1416.
    [70]AUDEBERT P, CALAS P, CERVEAU G, et al. Modified Electrodes from Organic-Inorganic Hybrid Gels Containing Ferrocene Units Covalently Bonded Inside a Silica Network[J].J. Electroanal. Chem.,1994,372:275-277.
    [71]AUDEBERT P, CERVEAU G, CORRIU R J P, et al. Modified Electrodes from Organic-Inorganic Hybrid Gels Formed by Hydrolysis-Polycondensation of Some Trimethoxysilylferrocenes[J].J. Electroanal. Chem.,1996,413:89-96.
    [72]王志贤,王赦胤,胡效亚,等.化学修饰电极的制备及其药物分析应用的研究进展[J].化学传感器,2007,27(4):8-15.
    [73]KERN W,PUOTINEN DA. Cleaning Solutions Based on Hydrogen Peroxide for use in Silicon Semiconductor Technology [J].RCA Rev,1970,31:187-206.
    [74]李启隆.电分析化学[M].北京:北京师范大学出版社,1995:222-223.
    [75]董绍俊.应用化学[M].1986,3:1.
    [76]WANG JX, COLLINSON MM.Electrochemical Characterization of Inorganic|organic Hybrid Films Prepared From Ferrocene Modified Silanes [J]. Electroanal Chem.,1998,455:127-137.
    [77]SUXIA ZHANG, YAQIN Fu, CHANGQING SUN. Fabrication of Poly(allylamine)ferrocene Monolayer Based on Electrostatic Interaction and Its Electrocatalytic Oxidation of Ascorbic Acid[J].Electroanalysis,2003,15(8): 739-746.
    [78]张玉忠,赵红,袁倬斌.阿魏酸聚合修饰玻碳电极的制备及其对NADH的催化氧化[J].高等学校化学学报,2003,24(10):1765-1769.
    [79]夏平宇,干宁,葛从辛.辅酶Q在CPT自组装修饰电极上的电化学行为及其分析应用[J].理化检验-化学分册,2006,42(8):604-607.
    [80]XING X,TAN T, SHAO M,LIU C.Electrochemical Oxidation of L-ascorbic Acid at the Graphite Electrode and its Moitoring by a Thick-film Graphite Sensor Assembly[J].Electroanal,1992,4:191-197.
    [81]马恩忠.溶液的pH值对抗坏血酸氧化的影响[J].天津化工,2003,17(6):23-24.
    [82]R.K. NAGARALE, JONG MYUNG LEE, Woonsup Shin. Electrochemical Properties of Ferrocene Modified Polysiloxane/chitosan Nanocomposite and its Application to Glucose Sensor [J].Electrochimca Acta.,2009,54:6508-6514.
    [83]KULKARNI S S, KITTUR A A, ARALAGUPPIM I, KARIDURAGANAVAR M Y. Synthesis and Characterization of Hybrid Membranes Using Poly(vinyl alcohol) and Tetraethylorthosilicate for the Pervaporation Separation of Water-Isopropanol Mixtures [J].JAppl Polym Sci.,2004,94:1304-1315.
    [84]KARIDURAGANAVAR MY, KULKARNI SS, KITTUR AA.Pervaporation Separation of Water-Acetic Acid Mixtures Through Poly(vinyl alcohol)-Silicone Based Hybrid Membranes [J].J Membr Sci.,2005,246:83-93.
    [85]URAGAMI T, OKAZAKI K, MATSUGI H, MIYATA T. Structure and Permeation Characteristics of an Aqueous Ethanol Solution of Organic-Inorganic Hybrid Membranes Composed of Poly(vinyl alcohol) and Tetraethoxysilane[J].J Macromolecules 2002,35:9156-9163.
    [86]章德玉,刘有智,谢五喜.PVA修饰的溶胶-凝胶法制备γ-Al2O3超滤膜的研究[J].膜科学与技术,2007,27(2):34-38.
    [87]Surridge N A, Jernigan J C, Dalton E F, et al. The Electrochemistry Group Medal Lecture. Electron self-exchange dynamics between redox sites in polymers[J].Chem. Soc.,1989,88:1-17.
    [88]张汉昌,左孝兵,王兆荣.电化学预处理修饰的玻碳电极[J].分析仪器,1997,1:2-7.
    [89]N.WINOGRAD,H.N.BLOUNT,T.KUWANA. Spectroelectrochemical Measurement of Chemical Reaction Rates. First Order Catalytic Processes[J].Journal of physical chemistry,1969,73:3456.
    [90]N.WINOGRAD,H.N.BLOUNT,T.KUWANA. Spectroelectrochemical Measurements of Second-Order Catalytic Reaction Rates Using Signal Averaging [J].Journal of physical chemistry,1970,74(17):3231-3236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700