用户名: 密码: 验证码:
气—固悬浮床流场优化及ECT应用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以常温循环流化床半干法烟气脱硫与中温循环流化床干法烟气脱硫工艺为背景,从床结构和操作参数两方面对床内气-固两相流场的优化进行实验研究。采用大孔分布射流代替通常的流化床布风板,降低了反应器气体入口段的流动阻力,床内流动呈悬浮床状态。悬浮床内颗粒浓度低以及环核流动的性质,会严重影响脱硫剂的利用率和脱硫效率。因此,提高悬浮床脱硫反应器内固体颗粒的浓度,改善其中气固分布的均匀性,具有重要的意义。
    建立了截面尺寸为400mm×400mm,高度为3950mm的循环悬浮床冷态实验装置。对不同的进、出口结构和安装内构件的方案,在各种表观气体速度Ug和物料循环流率G s条件下,利用光纤探头沿床高测量了不同横截面内颗粒浓度和速度的径向分布,分析了不同操作参数和几何结构对颗粒浓度和速度场,尤其是边角区颗粒团聚效应的影响,确定了最有利于气固两相接触的床结构和操作参数。本文得到的结论:采用如下工艺简单的床结构,即大孔均布射流进气,顶部设置帽腔,在床出口下沿安装构件,在床中部安装大小组合-上下交叉内构件;实验条件优选的操作参数为G_s= 8~9kg/(m~2·s),U_(g0)= 2.8m/s。在以上优选的床结构和操作参数下,床内颗粒浓度和速度分布的均匀性,气固混合等状态最好,达到了流场优化的目的。
    首次应用电容层析成像技术(ECT)开展了对床内低浓度、大尺寸气固两相流场进行的测量研究。首次将半步Landweber迭代算法、广义模式矢量匹配法和概率统计归纳算法用于ECT逆问题的图像重建的算法,结果表明这几种算法均能提高床中心区域的分辨率,而且全局收敛,其中半步Landweber算法更稳定并适合对悬浮床流动的图像重建。本文选择了综合性能较好的长度200mm的8电极传感器,用于测量悬浮床两个截面上的流动特性。在线重建的图像定性提供了床内全截面上的流动信息。通过提取图像中的数据,分析了截面内有代表性的对称线上的颗粒浓度分布,以及截面平均颗粒浓度的概率密度分布,得到了床内流动的宏观特征和流动特性,验证并弥补了用光纤方法测量的流场优化的结果,并发现了床结构对流场湍动度的影响大于操作参数变化引起的影响。
Aiming at development of the processes of semi-dry and/or dry flue gasdesulfurization with circulating fluidized beds at low and/or medium temperatures(CFB-FGD), this thesis conducts an experimental study on optimization of gas-solidflow regimes, which mainly depend on geometry configuration and operationparameters of a CFB. Replacement of traditional gas distributor by large gas jetsuniformly arranged reduces pressure drop at entrance of a bed, meanwhile leading tosuspension state of particles in the bed. Low bed density and annular-core flowstructure in a circulating suspension bed (CSB) would result in bad effect onutilization rate of sorbent and desulfurization efficiency. Therefore, it is significant toraise particle concentration and improve uniformity of gas-solid distribution in a CSBreactor.
    A cold-model experimental facility with a CSB bed, whose cross-section is400mm×400mm and the height is 3940mm, is set up. The particle concentration andparticle velocity profiles in four cross-sections along the height of the CSB riser aremeasured by a fiber optical probe under different conditions corresponding tocombinations of gas jet structure, outlet structure, internals structure, superficial gasvelocity ( U_(g0)) and particle circulating rate ( G_s). After analyses of the experimentalresults, especially of the effects of the conditions on agglomeration anddisagglomeration of particle clusters at walls and corners of the bed, the bed structureand operation parameters best favorable to contacts between gas-solid two phases aredetermined. The bed should consist of a distributor with uniformly arranged largeholes of gas jets, a cap space at the top of the bed, a triangle-shaped internal justbelow the outlet of the bed, and a combination of triangle-shaped internals whichhave different sizes and are staggered on a couple of opposite walls. The aboveconfiguration is simple and can be made easily. In this study, the best operationparameters are G_s= 8~9kg/(m~2·s) and U_(g0)= 2.8m/s.
    In this study, the electrical capacitance tomography (ECT) technology is firstapplied for measurement of dilute particle concentration distribution in the CSB riserwith so large cross-section. The author has introduced three iterative algorithms, i.e.semi-Landweber algorithm, general vector sample pattern matching (GVSPM)algorithm and statistical induced global optimization algorithm (SIA) for imagereconstruction in solution of ECT inverse problem. The experimental results showthat all the three algorithms have got better spatial resolution of imaging for thecentral region of the riser with global convergence, and finally, the semi-Landweberalgorithm is recognized as the best one for image reconstruction in this ECTmeasurement. Based on a number of tests, a transducer system with eight electrodesof 200mm long is designed to match the CSB riser and the ECT hardware made byUMIST of UK. The on-line reconstructed images qualitatively provide theinformation about flow regimes in the full measured cross-sections. The particleconcentration distributions (PCD) on the typical symmetric lines of the measuredcross-sections and the probability density distributions (PDD) of mean particleconcentration in the measured cross-sections are obtained by extracting data from thereconstructed images. The PCD and PDD reveal macroscopic characters and flowbehaviors in the CSB riser, verify and supplement the optimization results oftwo-phase flow fields measured by the fiber optical probe.
引文
[1] 杨飏. 二氧化硫减排技术与烟气脱硫工程. 北京:冶金工业出版社,2004
    [2] 樊保国. 第四个窗口-中温干法烟气脱硫研究:[博士学位论文].北京:清华大学热能工程系,2002
    [3] 雷仲存. 工业脱硫技术. 北京:化学工业出版社,2001
    [4] 锺秦. 燃煤烟气脱硫脱硝技术及工程实例. 北京,化学工业出版社,2002
    [5] 循环流化床常温半干法烟气脱硫技术工程示范. 清华大学热能工程系技术鉴定报告,2002:2~5
    [6] 樊保国. 循环流化床烟气脱硫技术的实验研究:[硕士学位论文]. 北京:清华大学热能工程系,1996
    [7] 陈锐. 排烟循环流化床脱硫的实验和机理研究:[硕士学位论文]. 北京:清华大学热能工程系,1997
    [8] 姚金星. 尾部烟气增湿活化脱硫技术研究:[硕士学位论文]. 北京:清华大学热能工程系,1998
    [9] 何鑫. 底部向上射流悬浮床内气固两相流特性的实验研究:[硕士学位论文]. 北京:清华大学热能工程系,2001
    [10] 王翠苹,杨烨,李定凯,吕子安. 循环悬浮床内气固两相流动优化的实验研究. 过程工程学报,2003, 3(3):200-205
    [11] 王翠苹,李定凯,吕子安. 方形截面循环悬浮床内边角效应的分析. 化学反应工程与工艺, 2003, 19(1): 56-62
    [12] Samwel Victor Manyele. Dynamics and Non-uniformity Study in Circulating Fluidized Beds of Different Design Features Using Time Series Analysis:[Ph.D Desseration]. The University of Western Ontario, London, Ontario, 2001, 8: 1-2
    [13] Grace J. R. and J. Tout. A Theory for Cluster Formation in Vertically Conveyed Suspension of Intermediate Density. Trans. IChemE., 1979, 57: 49-54
    [14] Fujima, Y., K. Tagashira, et al. Conceptual Study on Fast Fluidization Formation. Circulating Fluidized Bed Technology III, P. Basu, M. Horio and M. Hasatani (eds.), Pergamon Press, Toronto. 1991: 85-90
    [15] Jinghai Li, Yuanki Tung and Mooson Kwauk. Energy Transport and Regime Transition in Particle-fluid Two-phase Flow. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.), Pergamon Press. 1988: 75-87
    [16] Jinghai Li, Yuanki Tung and Mooson Kwauk. Method of Energy Minimization in Multi-scale Modeling of Particle-fluid Two-phase Flow. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.), Pergamon Press. 1988: 89-103
    [17] Lim K. S., J.-X. Zhu and J. R. Grace. Hydrodynamics of Gas-Solids Fluidization. Int. J. Multiphase Flow, 1995, 21: 141-193
    [18] Yerushalmi J, Cankurt N.T., Gerldart D and Liss B. Flow regimes in vertical gas-solid contact system. AIChE Symp. Ser., 1978,74(176):1-13
    [19] Li Y.,Kwauk M.. The dynamics of fast fluidization. Fluidization. in: Grace J. R. and Matsen J. M. (eds.),New York:Plenum Press,1980:537-544
    [20] H. Weinstein. The Influence of the Imposed Pressure Drop Across a Fast Fluidized Bed. 4th International Conference on Fluidization,Kashikojima,Japan,1983
    [21] Yerushalmi J and N.T. Cankurt. Further Studies of Regimes of Fluidization. Powder Technol., 1979, 24: 187-205
    [22] S. Mori,O. Hashimoto,T. Haruta,et al.Turbulent Fluidization Phenomena.Circulating. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988: 105-112
    [23] Jinghai Li,Yuanki Tung and Mooson Kwauk. Axial voidage profiles of fast fluidized beds in different operation regimes. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988: 193-203
    [24] 宋续祺. 移动床径向反应器中气固两相流体力学行为的研究: [博士学位论文]. 北京:清华大学化学工程系,1993
    [25] Weinstein H.,Shao M. and Schnitzlei M. et al.. Radial Variation in void fraction in a fast fluidized bed. in: Knud Ostergaard and Ansgar Sorensen (eds.),Fluidization V,New York : Engineering Foundation, 1986
    [26] Monceaux L., M. Azzi, Y. Molodtsof et al. Particle Mass Flux Profiles and Flow Regime Characteristics in a Pilot-Scale Fast Fluidized Bed Unit. Fluidzation V, K. Φstgaard and A. Sφrensen (eds.), Engineering Foundation, NewYork, 1986a: 337-344
    [27] Rhodes M. J.,Laussmann P. Villain F.and Geldart D. Measurement of radial and axial solids flux variations in the riser of a circulating fluidized bed. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988:155-164
    [28] Bai D.,Jin Y. and Yu Z.-Q. The two-channel model for fast fluidization. Fluidization‘88,Kwauk M. and Kunii D.(eds.),1988: 155~164
    [29] Bai D.,Zhu J. and Jin Y. et al. Internal recirculating flow structure in vertical upward flowing gas-solid suspensions, Part I. A Core/annular Model. Powder Technol.,1995,85: 171~178
    [30] Rhodes M. Modeling the Flow Structure of Upward-flowing Gas-solids Suspensions. Powder Technol., 1990,20: 27-38
    [31] Yang W C. A Model for the Dynamics of a Circulating Fluidized Bed Loop. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988: 181-191
    [32] Senior R. C. and C. Brereten. Modeling of Circulating Fluidized Bed Solids Flow and Distribution. Chem. Eng. Sci. 1992, 47: 281-296
    [33] Grace, J.R. and Lim, K.S. Reactor modeling for high-velocity fluidized beds. In: J.R. Grace, A.A. Avidan and T.M. Knowlton (edis.), Circulating Fluidized Beds. London, Chapman and Hall. 1997: 504-524
    [34] Dry R. J. Radial Particle Size Segregation in a Fast Fluidized Bed. Powder Technol., 1987, 52: 7-16
    [35] Zhang W., Y. Tung, F. Johnsson. Radial Voidage Profiles in Fast Fluidized beds of Different Diameters. Chem. Eng. Sci., 1991, 46: 3045-2052
    [36] Fei Wei, Hongfei Lin, Yi Cheng et al. Profiles of Particle Velocity and Solids Fraction in a High Density Riser. Powder Technol., 1998, 100: 183-189
    [37] 卢春喜,徐亦方,时铭显等. 大型气-固湍流流化床径向空隙率分布的研究. 石油化工,1996, 25(5): 315-317
    [38] Berruti F., Chaouki J., Godfroy L. et al. Hydrodynamics of Circulating Fluidized Bed Risers. CJCheE. 1995, 73: 579-602
    [39] 汪智国. 湍动流化床流体力学及气体混合行为研究: [硕士学位论文]. 北京:清华大学化学工程系,1997
    [40] 汪智国,魏飞. 鼓泡床、湍动床固含率的相似分布规律, 石油化工. 1999,28(2): 87-90
    [41] R. Bader, J. Findlay and T. M. Knowlton. Gas/Solids Flow Patterns in A 30.5-cm-Diameter Circulating Fluidized Bed. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988: 123-137
    [42] Masayuki Horio, Kenji Morishita, Osamu Tachibana et al. Solid Distribution and Movement in Circulating Fluidized Beds. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988: 147-154
    [43] 杨勇林. 循环流化床气固并流上行和下行运动规律的研究:[博士学位论文], 北京:清华大学化学工程系,1991a
    [44] 杨勇林, 金涌, 俞芷清等. 低密度循环流化床局部颗粒速度的轴径向分布的研究. 高校化学工程学报, 1991b, 2(5): 122-128
    [45] Yang Y.-L., Jin Y. and Yu Z.-Q. et al. Investigation on Slip Velocity Distributions in the Riser of Dilute Circulating Fluidized Bed. Powder Technol., 1992, 73: 67-73
    [46] E.-U. Haritage, D. Rensner and J. Werther. Solids Concentration and Velocity Patterns in Circulationg Fluidized Beds. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988:165-180
    [47] Harris B. J., J. F. Davison and Y. Xue. Axial and Radial Variation of Flow in Circulating Fluidized Bed Risers. Circulating Fluidized Bed Technology IV, Avidan A. A. (eds.),NewYork: American Institute of Chemical Engineers,1994
    [48] 吕俊复,张建胜,岳光溪主编. 循环流化床锅炉运行与检修,中国水利水电出版社. 2003: 54
    [49] Zhou J., Grace J. R. and Lim C. J., et al. Particle Velocity Profiles in a Circulating Fluidized Bed Riser of Square Cross-section. Chem. Eng. Sci., 1995: 50(2): 237-244
    [50] Peter D. Noymer and Leon R. Glicksman. Cluster Motion and Particle-Convective Heat Transfer at the Wall of Circulating Fluidized Bed. Int. J. Heat Mass Transfer., 1998, 41: 147-158
    [51] Shigeo Hosokawa, Akio Tomiyama. Turbulence modification in gas-liquid and solid-liquid dispersed two-phase pipe flows. Int. J. Heat and Fluid Flow, 2004, 25: 489-498
    [52] Won NamKung, SangDone Kim. Gas backmixing in a circulating fluidized bed. Powder Technol., 1998, 99: 70-78
    [53] X. He, D. K. Li, Z. G. Deng et al. Experimental Study of Gas-solid Two Phase Flow Regimes in a Suspension Bed with Upward Jets. CSPE-JSME-ASME Inter. Conf. On Power Eng. Xi'an China, 2001: 286-293
    [54] 周力行. 湍流气粒两相流动和燃烧的数值模拟, 北京,科学出版社, 1994
    [55] 周力行. 多相湍流反应流体力学,国防工业出版社, 2002
    [56] 杨烨. 底部向上射流悬浮床内气固两相流动的数值模拟:[硕士学位论文]. 北京:清华大学热能工程系, 2002
    [57] S. Mori. Effect of Apparatus Design on Hydrodynamics of Circulating Fluidized Bed. AIChE Annual Meeting, 1991
    [58] 白丁荣. 循环流态化气固流动及传递规律的研究:[博士学位论文]. 北京:清华大学化学工程系, 1991
    [59] Ersoy, L.E., Golriz, M.R., Koksal, M., et al. Circulating fluidized bed hydrodynamics with air staging: an experimental study. Powder Technol., 2004, 145: 25-33
    [60] Jin Yong. The Influence of Exit Structure on the Axial Distribution of Voidage in Fast Fluidized Bed. 3rd China-Japan Symposium on Fluidization, Beijing, 1988
    [61] 麻智文. 循环流化床内气固循环特性的研究:[硕士学位论文]. 北京:清华大学热能工程系, 1992
    [62] 金燕. 循环流化床锅炉端口效应的实验研究:[硕士学位论文]. 北京:清华大学热能工程系, 1995
    [63] Suneel K. Gupta, Franco Berruti. Evaluation of the gas-solid suspension density in CFB risers with exit effects. Powder Technol., 2000, 108: 21-31
    [64] Yan, Aijie, P?rssinen, J.H., Zhu, Jing-Xu. Flow properties in the entrance and exit regions of a high-flux circulating fluidized bed riser. Powder Technol., 2003, 131: 256-263
    [65] Zheng Qiayu. Experimental Study of the Effect of Bed Exits with Different Geometric Structures on Internal Recycling of Bed Material in CFB Boilers. 4th Inter. Conf. On CFB, Pittsburgh, U.S.A., 1993
    [66] E. H. van der Meer, R. B. Thorpe, J. F. Davidson. Flow patterns in the square cross-section riser of circulating fluidized bed and the effect of riser bed exit design. Chem. Eng. Sci. , 2000, 55: 4079-4099
    [67] A. T. Harris, J. F. Davidson, R. B. Thrope. The influence of the riser exit on the particle residence time distribution in a circulating fluidized bed riser. Chem. Eng. Sci., 2003, 58: 3669-3680
    [68] A. T. Harris, J. F. Davidson, R. B. Thrope. Particle residenct time in a circulating fluidized bed. Chem. Eng. Sci., 2003, 58: 2101-2202
    [69] 佟会玲,李定凯,徐旭常等,一种新的循环悬浮床干法烟气脱硫工艺及其系统. 专利材料,清华大学热能工程系,2000
    [70] 冉星. 旋流场对循环流化床流体力学及混合行为影响的研究:[硕士学位论文]. 北京:清华大学化学工程系,1999
    [71] Sun G. and Grace J. R.. The effect of particle size distribution on the performance of a catalytic fluidized bed reactor. Chem. Eng. Sci., 1990, 45: 2187-2194
    [72] Ma X. and Kato K.. Effect of interparticle adhesion forces on elutriation for fine powders form a fluidized bed of a binary particle mixture. Powder Technol., 1998, 95: 93-101
    [73] Wang Y., Wei F., Wang Z., et al. Radial profiles of solids concentration and velocity in a very fine particle (36μm) riser. Powder Technol., 1998, 96: 262-266
    [74] T. Hirama, H. Takeuchi, S. Chiba, et al. Characteristics of solid circulation in a multi-functional dual-column CFB. Circulating Fluidized Bed Technology II, Prabir Basa and Jean Francois Large(eds.),Pergamon Press,1988:511-518
    [75] 王兆霖,姚建中,刘淑娟等. 内循环快速流化床流动特性研究. 化学工程, 1995, 5(23): 26-30
    [76] 刘会娥. 不同结构循环流化床流动、混合研究及其反应器数学模拟: [博士学位论文]. 北京:清华大学化学工程系, 2002
    [77] Zheng C.-G., Tung Y.-G. and Xia Y.-S. et al. Internals for fast fluidized beds. Fluidization'91, Science and Technology (Kwauk M. and Hasatani (eds.), Beijing, Science Press. 1991
    [78] Zhu J-X, Salah M. and Zhou Y. Radial and axial voidage distributions in circulating fluidized bed with ring-type internals. Chemical Engineering Journal of Japan, 1997, 30(5): 928-937
    [79] 甘宁俊,蒋大洲,白丁荣等. 内置钝体对快速流化床中颗粒浓度分布的影响. 高校化学工程学报, 1990, 3: 273-277
    [80] 杨艳辉. 高密度提升管内置构件对气固两相混合行为的影响:[学士学位论文]. 北京:清华大学化学工程系,1998
    [81] 刘会娥, 杨艳辉, 魏飞等. 内构件对提升管中颗粒混合行为的影响. 化学反应工程与工艺, 2002, 18(2): 109-114
    [82] A. Colmenares, M. Sevilla, J. J. Goncalves et al. Fluid-dynamic experimental study in a bubble column with internals. Int. Comm. Heat Mass Transfer. 2001, 28(3): 389-398
    [83] S.B. Schut, E. H. van der Meer, J. F. Davidson, R. B. Thrope. Gas-solids flow in the diffuser of a circulating fluidised bed riser. Powder Technol., 2000, 111: 94-103
    [84] Haosheng Zhou, Jidong Lu, Liang Lin. Turbulence structure of the solid phase in transition region of a circulating fluidized bed. Chem. Eng. Sci., 2000, 55: 839-847
    [85] 蔡小舒. 颗粒两相流及环境监测的实时在线测量. 中国计量测试学会第七届多想流测试技术会议论文集, 大连,2002:608
    [86] J.E. Hardy, J.O. Hylton, T.E. McKnight et al. Flow measurement methods and applications. Fow Meas. And Instru.,1999: 14-17.
    [87] J.J. Nieuwland et al. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows. Powder technol. 87(1996): 127-139
    [88] H.T.Bi, N. Eliis, I.A.Abba, J.R. Grace. A state-of-the-art review of gas–solid turbulent fluidization. Chem. Eng.Sci.,. 2000, 55: 4789-4825
    [89] T. Dyakowski, R.B.Edwards, C.G.Xie, et al. Application of capacitance tomography to gas-solid flows. Chem. Eng. Sci., 1997, 52(13): 2099-2110.
    [90] T. Dyakowski, Luke S.P.,Ostrowski K.L et al. On-line monitoring of dense phase flow using real time dielectric imaging. Powder Technol., 1999, 104(3): 287-295
    [91] Wang S.J., T. Dyakowski, C. G. Xie et al. Real time capacitance imaging of bubble formation at the distributor of fluidized bed. The Chemical Engineering Journal and The Bilchemical Engineering Journal, 1995, 56(3): 95-100
    [92] J.S. Halow. Observations of fluidized bed coalescence using capacitance imaging. Powder Technol., 1992, 69: 255-277
    [93] S Liu, W Q Yang, H Wang, et al. Investigation of square fluidized beds using capacitance tomography: preliminary results. Meas. Sci. Technol. 2001, 12: 1120-1125
    [94] 刘石,王海刚,姜凡等. 迭代法 ECT 对循环流化床底部固体浓度的测量. 中国工程热物理学会第十届年会, 燃烧学会议文集. 2001: 716-725
    [95] 姜凡,刘石,王海刚等,电容层析成像在流化床测量装置中的应用. 中国工程热物理学会第十届年会, 燃烧学会议文集. 2001: 726-730
    [96] W.Q.Yang, S. Liu. Role of tomography in gas/solid flow measurement. Flow Meas. Instru. 2000, 11(3):237-244
    [97] Makkawi Y.T., Wright P.C. Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography. Chem, Eng, Sci., 200, 57(13): 2411-2437
    [98] C G Xie, A L Stott, A Plaskowski and M S Beck. Design of capacitance electrodes for concentration measurement of two-phase flow. Meas. Sci. Technol.(1990): 65-78
    [99] M S Beck, M Byars, T Dyakowski, et al. Principles and industrial applications of electrical capacitance tomograph. Measurement+Control, 1997,30: 197-200
    [100]彭黎辉. 电容层析成像技术关键技术研究:[博士学位论文]. 北京:清华大学自动化系,1998
    [101]David M Scott and Oliver W Gutsche. ECT Studies of Bead Fluidization in Vertical Mills. Proc. Of 1st WCIPT, UK, 1999,90-95
    [102]R B White. Internal Structures in Fluid Beds of Different Scales: An Application of Electrical Capacitance Tomography. Proc.of 1st WCIPT, UK, 1999,39-46
    [103]R B White. Using Electrical Capacitance Tomography to Investigate Gas Solid Contacting. Proc. Of 3rd WCIPT, Canada, 2003: 840-845
    [104]Andrew Hunt, John D Pendleton and Robert B White. A Novel Tomographic Flow Analysis System. Proc. Of 3rd WCIPT, Canada, 2003: 281-286
    [105]Geng Lu, Lihui Peng, Baofen Zhang. A Parallel Measurement Strategy for Electrical Capacitance Tomography. Proc. Of 3rd WCIPT, Canada, 2003: 637-641
    [106]Shi Liu, Haigang Wang, and Fan Jiang. A new image reconstruction method for tomographic investigaton of fluidized beds. Particle Technology and Fluidization, 2002, 48(8): 1631-1638
    [107]王海刚. 旋风分离器中气-固两相流数值计算与实验研究:[博士学位论文]. 北京:中国科学院工热物理所, 2003
    [108]Yan Hua, Shao FuQun, Xu Hui and Wang Shi. Three-dimensional analysis of electrical capacitance tomography sensing fields. Meas. Sci. Technol., 10(1999)717-725.
    [109]陆耿. 实用型交流激励电容成像系统及其探索性研究:[博士学位论文]. 北京:清华大学自动化系,2004
    [110] M Louge and M. Opie. Measurements of the effective dielectric permitivity of suspension. Powder Technol., 1990, 62: 85-94
    [111]严杰,郭红星,常红森等. 敏感场在电容层析成像中的分析与处理. 电子学报, 1999, 27(2): 103-105
    [112] Tomasz Dyakowski,Laurent F.C. Jeanmeure and Artur J. Jaworski. Applications of electrical tomography for gas–solids and liquid–solids flows -a review. Powder Technology,112(2000),174~192
    [113] 颜华,邵富群,王师等. 电容层析成像传感器软场性能分析. 东北大学学报(自然科学版), 1999,5:457-460
    [114] Lihui Peng, Henk Merkus, and Brian Scarlett. Using regulation methods for image reconstruction of electrical capacitance tomography. Part. Part. Syst. Charact., 2000, 17: 96-104
    [115]Oliver Dorn, Eric L. Miller, and Carey M. Rappaport. A shape reconctruction method for electromagnetic tomography using adjoint fields and level sets. Reports of Center for Elecromagnetics Research, Northeastern University, Boston, 2000
    [116] W Q Yang, Lihui Peng. Image reconstruction algorithms for electrical capacitance tomography. Meas. Sci. Technol. 2003, 14: R1:R13
    [117]袁志勇,王泽忠,邵汉光. 电磁场逆问题的分析与计算. 中国电机工程学报,1994,14(1): 1-6.
    [118]郝中堂,周均长编著. 应用流体力学,浙江大学出版社,1991
    [119] Dingrong Bai, Jing-xu Zhu, Yong Jin, et al. Internal recirculation flow structure in vertical upflow gas-solid suspensions, Part II: Flow structure predictions. Powder Technol., 1995, 85(2):179-188
    [120]M.S. Detamore, M.A. Swanson, K.R. Frender, et al. A kinetic-theory analysis of the scale-up of circulating fluidized beds. Powder Technol., 2001, 116: 190-203
    [121]H.T.BI, J.R.Grace. Flow Regime Diagrams for Gas Solid Fluidization and Upward Transport. Int. J. Multiphase Flow, 1995, 21(6): 1229-1236
    [122]冯俊凯,沈幼庭主编. 锅炉原理及计算, 科学出版社,1995
    [123]董元吉,李静海,郭慕孙. 快速流化床径向空隙率分布测定及关联. 化学反应工程与工艺, 1988, 4(1): 75-80
    [124]Lin Q., Wei F., and Jin Y.. Transient density signal analysis and two-phase micro-structure flow in gas-solids fluidization. Chem, Eng. Sci., 2001, 56: 2179-2189
    [125]H. Zhang, P.M. Johnston, J.-X. Zhu, et al. A novel calibration procedure for a fiber optic solids concentration probe. Powder Technol., 1998, 100:260-272
    [126]Lu Huilin, Dimitri Gidaspow, Jacques Bouilliard, et al. Hydrodynamic simulation of gas-solid flow in a riser using kinetic theory of granular flow. Chem. Eng. J., 2003, 95: 1-13
    [127]肖海涛. 欧拉气固曳力模型的理论研究与数值模拟:[硕士学位论文]. 北京:清华大学热能工程系,2001
    [128]D.Bai, E.Shibuya, N.Nakagawa, et al. Fractal characteristics of gas-solids flow in a circulating fluidized bed. Powder Technol., 1997, 90: 205-212
    [129]D.Bai, E.Shibuya, Y.Masuda, et al. Flow structure in a fast fluidized bed. Chem. Eng. Sci., 1996, 51(6): 957-966
    [130]侯波. 中温干法烟气脱硫过程实验研究:[博士学位论文]. 北京:清华大学热能工程系,2004
    [131]乔锐. 循环流化床炉内脱硫的模型研究:[硕士学位论文]. 北京:清华大学热能工程系,1999
    [132]Zhang Minghui, Qian Zhen, Yu Hao, et al. The solid flow structure in a circulating fluidized bed riser/downer of 0.42-m diameter. Powder Technol., 2003, 129: 46-52
    [133]van de Wall, E. Soo, S.L. Relative motion between phases of a particulate suspension. Powder Technol., 1998,95(2): 153-163
    [134]万晓涛. 循环流化床提升管的数值模拟:[硕士学位论文]. 北京:清华大学化学工程系,2000
    [135]Wang, Xiaohua, Zhu, Chao, Ahluwalia, Rajesh. Numerical simulation of evaporating spray jets in concurrent gas–solids pipe flows. Powder Technol.,2004, 140: 56-67
    [136]Varaksin, A.Yu., Polezhaev, Yu.V., Polyakov A.F. Effect of particle concentration on fluctuating velocity of the disperse phase for turbulent pipe flow. Int. J. Heat and Fluid Flow, 2000, 21: 562-567
    [137] Tallon, Stephen, Davies, Clive E., Barry Bernard. Slip velocity and axial dispersion measurements in a gas-solid pipeline using particle tracer analysis. Powder Technol., 1998, 99(2): 125-131
    [138] Hrenya C M, and Sinclair J L. Effects of particle-phase turbulenct in gas-solid flows. AIChE J., 1997, 43(4): 853-869
    [139] Wen C Y, Yu Y H. Mechanics of fluidization. AIChE Symp., 1966, 62: 100-111
    [140] 肖庭延,于慎根,王彦飞著. 反问题的数值解法, 科学出版社,2003
    [141] 倪光正,钱秀英著. 电磁场数值计算, 北京 高等教育出版社,1996
    [142] 盛剑霓等编著. 电磁场数值分析, 北京 科学出版社,1984
    [143] Y. Saito, E. Itagaki, and S. Hayano. A Formulation of the Inver Problems in Magnetostatic Fields and Its Aplication to a Source Position Searching of the Human Eye Fields. J. Appl. Phy. 1990, 67: 5830-5832
    [144] H. Saotome, J.L.Coulomb, Y. Saito, and J. C. Sabonnadiere. Magnetic Core Shape Design by the Sanoke Pattern Matching Method. TEEE Tran. Magn., 1995, 31: 1976-1979
    [145] H. Endo, S. Hayano, Y. Saito, et al. Generalized vector sampled pattern matching method -Theory and applications, Studies in Applied Electromagnetics and Mechanics, Electromagnetic Nondestructive Evaluation (VI), F. Kojima(eds.), Netherlands, 2002,23: 285-292
    [146] 董国亚. 头部电阻抗成像和各层组织电导率测量方法的研究: [博士学位论文],北京:清华大学电机工程与应用电子技术系. 2003
    [147] 刑文训,谢金星编著. 现代优化计算方法,清华大学出版社,2001
    [148] Yung-An Chao. A theory of fuel management via backward diffusion calculation. Nuclear Sci. Eng., 1986, 93: 78-87
    [149] 刘志宏. 压水堆多循环堆芯燃料管理优化研究: [博士学位论文]. 北京:清华大学工程物理系,2003
    [150] Thomas Loser, Radoslaw Wajman and Dieter Mewes. Electrical capacitance tomography: image reconstruction along electrical field lines. Meas. Sci., Technol. 2001, 12: 1083-1091

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700