用户名: 密码: 验证码:
巨桉—台湾桤木混合凋落物分解特征及其土壤动物群落动态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凋落物分解是森林地力维持的基础,而土壤动物是凋落物分解的积极参与者,并受到凋落物种类、质量和分解阶段的影响。因此,深入研究人工林凋落物分解过程及其土壤动物群落动态,可为人工林培育和可持续经营与管理提供重要的科学依据。巨桉(Eucalyptus grandis)是南方工业原料林的主要造林树种之一,而台湾桤木(Alnus formosana)是非豆科固氮的常绿速生树种,为了最大限度地避免桉树人工林地力衰退、生物多样性下降等生态学问题,研究人员开展了巨桉与台湾桤木两树种的混交试验。现在的问题是:如何控制桉树与混交树种之间的比例才能有效维持混交林的地力和保育生物多样性?树种混交是否影响到凋落物的分解过程?是否影响到凋落物中的土壤动物群落动态?迄今尚缺乏深入研究。以四川省乐山市苏稽镇巨桉-台湾桤木人工林为研究对象,采用凋落物分解袋法,研究了5种不同比例(TⅠ:巨桉10g,台湾桤木0g;TⅡ:巨桉7g,台湾桤木3g;TⅢ:巨桉5g,台湾桤木5g;TⅣ:巨桉3g,台湾桤木7g;TV:巨桉0g,台湾桤木10g)的混合凋落物在3种不同孔径(6目、30目和260目)尼龙袋(20cm×20cm)的分解特征以及土壤动物群落动态,以期充分认识巨桉与台湾桤木混合对凋落物分解速率、养分动态和土壤动物群落结构的影响,为构建合理可行的人工林模式提供理论依据。
     (1)桉-桤不同混合比例凋落物中优势类群为弹尾目(Collembola)和蜱螨目(Acariformes)。常见类群为大型土壤动物后孔寡毛目(Opithopora)。五种不同混合比例的凋落物中,大型土壤动物的分布是TV最多,TⅠ最少,混合凋落物介于二者之间,且随桤木比例的增加呈增多的趋势;而中小型土壤动物在TⅠ中最多,而TV最少。啮虫目(Psocoptera)在TV中的数量远远高于其它四种凋落物,后孔寡毛目在混合凋落物中数量较高。弹尾目、蝎线纲(Pauropoda)更喜生活在TⅠ凋落物中。综上表明在巨桉中加入台湾桤木可改变土壤动物的群落结构。
     (2)6目凋落袋中土壤动物的个体数是TⅠ>TⅡ>TⅢ>TⅣ>TV,大型土壤动物的个体数是TⅢ>TⅣ>TⅤ>TⅡ>TⅠ,中小型土壤动物个体数是TⅠ>TⅡ>TⅢ>TⅣ>TⅤ,大型土壤动物类群数在TV最多,混合凋落物次之,TⅠ最少。30目凋落袋中土壤动物个体数TⅠ>TⅡ>TV>TⅣ>TⅢ。260目凋落袋中,土壤动物的个体数是Ⅳ>TⅢ>TⅡ>TⅠ>TⅤ。五种不同比例混合凋落物中的土壤动物个体总数在6目中差异极其显著,在30目和260目差异性不显著。中小型土壤动物个体数量是260目>30目>6目,且在30目与6目中差异显著。6目中中小型土壤动物的个体数远高于大型土壤动物。土壤动物类群数是30目>6目>260目,五种不同比例混合凋落物中的土壤动物类群数在260目差异不显著,在30目差异显著,在6目中差异极其显著。表明相对纯桉而言,桉-桤混和可提高凋落物中大型土壤动物的个体数、类群数,而对中小型土壤动物的个体数和类群数并无影响。
     (3)6目凋落袋内凋落物的分解速率为TV>TⅣ>TⅢ>TⅡ>TⅠ,TⅠ凋落物的快速分解期在8月,TⅡ和TⅢ凋落物的快速分解期在7月,而TⅣ和TV凋落物的快速分解期在5月。分解前期TⅡ由于桤木凋落物的加入,大大提高了整个凋落物的分解速度,而TⅣ因桉树凋落物的存在,分解速率有所降低。在2009年10月前,260目和30目凋落物袋中,TⅠ凋落物的分解速率快于TV。近自然状态下(6目中),分解前期(0-45d)由于桤木的加入TⅡ凋落物的分解速度有所提高,也即TⅡ(巨桉7g,台湾桤木3g)混合比例可促进凋落物的分解。
     (4)背景土壤动物包括湿生中小型土壤动物、干生中小型土壤动物和大型土壤动物。湿生中小型土壤动物中线虫纲(Nematoda)为优势类群,轮虫纲(Rotatoria)和线蚓科(Enchytraeidae)为常见类群。干生中小型土壤动物优势类群有弹尾目和蜱螨目。大型土壤动物优势类群有后孔寡毛目、等翅目(Ⅰsoptera)、鞘翅目(Coleoptera)和膜翅目(Hymenoptera)。在五种类型的人工林中,湿生中小型土壤动物、干生中小型土壤动物以及大型土壤动物的个体数在TI人工林下中均较多,而在混交林和TV林下较少。土壤动物在不同土层个体数差异较大,尤其是大型土壤动物,表聚现象明显。
     (5)不同比例桉-桤混合初始凋落物间氮差异极其显著,钙、镁差异显著,碳、磷、钾差异不显著。巨桉、台湾桤木两种凋落物间C:N比差异极其显著。在分解过程中,6目凋落袋中桉-桤不同混合比例凋落物各元素的含量都有所降低。C、K元素含量在TⅠ凋落物中下降最慢,Mg元素含量在TⅠ中下降最快。N、P元素含量在TV凋落物中下降最慢,C、Ca元素含量在TV中下降最快。30目凋落袋中N元素含量在TV凋落物中,C、Ca在TⅠ凋落物中下降缓慢,P、Mg元素含量在TⅠ凋落物中下降较快。260目凋落袋中N、Mg元素含量在TⅠ凋落物中下降迅速,在TV中下降缓慢。6目中凋落物的损失率与N元素、Ca元素的含量呈极其显著正相关,与P元素的含量呈显著正相关,与C含量呈负相关,但相关性不显著。
     (6)260目凋落袋中凋落物的养分含量总体上高于30目,也即260目凋落物袋中凋落物的养分释放速率慢于30目,而260目的土壤动物个体数高于30目,土壤动物的类群数低于30目。表明不同的土壤动物类群有利于促进凋落物中养分元素的释放。大型土壤动物对各元素释放作用的大小依次为:Mg>P>K>N>Ca>C,Mg元素释放作用在TV凋落物最高,达92.45%,对C元素释放作用在TⅢ凋落物中最低,仅32.05%,对N元素的释放作用在TⅠ凋落物中最高。
     研究表明:不同比例桉-桤混合可提高凋落物中大型土壤动物的个体数与类群数,加速凋落物的分解,促进养分的释放与循环。因此在桉树纯林中混栽桤木(比例为7:3),有利于加速人工林内的物质循环,提高土壤地力,促进植物生长。
Litter decomposition plays an essential role in maintaining soil fertility in the forest. Soil fauna which affected by the type and quality of litter and the stage of decomposition are active participants during the decomposition of litter. Therefore, the research on dynamics of soil fauna community during litter decay can provide important scientific basis for the cultivation and the sustainable management of plantation. Eucalyptus(Eucalyptus grandis) is one of main afforestation tree species in the industrial raw material forest in the south, and alder (Alnus formosana) is a nonleguminous and evergreen tree species with the characteristic of fast growing and nitrogen-fixing. In order to maximum extently avoid the ecological problems, such as soil fertility and biodiversity decline, the litter mixed experiment of Eucalyptus grandis and Alnus formosana was conducted. The corresponding problems were put up:(1) How do control the ratio of eucalyptus litter weight to alder litter weight to maintain productivity and biodiversity in the mixed forest?(2) Will different tree species mixture affect the litter decomposition process?(3) Will different tree species mixture change dynamitic of soil fauna community? All those are lack of corresponding research. Decomposition characteristic and dynamic of soil fauna in different ratio mixed litters (TⅠ:eucalyptus10g, alder Og; TⅡ:eucalyptus7g, alder3g; TⅢ:eucalyptus5g, alder5g; TⅣ:eucalyptus3g, alder7g; TⅤ:eucalyptus Og, alder10g) were investigated with the method of litterbags in Suji town, Leshan city, Sichuan province. The aim was to explore the effect brought by mixture of eucalyptus and alder on decomposition rate, dynamics of nutrient and soil fauna community structure and provide the support of science and technology for the building of reasonable and feasible plantation.
     (1) The dominant groups were Collembola and Acariformes which belong to meso and microfauna. The common group was Opithopora which belongs to macrofauna in different ratio mixed litter. Compared with TI litter, the macrofauna preferred to live in TV litter. The individual numbers of macrofauna in mixed litter were between TV litter and TI litter. The individual numbers of macrofauna increases with quantity of the alder added. Compared with TV litter, the meso and microfauna preferred to live in TI litter. The individual numbers of Psocoptera reached highest in TV litter and Opithopora in mixed litter. Collembola and Pauropoda preferred living in TI litter. All these suggested: the community structure of soil fauna would change when alder was added in Eucalyptus.
     (2) The individual numbers of soil fauna in6-mesh litterbags were TI>TII>TIII>TIV>TV, and those of macrofauna were TIII>TIV>TV>TII>TI and meso and microfauna were TⅠ>TⅡ>TⅢ>TⅣ>TⅤ. The group numbers of macrofauna were maximum in TV litter and minimum in TI litter. The individual numbers of soil fauna in30-mesh litterbags were TI>TII> TV>TIV>TIII and in260-mesh litterbags were IV> TⅢ>TⅡ>TⅠ>TⅤ. The total individuals of soil fauna showed extremely significant difference in6-mesh litterbags, no significant difference in260-mesh litterbags and30-mesh litterbags among five different ratio mixed litter. The individual numbers of meso and micro fauna were260-mesh>30-mesh>6-mesh and there was significant difference between30-mesh and6-mesh litterbags. The individual numbers of meso and microfauna were more than those of marofauna in6-mesh litterbags. The group numbers were30-mesh>6-mesh>260-mesh and there was significant difference in30-mesh litterbags, extremely significant difference in6-mesh litterbags and no significant difference in260-mesh litterbags among five different ratio mixed litter. All these showed the mixture of eucalyptus and alder could increase the individuals of soil macrofauna, whereas no effect on the individuals and groups of meso and microfauna, compared with the eucalyptus litter.
     (3) The decomposition rate was TV>TIV>TIII>TII>TI in6-mesh litterbags, and the fast decomposition stage of TI was in August, TⅡ and TⅢ in July and TIV and TV in May. The decomposition rate of TⅡ litter increased greatly due to the addition of alder in early stage, and the decomposition rate of TIV litter declined because of the eucalyptus added. Before October2009, the decomposition rate of TI litter was faster than that of TⅤ litter in260-and30-mesh litterbags. Under near natural state (6-mesh), the ratio of TⅡ could accelerate the decay of litter.
     (4) Background soil fauna included damp living meso and micro fauna, dry living meso and micro fauna and-macrofauna. The-dominant-group was Nematoda and the common groups were Rotatoria and Enchytraeidae among damp living meso and micro fauna. The dominant groups were Collembola and Acariformes among dry living meso-, micro fauna. The dominant groups were Opithopora, Isoptera, Coleoptera and Hymenoptera among macrofauna. There were more individuals in soil under TI plantation than mixed and TV plantation. The soil fauna, especially macrofauna, showed significant difference among different soil layer and more soil fauna happened in the top soil.
     (5) There was extremely significant difference in initial N, significant difference in initial Ca and Mg, and no significant difference in C, P and K among different ratio mixed litter. The ratio of C:N showed extremely significant difference between eucalyptus and alder. The elements concentration of different ratio mixed littler declined in6-mesh litterbags during decomposition. The elements of C, K declined slowly and Mg fast in TI litter. The elements of N, P declined slowly and C, Ca fast in TV litter. The element of N, C and Ca declined slowly in TV, TI litter respectively, P, Mg declined fast in TI litter in30-mesh litterbags. N and Mg declined fast in TI litter and slowly in TV litter in260-mesh litterbags. Mass loss rate was extremely significant positively correlated to the concentration of N, Ca, significant correlated to concentration of P, negatively correlate to the content of C, but there was no obvious difference.
     (6) The concentration of elements in260-mesh litterbags was higher than in30-mesh litterbags, that is to say, the nutrient release rate of litter in260-mesh litterbags was slower than in30-mesh litterbags, however, the individual numbers of soil fauna were higher in260-mesh litterbags than in-30-mesh litterbags and the group numbers were on the contrary. Different groups of soil fauna could stimulate the release of nutrient elements. The release rate of nutrient elements which was attribute to the soil macrofauna showed the order:Mg>P>K>N>Ca>C. Action of macrofauna to Mg was highest, achieving92.5%, however to C was lowest (32.05%), to N was highest in TI litter.
     All the research suggested that the mixture of Eucalyptus grandis and Alnus formosana could increase the numbers of individual and group of macrofauna, accelerate the litter decomposition and nutrient cycling compared with Eucalyptus.grandis. Therefore, it will accelerate the. cycle-of matter, improve the soil fertility and stimulate the growth of plant, when Alnus formosana is planted in the plantation of Eucalyptus grandis by the ratio of TⅡ.
引文
1. Adams MA, Attiwill PM. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia I. Nutrient cycling and nitrogen turnover. Plant and Soil.1986,92: 319-339
    2. Alhamd L, Arakaki S, Hagihara A. Decomposition of leaf litter of four tree species in a subtropical evergreen broad-leaved forest, Okinawa Island, Japan. Forest Ecology and Management,2004,202:1-11
    3. Ashwini K. M, Sridhar KR. Distribution of Pill millipedes (Arthrosphaera) and associated soil fauna in the Western Ghats and West Coast of India. Pedosphere,2008,18(6):749-757
    4. Aubert M, Margerie P, Trap J, et al. Aboveground-belowground relationships in temperate forests:plant litter composes and microbiota orchestrates. Forest Ecology and Management, 2010,259:563-572
    5. Becker J, Makus P, Schrader S. Interactions between soil micro-and mesofauna and plants in an eco farming system. European Journal of Soil Biology,2001,37:245-249
    6. Bengtsson J. Disturbance and resilience in soil animal communities. European Journal of Soil Biology,2002,38:119-125
    7. Berendse F, Bobbink R, Rouwenhorst G. A comparative study on nutrient cycling in wet heathland ecosystems Ⅱ. Litter decomposition and nutrient mineralization. Oecologia,1989, 78:338-348.
    8. Berg B, Muller M,Wessen B. Decomposition of red clover (Trifolium pratense) roots. Soil Biology & Biochemistry,1987,19:589-594
    9. Berg B, Berg MP, Bottner P, et al. Litter mass-loss rates in pine forests of Europe and Eastern United States:some relationships with climate and litter quality. Biogeochemistry,1993,20: 127-159
    10. Bonham KJ, Mesibov R, Bashford R. Diversity and abundance of some ground-dwelling invertebrates in plantation vs. native forests in Tasmania Australia. Forest ecology and management,2002,158:237-247
    11. Briones MJI, Ineson P. Decomposition of eucalyptus leaves in litter mixtures. Soil Biology& Biochemistry,1996,28, (10/11),1381-1388.
    12. Chan YSG, Chu LM., Wong MH. Influence of landfill factors on plants and soil fauna an ecological perspective. Environmental Pollution,1997,97 (1-2):39-44
    13. Cortez J, Demard JM, BotNer P, et al. Decomposition of mediterranean leaf litters:a microcosm experiment investigating relationship between decomposition rates and quality. Soil Biology & Biochemistry,1996, (4/5):443-452.
    14. Crossley DA, Hoglund MP. A litter-bag method for the study of microarthropods inhabiting leaf litter. Ecology,1962,43:571-573.
    15. Dutta RK, Agrawal M. Litterfall, litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils. Pedobiologia,2001,45:298-312
    16. Dyer ML, Meentemeyer V, Berg B. Apparent controls of mass loss rate of leaf litter on a regional scale:litter quality vs. climate. Scandinavian Journal of Forest Research,1990,5: 311-323
    17. Ayres E, Dromph KM., Bardgett RD. Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biology & Biochemistry,2006,38:183-186
    18. Ekschmitt K, Liu MQ, Vetter S, et al. Strategies used by soil biota to overcome soil organic matter stability-why is dead organic matter left over in the soil? Geoderma,2005,128:167-176
    19. Enriquez S, Duarte CM, Jensen K. Patterns in decomposition rates among photosynthetic organisms:the importance of detritus C:N:P content. ecologia,1993,94:457-471.
    20. Facelli, JM, Pickett STA, Plant litter:its dynamics and effects on plant community structure. Botanical Review,1991,57:1-32.
    21. Franck VM, Hungate BA, Chapin FS, et al. Decomposition of litter produced under elevated CO2 Dependence on plant species and nutrient supply. Biogeochemistry,1997,36:223-237
    22. Fyles JW, Fyles IH. Interaction of douglas-fir with red alder and salal foliage litter during decomposition. Canadian Journal of Forest Research,1993,23:(3):358-361
    23. Ganjegunte G K, Condron LM. Clinton PW, et al., Effects of mixing radiata pine needles and understory litters on decomposition and nutrients release. Biology and Fertility of Soils,2005, 41:310-319
    24. Garcia-Pausas J, Casals P, Romanya J. Litter decomposition and faunal activity in Mediterranean forest soils:effects of N content and the moss layer. Soil Biology & Biochemistry,2004,36:989-997
    25. Gonzalez G, Seastedt TR. Comparision of the abundance and composition of litter fauna in tropical and alpine forests. Pedobiologia,2000,44(5):545-555.
    26. Haimi J, Matasniemi L. Soil decomposer animal community in heavy-metal contaminated coniferous forest with and without liming. European Journal of Soil Biology,2002,38: 131-136
    27. Harte J, Rawa A, Price V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biology and Biochemistry,1996,28 (3):313-322
    28. Hattenschwiler S, Gasser P. Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences of the United States of America.2005,102: 1519-1524
    29. Hemerik L, Brussaard L. Diversity of soil macro-invertebrates in grasslands under restoration succession. European Journal Soil Biology,2002,38:145-150
    30. Hoisve RA, Blanc FC. Effect of pH on leaf decomposition in low alkalinity lakes. Journal of Environmental Engineering,1993,119(1):56-71
    31. Illig J, Norton R. A, Scheu S, et al. Density and community structure of soil-and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Experimental Applied Acarology,2010,52(1):49-62
    32. Kennedy AD. Simulated climate change:a field manipulation study of polar microarthropod community response to global warming. Ecography,1994,17:131-140
    33. Klemmedson JO. Decomposition and nutrient release from mixtures of Gambel oak and. ponderosa pine leaf litter. Forest Ecology and Management,1992,47:349-361
    34. Leakey RJG, Proctor J. Invertebrates in the litter and soil at a range of altitudes on Gunung Silam,a small ultrabasic mountain in Sabah. Journal of Tropical Ecology,1987,3:119-129.
    35. Lindberg N. Soil fauna and global change responses to experimental drought, irrigation, fertilisation and soil warming. PhD thesis, Swedish University of Agriculture Science, Uppsala, 2003
    36. Liu P, Huang JH,Han XG.et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia. China Applied Soil Ecology,2006,34:266-275
    37. Lorenz K, Preston C M, Krumrei S, et al. Decomposition of needle/leaf litter from Scots pine, black cherry, common oak and European beech at a conurbation forest site. European Journal of Forest Research,2004,123:177-188
    38. Luis GB, Mario GE. Change in oak to pine dominance in second forests may reduce shifting agriculture yields:experimental evidence from Chiapas Mexico. Agriculture, Ecosystems and Environment,2004,102:389-401
    39. Manning P, Saunders M, Bardgett RD, et al. Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biology & Biochemistry,2008,40:688-698
    40. Marasas ME, Sarandon SJ, Cicchino AC. Changes in soil arthropod functional group in a wheat crop under conventional and no tillage systems in Argentina conventional and no tillage systems in Argentina. Applied Soil Ecology,2001,18:61-68
    41. Maraun M, Scheu S. Changes in microbial biomass, respiration and nutrient status of beech (Fagus sylvatica) leaf litter processed by millipedes (glomeris marginata). Oecologia,1996, 107:131-140
    42. Melillo JM, Aber JD,Meratore JF. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology,1982,63:621-626.
    43. Olson JS. Energy storage and the balance of produce and decomposition in ecological systems. Ecology,1963,44:322-331
    44. Osono T, Takeda H. Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition process in a cool temperate deciduous forest in Japan. Ecological Reserarch,2001,16:649-670.
    45. Osono T, Takeda H. Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecological Research,2004,19:593-602.
    46. Palacios-Vargas JG, Castano-Meneses G, Gomez-Anaya J A, et al. Litter and soil arthropods diversity and density in a tropical dry forest ecosystem in Western Mexico. Biodiversity and Conservation,2007,16:3703-3717
    47. Pandey RR., Sharma G, Tripathi SK, et al. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India.Forest Ecology and Management,2007,240:96-104
    48. Paritsis J, Aizen M A. Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagns dombeyi forests. Forest Ecology and Management,2008,255:1575-1583
    49. Pausas J G, Casals P, Romanya J. Litter decomposition and faunal activity in Mediterranean forest soils:Effects of N content and the moss layer. Soil Biology and Biochemistry,2004,36: 989-997
    50. Pongea JF, Gillet S, Dubs F, et al. Collembolan communities as bioindicators of land use intensification. Soil Biology & Biochemistry,2003,35:813-826
    51. Pozo J, Basaguren A, Elosegui A, et al., Afforestation with Eucalyptus globulus and leaf litter decomposition in streams of northern Spain. Hydrobiologia,1998,373:101-109
    52. Prescott C.E. Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management,2005,220:66-74
    53. Raty M, Huhta V. Earthworms and pH affect communities of nematodes and enchytraeids in forest soil. Biology Fertility of Soils,200338:52-58
    54. Sadaka N, Ponge JF. Soil animal communities in holm oak forests:influence of horizon, altitude and year. European Journal of Soil Biology,2003,39:197-207
    55. Schadler M, Brandl R. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biology & Biochemistry,2005,37:329-337
    56. Seastedt TR. The role of microarthropods in decomposition and mineralization process. Annual Review of Entomology,1984,29:25-46
    57. Siira-Pietikainen A, Haimi J. Changes in soil fauna 10 years after forest harvestings: Comparison between clear felling and green-tree retention methods. Forest Ecology and Management,2009,258:332-338
    58. Singh KP, Singh PK, Tripathi SK.. Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli. India. Biology Fertility of Soils, 1999,29:371-378.
    59. Smith VC, Bradford MA. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time.Applied Soil Ecology,2003,24:197-203
    60. Sovik G, Leinaas HP. Adult survival and reproduction in an arctic mite, Ameronothrus lineatus (Acari, Oribatida):effects of temperature and winter cold. Canadian. Journal of Zoology,2003, 81:1579-1588
    61. Spehn EM, Joshi J, Schmid B, et al. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems, plant and soil,2000,224:217-230
    62. Takeda H. A 5 years study of pine needle litter decomposition in relation to mass loss and faunal abundances. Pedobiologia,1988,32:221-226
    63. Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test. Ecology,1989a,70:97-104
    64. Taylor BR, Parsons WFJ, Parkinson D. Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnus crispa litter. Canadian Journal of Forest Research,1989b. 19(5):674-679.
    65. Tripathi SK, Singh KP. Abiotic and litter quality control during the decomposition of different plant parts in dry tropical bamboo savanna in India. Pedobiologia,1992a,36:109-124
    66. Tripathi SK, Singh KP. Nutrient immobilization and release patterns during plant decomposition in a dry tropical bamboo savanna, India. Biology Fertility of Soils.1992b,14: 191-199
    67. Verhoef HA, Brussaard L. Decomposition and nitrogen mineralization in natural and agro-ecosystems:the contribution of soil animals. Biogeochemistry,1990,11:175-211
    68. Vogt K A, Grier CC, Vogt DJ. Production, turnover and nutrient dynamics of above-and belowground detritus of the world forests. Advances in Ecological Research,1986,15:303-377
    69. Wardle DA, Nilsson MC, Zackrisson O, et al. Determinants of liter mixing effects in a Swedish boreal forest. Soil Biology and Biochmaistry,2003,35:827-835
    70. Wardle DA, Lavelle P. Linkages between soil biota, plant litter quality and decomposition// Cadisch G, Giller KE, eds. Driven by Nature:Plant Litter Quality and Decomposition. Wallingford:CAB International,1997:107-124
    71. Weltzin JF, Keller JK, Bridgham SD, et al. Litter controls plant community composition in a northern fen.. Oikos,2005,110:537-546
    72 Wise DH, Matthias S. Decomposition of leaf litter in a mull beech forest:Comparison between canopy and herbaceous species. Pedobiologia,1994,38:269-288
    73. Withington.CL, Sanford JrRL. Decomposition rates of buried substrates increase with altitude in the forest-alpine tundra ecotone. Soil Biology & Biochemistry,2007,39:68-75
    74. Yang JS, Liu JS, Yu JB, et al. Decomposition and nutrient dynamics of marsh litter in the Sanjiang Plain, Northeast China.Acta Ecologica Sinica,2006,26(5):1297-1302.
    75. Zaller JG, Arnone III JA. Earthworm responses to plant species'loss and elevated CO2 in calcareous grassland. Plant and Soil,1999,208(1):1-8
    76. Zhang XP, Sun Y, Huang LR. Dynamics of soil fauna in Da Hinggan Mountains,northeast China. Chinese Geographical Science,2009,19(2):151-157
    77. Zhang H, Chu LM, Zhang XP. Decomposition of leaf litter of four native broad-leaved tree species in south China. Frontiers of Forestry in China,2009,4(4):450-457
    78.白义,施时迪,齐鑫等.台州市路桥区重金属污染对土壤动物群落结构的影响.生态学报,2011,31(2):0421-0430
    79.白义,施时迪.浙江天台山濒危植物七子花林土壤动物的群落特征分析及不同林分中土壤动物群落的比较研究.安徽农业科学,2008,36(12):5165-5168
    80.陈国孝,宋大祥.暖温带北京小龙门林区土壤动物的研究.生物多样性,2000,8(1):88-95
    81.陈金林,吴春林,姜志林等.栎林生态系统凋落物分解及磷素释放规律.浙江林学院学报,2002,19(4):367-371
    82.陈秋波.桉树人工林土壤生物多样性问题研究.热带农业科学,2002,22(1):66-76
    83.陈小鸟,由文辉,易兰.浙江天童太白山不同海拔土壤动物的群落结构.生态学杂志,2009,28(2):270-276
    84.陈颖彪,殷秀琴.凉水地区不同林型土壤动物群落研究.上海师范大学学报(自然科学版),2000,29(2):79-84
    85.陈永亮,,李淑兰.胡桃楸、落叶松纯林及其混交林下叶凋落物分解与养分归还的比较研究.林业科技,2004,29(5):10-12
    86.董鸣主编.陆地生物群落调查观测与分析.北京:中国标准出版社,1996,152-176
    87.傅荣恕,尹文英.伏牛山地区土壤动物群落的初步研究.动物学研究,1999,20(5)396-398
    88.郭剑芬,杨玉盛,陈光水.森林凋落物分解研究进展.林业科学,2006,42(4):93-100
    89.何冬梅,由文辉,李喜和等.锡林河中游草原生态系统中小型土壤动物与土壤有机质的关系.植物生态学与地植物学学报,1989,13(4):350-357
    90.何兴元,赵淑清,杨思河等.固氮树种在混交林中的作用研究Ⅲ. 固氮树种凋落物分解及N的释放.应用生态学报,1999,10(4):404-406
    91.黄丽荣,张雪萍.大兴安岭北部森林生态系统土壤动物组成与多样性分析.土壤通报,2008,39(3):502-507
    92.贾志红,孙敏,杨珍平.施肥对作物根际微生物的影响.作物学报,2004,30(5)491-495
    93.柯欣,赵立军,尹文英.青冈林土壤动物群落结构在落叶分解过程中的演替变化.动物学研究,1999,20(3):207-213
    94.李朝达,肖宁年,杨大荣等.西双版纳片断热带雨林土壤动物组成的比较.动物学研究1997,18(1):45-49
    95.李淑梅,史留功,李青芝.不同施肥条件下农田土壤动物群落组成及多样性变化.安徽农业科学,2008,36(7):2830-2831,2989
    96.李雪峰,韩士杰,郭忠玲等.红松阔叶林内凋落物表层与底层红松枝叶的分解动态.北京林业大学学报,2006,28(3):1-5
    97.李艳红,罗承德,杨万勤等.桉-桤混合凋落物分解及其土壤动物群落动态.应用生态学报,2011,22(4):851-855
    98.廖利平, Lindley DK,杨永辉.森林叶凋落物混合分解的研究Ⅰ.缩微(Microcosm)实验.应用生态学报,1997,8(5):459-464
    99.廖利平,马越强,汪思龙等.杉木与主要阔叶造林树种叶凋落物的混合分解.植物生态学报2000,24(1):27-33
    100.林波,刘庆,吴彦等.川西亚高山针叶林凋落物对土壤理化性质的影响.应用与环境生物学报,2003,9(4):346-351
    101.林开敏,章志琴,邹双全等.杉木与阔叶树叶凋落物混合分解对土壤性质的影响.土壤通报,2006a,37(2):258-262
    102.林开敏,章志琴,曹光球等.杉木与楠木叶凋落物混合分解及其养分动态.生态学报,2006b,26(8):2732-2738
    103.林英华,杨德付,张夫道等.栎林凋落层土壤动物群落结构及其在凋落物分解中的变化.林业科学研究,2006a,19(3):331-336
    104.林英华,孙家宝,刘海良等.黑龙江帽儿山土壤动物群落组成与多样性分析.林业科学2006b,42(4):71-77
    105.林英华,孙家宝,郑桂华等.帽儿山土壤动物在凋落叶分解过程中的动态和作用.东北林业大学学报,2005,33(6):33-36
    106.刘文耀,刘伦辉,荆桂芬等.云南松林与常绿阔叶林中枯落叶分解研究.云南植物研究,2000,22(3):298-306
    107.刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态.林业科学,2006,42(7):1-10
    108.柳泽鑫,区余端,苏志尧等.土壤质地和pH值对节肢动物多度的影响.中南林业科技大学学报,2010,30(7):150-154
    109.卢俊培,刘其汉.海南岛尖峰岭热带林凋落叶分解过程的研究.林业科学研究,1989,2(1):26-33
    110.卢双珍,喻庆国,曹顺伟.云南糯扎渡自然保护区热带林群落物种多样性相似性研究.安徽农业科学,2008,36(9):3773-3775
    111.路有成,王宗英.九华山土壤动物的垂直分布.地理研究,1994,13(2):74-81
    112.罗淑华.土壤酸碱性.茶叶通讯,1995,1:23-25
    113.苗雅杰, 殷秀琴.小兴安岭红松阔叶混交林土壤动物群落研究.林业科学,2005,41(2):204-208
    114.潘紫重,杨文化,曲银鹏.不同林分类型凋落物的蓄水功能.东北林业大学学报,2002,30(5):19-21
    115.钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994:160.
    116.邱尔发,陈卓梅, 郑郁善等,麻竹山地笋用林凋落物发生、分解及养分归还动态.应用生态学报,2005,16(5):811-814
    117.任海,彭少麟,刘鸿先等.小良热带人工混交林的凋落物及其生态效益研究.应用生态学报,1998,9(5):458-462
    118.邵华木,王宗英,张光生.九华山东西坡不同垂直带谱土壤动物群落.山地研究,1995,13(1):14-24
    119.邵玉琴,赵吉,杨劫.内蒙古皇甫川流域凋落物分解过程中营养元素的变化特征.水土保持学报,2004,18(3):81-84
    120.孙儒泳.动物生态学原理(第3版)北京:北京师范大学出版社,2001.133-140
    121.屠梦照,姚文华,翁轰等.鼎湖山南亚热带常绿阔叶林凋落物的特征.土壤学报,1993.30(1):34-42.
    122.汪思龙,廖利平,马越强.杉木火力楠混交林养分归还与生产力.应用生态学报,1997,8(4):347-352
    123.王凤友.森林凋落量研究综述.生态学进展,1989,6(2):82-89
    124.王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较.植物生态学报,2001,25(3):375-380
    125.王锐萍等.鼎湖山和尖峰岭土壤及凋落物中微生物数量季节动态.土壤通报,2005, (36)933-937
    126.王振中,李忠武,张友梅.庐山人工针叶林土壤动物群落调查.湖南师范大学自然科学学报,1998,21(4):83-88
    127.王振中,张友梅.土壤污染对土壤动物群落结构的影响.湖南师范大学自然科学学报1987,10(1):90-96
    128.王志香,周光益,林明献等. 吊罗山热带林4种主要林木的凋落叶分解研究.安徽农业科学,2007,35(22):6777-6779
    129.王宗英,陈建秀.九华山跳虫的生态分布.生态学报,2001,21(7):1143-1147
    130.温明章,郭继勋.不同凋落物量对东北羊草草原土壤生物的影响.中国草地学报,2008a,5:7-12
    131.温明章,于丹,郭继勋.凋落物层对东北羊草草原微环境的影响.武汉植物学研究,2003,21(5):395-400
    132.吴鹏飞,朱波.桤柏混交林与纯柏林土壤动物群落特征的比较.应用与环境生物学报,2008,14(4):488-493
    133.吴鹏飞,于晓飞,杨大星.成都市郊区三种土地利用方式的土壤动物群落特征比较.西南民族大学学报(自然科学版),2009,(5):1006-1012
    134.肖波,刘增文,孙强. 不同林地凋落叶混合分解对土壤微生物量C、N的影响.西北林学院学报,2008,23(4):23-26
    135.肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究.土壤学报,2002,39(5):763-767
    136.肖红梅,刘新民.内蒙古中部农牧交错区中小型土壤动物群落特征研究.2005,34(1)96-101
    137.徐国良,周国逸,莫江明等.鹤山丘陵退化生态系统植被恢复的土壤动物群落结构.生态学报,2005,25(7):1670-1677
    138.徐国良,黄忠良,欧阳学军等.鼎湖山地表无脊椎动物多样性及其与凋落物的关系.动物学研究,2002,23(6):477-482
    139.徐秋芳,钱新标,桂祖云.不同林木凋落物分解对土壤性质的影响.浙江林学院学报,1998,15(1):27-31
    140.薛立,陈红跃,邝立刚.湿地松混交林地土壤养分、微生物和酶活性的研究.应用生态学报,2003,14(1):157-159
    141.严莹,李恺,方燕.浙江百山祖自然保护区不同海拔土壤动物群落结构及季节动态.生态学杂志,2010,29(9):1754-1767
    142.杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应.应用生态学报,2007,18(12):2889-2895
    143.杨效东,佘宇平.西双版纳热带森林雨季土壤动物群落组成与分布特征.东北林业大学 学报,1998,26(6):65-70
    144.杨效东,邹晓明.西双版纳热带季节雨林凋落叶分解与土壤动物群落:两种网孔分解袋的分解实验比较.植物生态学报,2006,30(5):791-801
    145.杨玉盛,郭剑芬,林鹏等.格氏栲天然林与人工林凋落叶分解过程中养分动态.生态学报,2004,24(2):201-208
    146.杨玉盛,陈光水,郭剑芬等.杉木观光木混交林凋落物分解及养分释放的研究. 植物生态学报,2002,26(3):275-282
    147.易兰.浙江天童受损常绿阔叶林的次生演替对土壤动物群落的影响.华东师范大学,2005a
    148.易兰,由文辉,宋永昌.天童常绿阔叶林五个演替阶段凋落物中的土壤动物群落.生态学报,2005b,25(3):466-473
    149.易兰,由文辉. 浙江天童栲树林土壤动物群落结构及其季节变化.华东师范大学学报(自然科学版),2006,(2):112-120
    150.殷秀琴,李建东.羊草草原土壤动物群落多样性的研究.应用生态学报,1998,9(2):186-188
    151.殷秀琴,张桂荣.森林凋落物与大型土壤动物相关关系的研究.应用生态学报,1993,4(2):167-173
    152.殷秀琴,王海霞,周道玮.松嫩草原区不同农业生态系统土壤动物群落特征.生态学报,2003,23(6):1071-1078
    153.尹文英,胡圣豪,宁应之,等.中国土壤动物检索图鉴.北京:科学出版社,1998.
    154.余雪标,李维国.桉树人工林的若干生态问题及其研究进展.热带农业科学,1997,4:60-68
    155.袁金荣,朱巽,朱雅安等.湖南永州地区不同生境条件下钙质土土壤动物多样性.生态学杂志,2006,25(9):1073-1076
    156.袁志忠,徐广标,颜绍馗.杉木林林下植被凋落物对土壤动物群落的影响.贵州农业科学,2009,37(4):127-129
    157.张俊霞,刘贤谦.太谷县枣园土壤动物与土壤养分的关系.山西农业大学学报,2005,25(1):8-11
    158.张丽萍,刘增文,高祥斌等.不同森林凋落叶混合分解试验研究.西北林学院学报,2006,21(2):57-60
    159.张瑞清,孙振钧,王冲等.西双版纳热带雨林凋落叶分解的生态过程Ⅰ. 凋落叶分解动态.植物生态学报,2006,30(5):780-790
    160.张雪萍.帽儿山针叶林与针阔叶混交林土壤动物对比研究Ⅰ区系组成与特征.哈尔滨师范大学自然科学学报,1995,11(2):94-99
    161.张雪萍,张毅,侯威岭等.小兴安岭针叶凋落物的分解与土壤动物的作用.地理科学,2000,20(6):552-556
    162.张一,陈鹏.吉林省东部山地主要土壤类型及土壤动物.东北师范大学学报(自然科学版),1984,(2):82-92
    163.赵其国,王明珠,何园球.我国热带亚热带森林凋落物及其对土壤的影响.土壤,1991,(1):8-15
    164.赵世魁,刘贤谦.关帝山华北落叶松天然林和人工林土壤动物的群落多样性.林业科学,2007,43(6):106-110
    165.赵志成,熊康宁,陈浒等.清镇市不同土地利用方式下土壤动物的群落结构.贵州农业科学,2010,38(6):116-120
    166.仲伟彦,殷秀琴,陈鹏.帽儿山森林落叶分解消耗与土壤动物关系的研究.应用生态 学报,1999,10(4):511-512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700