用户名: 密码: 验证码:
纤维界面微力学的拉曼实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文面向航空航天广泛应用的纤维复合材料的国家需求背景,从纤维复合材料的构成与性能、界面的微观结构与力学模型、界面优化路线图来递进给出界面微力学研究现状和所面临的任务:设计和优化复合材料界面的最终目的是获得优良的界面应力传递性能,这具有重要的科学研究意义。本文的主要工作是从微尺度实验角度表征纤维界面微力学行为和建立相应的微力学模型,该研究工作得到国家自然科学基金“聚合物基纤维复合材料界面应力传递及脱粘失效行为的微尺度实验力学研究(10972047)”的资助。
     微尺度实验力学表征是界面优化研究中最为困难和关键的阶段,微拉曼光谱技术是首选的界面微力学研究手段,其应力测量的微观基础是拉曼频移反映了原子间距的变化,也就是反映了应变的信息。论文先介绍了微拉曼光谱法的基本原理、仪器组成和测量环节,给出常用的树脂和纤维的拉曼光谱,解释了与应变相关拉曼蓝移现象,给出拉曼频移与应力的标定实验方案。接着总结了纤维界面微力学的各种测试方法及其力学模型,给出现阶段的纤维界面失效模型及其强度标准,包括弹性应力传递和部分脱粘应力传递。使用单纤维拉伸实验给出本文所使用的各种纤维的力学性能,使用微滴实验给出纤维/树脂的界面强度,为纤维/基体界面应力传递和裂纹交互作用提供基础力学数据。在此基础上,开展的工作和取得的结果如下:
     首先,执行了两类芳纶纤维的拉出测试,来研究界面上的应力传递行为。从试样制备、纤维界面光学观察、拉曼测试方案设计、测试过程和分析方法等方面进行详述。用精细的拉曼实验数据来解释界面应力的传递过程,符合剪滞模型预测。从纤维应力分布反映出界面上的脱粘现象,给出脱粘界面上摩擦剪应力的台阶分布。
     其次,发展了纤维/微滴拉仲测试新方法来研究界面上的应力传递行为,特别探讨了纤维涂层对应力传递的影响。在介绍了纤维表面改性的基础上,从碳纤维试样制备、PVC涂层和未涂层芳纶纤维制备、纤维界面光学观察、单纤维变形测量、拉曼测试方案设计、测试过程、残余应力、纤维应力和界面剪应力等方面进行详述。用精细的实验数据来解释界面应力的传递过程,分析了这种柔性渐变涂层对应力传递机制的影响。
     最后,发展了新的试样制备方法来多次加载和反复研究纤维/裂纹的交互作用。从试样制备、测试方法、完整粘接纤维、搭桥纤维、断裂纤维、残余应力、应力传递、脱粘界面滑移、摩擦剪应力等方面进行详述。通过观察同一试样上的纤维搭桥及纤维断裂现象,建立了相应的应力传递模型和搭接纤维满足的强度标准。分析了纤维搭桥和纤维断裂过程中的界面摩擦滑移转化和重新承载机制,为解释界面脱粘和摩擦滑移机制提供了微力学模型。
Based on fiber composite materials widely-used in aerospace and national demand background, the research status and faced task for the fiber interface micromechanics were firstly given in this article, such as the composition and performance of fiber composites, microstructure and mechanics model of the interface, interface optimization roadmap. The ultimate goal of the design and optimization of composite interface is to obtain the excellent performance of interfacial stress transfer, which has important scientific significance. The main work of this paper is the characterizing of fiber interface micro-mechanical behavior and the establishment of micro-mechanics model from the microscale experiments. The work is funded by the project of NSFC (The study of microscale experimental mechanics on interfacial stress transfer and debonding in polymer-matrix fibrous composite,10972047,2009-2012).
     The most difficult and crucial stage for the fiber interface optimization is the mechanical characterization of microscale experiments. A preferred research means for interface micromechanics study is micro-Raman spectroscopy (MRS). Its microscopic basis for stress measurement is that Raman shift reflects the changes in the interatomic distance, also reflects the strain. The basic principles, instrument and measurement aspects of MRS were introduced. Raman spectra of some resins and fibers were given to explain the phenomenon of Raman blue shift related to strain. The calibration schemes for Raman shift vs. stress were given. The various test methods and their mechanics models of fiber interface were summarized. The fiber interface failure models and its strength standards, including the elastic stress transfer model and the partially-debonded stress transfer model were given. Single fiber tensile test was used to obtain the mechanical properties of the fibers used in this article. Microbond test was performed to give the interfacial strength of fiber/resin system. Those basic data are provided to the next study of fiber-matrix stress transfer and crack-fiber interaction.
     Two types of aramid fiber pullout tests were conducted to study the stress transfer behavior of the fiber interface. Sample preparation, optical observation, Raman test scheme design, testing process and analysis methods were described in details. Using fine experiment data to explain the process of interfacial stress transfer, it gets well with the prediction of shear lag model. The interface debonding phenomenon reflected from fiber stress distribution gives the friction shear stress levels of the debonded fiber.
     A new method of fiber/droplet tension test was developed to study the stress transfer behavior of the fiber interface, especially fiber coating stress transfer. Based on the introduction of the fiber surface modification, specimen preparation of carbon fibers, the preparation of PVC coating and uncoated aramid fiber, optical observation, single fiber deformation measurement, Raman test scheme design, testing process, residual stress, fiber stress and interfacial shear stress were described in details. Using fine experiment data to explain the process of interfacial stress transfer, the effect of the flexible coating on the stress transfer mechanism was discussed.
     A new sample preparation method was developed to study the fiber-crack interaction with advantages of multiple loading and repeated experiments. Specimen preparation, testing methods, well-bonded fiber, bridging fiber, broken fiber, residual stress, stress transfer, interface slip and friction shear stress were described in details. By observing the bridging fiber and broken fiber on the same sample, the stress transfer models and strength standards were given. Interface friction slipping and re-bearing mechanisms in the process of fiber bridging and fiber breaking were analyzed and modeled to explain the interface debonding and frctional sliding mechanism at microscale.
引文
[1]布赖恩哈里斯.工程复合材料[M].北京:化学工业出版社,2004.
    [2]余寿文,王建祥.大飞机研制中的若干复合材料力学问题[J].力学与实践,2007,29(5):1-7.
    [3]方岱宁.先进复合材料的宏微观力学与强韧化设计:挑战与发展[J].复合材料学报,2000,17(2):1-7.
    [4]Li X. D., Xie H. M., Kang Y. L., et al. A brief review and prospect of experimental solid mechanics in china[J]. Acta Mechanica Solida Sinica,2010,23(6):498-548.
    [5]杨序纲.复合材料界面[M].北京:化学工业出版社,2010.
    [6]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003.
    [7]戴瑛,嵇醒.纤维段裂试验评述[J].力学进展,2006,36(2):211-221.
    [8]亢一澜.界面力学若干问题的实验研究[J].力学与实践,1999,21(3):9-15.
    [9]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.
    [10]许金泉.界面力学[M].北京:科学出版社,2006.
    [11]郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004.
    [12]Anagnostopoulos G., Parthenios J., Galiotis C. Thermal stress development in fibrous composites[J]. Materials Letters,2008,62:341-345.
    [13]陈平,于祺,路春.纤维增强结合物基复合材料的界面研究进展[J].纤维复合材料,2005,1:53-59.
    [14]Parka J. M., Shin W. G., Yoon D. J. A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques [J]. Composites Science and Technology,1999,59:355-370.
    [15]Rashkovan I. A., Korabelnikov Y. G. The effect of fiber surface treatment on its strength and adhesion to the matrix[J]. Composites Science and Technology,1997,57:1017-1022.
    [16]Day R. J., Hewson K. D., Lovell P. A. Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites[J]. Composites Science and Technology,2002,62:153-166.
    [17]王扬,李鹏,于运花等.芳纶纤维的磷酸表面处理及其树脂基复合材料界面性能[J].复合材料学报,2007,24(3):7-12.
    [18]Chandra N., Ghonem H. Interfacial mechanics of push-out tests:theory and experiments [J]. Composites:Part A,2001,32:575-584.
    [19]Day R. J., Rodrigezs J. V. C. Investigation of the micromechanics of the microbond test[J]. Composites Science and Technology,1998,58:907-914.
    [20]Tandon G. P., Pagano N. J. Micromechanical analysis of the fiber push-out and re-push test[J]. Composites Science and Technology,1998,58:1709-1725.
    [21]Kerans R. J., Parthasarathy T. A. Theoretical analysis of the fiber pullout and push-out tests[J]. Journal of the American Ceramic Society,1991,74:1585-1596.
    [22]Deng S. Q., Ye L., Mai Y. W., et al. Evaluation of fibre tensile strength and fibre/matrix adhesion using single fibre fragmentation tests[J]. Composites:Part A,1998,29:423-434.
    [23]Sinclair R., Young R. J., Martin R. D. S. Determination of the axial and radial fibre stress distributions for the Broutman test[J]. Composites Science and Technology,2004,64:181-189.
    [24]Pitkethly M. J. A round robin programmed on interfacial test methods[J]. Composites Science and Technology,1993,48:205-214.
    [25]Zheng B. L., Ji X. Stress singularity analyses of interface ends in micro-mechanics tests[J]. Composites Science and Technology,2002,62:355-365.
    [26]Ji X., Dai Y., Zheng B. L., et al. Interface end theory and re-evaluation in interfacial test methods[J]. Composite Interfaces,2003,10:567-580.
    [27]Xu L. R., Kuai H. C., Sengupta S. Free-edge Stress Singularities and Edge Modifications for Fiber Pushout Experiments[J]. Journal of Composite Materials,2005,39(12):1103-1125.
    [28]黄争鸣,张华山.纤维增强复合材料强度理论的研究现状与发展趋势——“破坏分析奥运会”评估综述[J].力学进展,2007,37(1):80-98.
    [29]Baillie C, Emanuelsson J., Marton F. Building knowledge about the interface[J]. Composites:Part A, 2001,32:305-312.
    [30]张志成,郑元锁.短纤维复合材料应力传递理论研究进展[J].橡胶工业,2003,50(2):116-122.
    [31]Cox H. L. The elasticity and strength of paper and other fibrous materials[J]. Journal of Applied Physics,1952,3:72-79.
    [32]Zhou L. M., Kim J. K., Mai Y. W. Interfacial debonding and fibre pull-out stresses. Ⅱ. A new model based on the fracture mechanics approach[J]. Journal of Materials Science,1992,27:3155-3166.
    [33]Zhandarov S., Mader E. Characterization of fiber/matrix interface strength:applicability of different tests, approaches and parameters [J]. Composites Science and Technology,2005,65(149-160).
    [34]Pisanova E., Zhandarov S., Mader E., et al. Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer-fibre systems[J]. Composites: Part A,2001,32:435-443.
    [35]Daadbin A., Gamble A. J., Summer N. D. The effect of the interphase and material properties on load transfer in fiber composites[J]. Composites:Part A,1992,23(4):210-214.
    [36]Zhandarov S. F., Mader E., Yurkevich O. R. Indirect estimation of fiber/polymer bond strength and interfacial friction from maximum load values recorded in the microbond and pull-out tests. Part Ⅰ: Local bond strength[J]. Journal of Adhesion Science and Technology,2002,16:1171-1200.
    [37]梅年松,黄庆安MEMS薄膜断裂强度测试结构[J]MEMS器件与技术,2002,12:32-35.
    [38]张泰华,杨业敏,赵亚溥等MEMS材料力学性能的测试技术[J].力学进展,2002,32(4):545-562.
    [39]尚海霞.电镜云纹法及其在微纳米力学中的应用[D].北京:清华大学,2003.
    [40]邢永明.纳米云纹技术及其应用[D].北京:清华大学,2000.
    [41]Sutton M. A., Orteu J. J., Schreier H. Image correlation for shape, motion and deformation measurements:Basic Concepts. Theory and Applications,2009[C]. Springer.
    [42]Pan B., Qian K. M., Xie H. M., et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement:a review[J]. Measurement Science and Technology,2009, 20(6):062001.
    [43]Genovese K., Casaletto L., Rayas J. A., et al. Stereo-Digital Image Correlation (DIC) measurements with a single camera using a biprism[J]. Optics and Lasers in Engineering,2013,51:278-285.
    [44]Scarano F. Tomographic PIV:principles and practice[J]. Measurement Science and Technology,2013, 24:012001.
    [45]Yang X., Sun X. Y., Yu Q. F., et al. Direct ESPI phase estimating from only two interferograms[J]. Optics Communications,2013,290:63-68.
    [46]Xie H. M., Li B., Geer R., et al. Focused ion beam Moire method[J]. Optics and Lasers in Engineering, 2003,40:163-177.
    [47]Rodrigues S. A. S., Rolo A. G., Khodorov A., et al. Determination of residual stress in PZT films produced by laser ablation with X-ray diffraction and Raman spectroscopy[J]. Journal of the European Ceramic Society,2010,30(2):521-524.
    [48]岑皓.微拉曼光谱法在微尺度力学测量中的若干应用[D].天津:天津大学,2006.
    [49]仇巍.碳纳米管应变传感器测量理论与显微拉曼应变测量技术[D].天津:天津大学,2008.
    [50]张泰华.微/纳米力学测试技术及其应用[M].北京:机械工业出版社,2005.
    [51]Liu X., Gao F. A novel multi-function tribological probe microscope for mapping surface properties [J]. Measurement Science and Technology,2004,15:91-102.
    [52]Kysar J. W., Briant C. L. Crack tip deformation fields in ductile single crystals[J]. Acta Materialia, 2002,50(9):2367-2380.
    [53]Duan Z. H., Zhang Q. C., Wu X. P., et al. Uncooled optically readable bimaterial micro-cantilever infrared imaging device[J]. Chinese Physics Letters,2003,20(12):2130-2132.
    [54]尚海霞,谢惠民.SEM扫描云纹法的相移技术研究[J].光学技术,2003,29(1):5-7.
    [55]谢惠民,郭海明.扫描隧道显微镜纳米云纹法的实验研究[J].光学技术,2003,29(2):179-182.
    [56]Xie H. M. In-plane deformation measurement using the atomic force microscope moire method[J]. Nanotechnology,2000,11(1):24-29.
    [57]Dai F. L., Xing Y. M. Nano-moire method[J]. Acta Mechanica Sinica,1999,15(3):283-288.
    [58]尚海霞,谢惠民.TEM纳米云纹法测量单壁碳纳米管[J].光学技术,2003,29(5):515-517.
    [59]谢惠民,李标.扫描离子束云纹法[J].光学技术,2003,29(1):23-26.
    [60]Wang H. W., Kang Y. L. Improved digital speckle correlation method and its application in fracture analysis of metallic foil[J]. Optical Engineering,2002,41(11):2793-2798.
    [61]工怀文,亢一澜,富东慧等.数字标记点识别方法及其在材料性能测试中的应用[J].实验力学,2002,17(4):433-437.
    [62]Kraft O., Hommel M., Arzt E. X-ray diffraction as a tool to study the mechanical behavior of thin films[J]. Materials Science and Engineering:A,2000,288:209-216.
    [63]Qiu W., Kang Y. L., Lei Z. K., et al. Experimental study of the Raman strain rosette based on the carbon nanotube strain sensor[J]. Journal of Raman Spectroscopy,2010,41(10):1216-1260.
    [64]Qiu W., Kang Y. L., Li Q., et al. Experimental analysis for the effect of dynamic capillarity on stress transformation in porous silicon[J]. Applied Physics Letters,2008,92(4):041906.
    [65]张泰华,杨业敏.纳米硬度技术的发展和应用[J].力学进展,2002,32(3):349-364.
    [66]Wolf I. D., Chen J., Pengfen W. M. V. The investigation of microsystems using Raman Spectroscopy[J]. Optics and Lasers in Engineering,2001,36(2):213-223.
    [67]程光煦.拉马布里渊散射——原理与应用[M].北京:科学出版社,2001.
    [68]Wolf I. D. Stress measurements in Si microelectronics devices using Raman spectroscopy[J]. Journal of Raman Spectroscopy,1999,30:877-883.
    [69]Kang Y. L., Qiu Y., Lei Z. K., et al. An application of Raman spectroscopy on the measurement of residual stress in porous silicon[J]. Optics and Lasers in Engineering,2005,43(8):847-855.
    [70]Lei Z. K., Kang Y. L., Cen H., et al. Residual stress on surface and cross-section of porous silicon studied by micro-Raman spectroscopy[J]. Chinese Physics Letters,2005,22(4):984-986.
    [71]Lei Z. K., Kang Y. L., Cen H., et al. Experimental study on mechanical properties of micro-structured porous silicon film[J]. Transaction of Tianjin University,2005,11(2):85-88.
    [72]Lei Z. K., Kang Y. L., Cen H., et al. Variability on Raman shift to stress coefficient of porous silicon[J]. Chinese Physics Letters,2006,23(6):1623-1626.
    [73]Kang Y. L., Qiu W., Lei Z. K. A robust method to measure residual stress in micro-strucrure[J]. Optoelectronics Letters,2007,3(2):126-128.
    [74]Lei Z. K., Pan X. M., Liu G., et al. Micro-Raman analysis on scratch of Si surface modified by ion implantation[J]. Key Engineering Materials,2008,373-374:497-500.
    [75]Cen H., Kang Y. L., Lei Z. K., et al. Micromechanics analysis of Kevlar-29 Aramid fiber and epoxy resin microdroplet composite by Micro-Raman spectroscopy [J]. Composite Structures,2006,75: 532-538.
    [76]Lei Z. K., Qiu W., Kang Y. L., et al. Stress transfer of single fiber/microdroplet tensile test studied by micro-Raman spectroscopy [J]. Composites:Part A,2008,39:113-118.
    [77]Wang Q., Lei Z. K., Kang Y. L., et al. Raman measurements of Kevlar-29 fiber pull-out test at different strain levels[J]. Proc. SPIE,2009,737509:737509.
    [78]Lei Z. k., Wang Q., Kang Y., et al. Stress transfer in microdroplet tensile test:PVC coated and uncoated Kevlar-29 single fiber[J]. Optics and Lasers in Engineering,2010,48(11):1089-1095.
    [79]Anastassakis E. Piezoelectric fields in strained heterostructures superlattices[J]. Physical Review B, 1992,46(8):4744-4747.
    [80]Jain S. C, Dietrich B., Richter H., et al. Stresses in strained GeSi stripes:calculation and determination from Raman measurement[J]. Physical Review B,1995,52(9):6247-6253.
    [81]Lira M. M., Menendez J., Kramer K., et al. Substitutional carbon in Sil-yCy alloys as measured with infrared absorption and Raman spectroscopy[J]. Journal of Applied Physics,1997,82(9):4246-4252.
    [82]杨序纲,袁象恺,潘鼎.复合材料界面的微观力学行为研究——单纤维拉出试验[J].宇航材料工艺,1999,1:56-60.
    [83]Kotb H. M., Salaun A. C, Brahim T. M., et al. Polycrystalline silicon thin films for MEMS application[J]. Thin Solid Films,2003,427:422-426.
    [84]钱劲.一种新型微流量计的设计、制备及力学分析[D].合肥:中国科技大学,2003.
    [85]Lei Z. K., Kang Y. L., Hu M., et al. An Experimental Study of Residual Stress Measurements in Porous Silicon using Micro-Raman Spectroscopy[J]. Chinese Physics Letters,2004,21(2):403-405.
    [86]Lei Z. K., Kang Y. L., Qiu Y., et al. Experimental Study Capillary Effect in Porous Silicon Using Micro-Raman Spectroscopy and X-Ray Diffraction[J]. Chinese Physics Letters,2004,21(7): 1377-1380.
    [87]邱宇,雷振坤,亢一澜等.微拉曼光谱技术及其在微结构残余应力检测中的应用[J].机械强度,2004,26(4):389-392.
    [88]亢一澜,雷振坤,邱宇等.微拉曼光谱技术及其住多孔硅薄膜残余应力检测中的应用.微尺度力学行为测量技术与应用研讨会,2003[C].北京.
    [89]Lei Z. K., Pan X. M., Kang Y. L., et al. Experimental investigation of p-Si (100) surface modified by ionimplantation[J]. Proc. SPIE,2009,7375:73755F.
    [90]Galiotis C, Paipetis A., Marston C. Unification of fibre/matrix interfacial measurements with Raman microscopy[J]. Journal of Raman Spectroscopy,1999,30:899-912.
    [91]Anagnostopoulos G., Bollas D., Parthenios J., et al. Determination of interface integrity in high volume fraction polymer composites at all strain levels[J]. Acta Materialia,2005,53:647-657.
    [92]Goutianos S., Peijs T., Galiotis C. Comparative assessment of stress transfer efficiency in tension and compression[J]. Composites:Part A,2002,33:1303-1309.
    [93]Stanford J. L., Lovell P. A., Thongpin C, et al. Experimental studies on the interfacial shear-transfer mechanism in discontinuous glass-fiber composites[J]. Composites Science and Technology,2000,60: 361-365.
    [94]杨序纲,吴琪琳.拉曼光谱的分析和应用[M].北京:国防工业出版社,2008.
    [95]Li Q., Kang Y. L., Qiu W., et al. Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis[J]. Nanotechnology,2011,22:225704.
    [96]Wolf I. D. Topical review:Micro-Raman Spectroscopy to study local mechanical stress in silicon integrated circuits [J]. Semiconductor science and technology,1996,11:139-154.
    [97]Anastassakis E., Canterero A., Cardona M., et al. Raman measurements and anhrmonic parameters in silicon and diamond[J]. Physical Review B,1990,41(11):7529-7535.
    [98]Wolf I. D. Stress measurements in Si devices through Raman spectroscopy [J]. Journal of Applied Physics,1996,79(9):7248-7256.
    [99]Miller B., Muri P., Rebenfeld L. A microdebond method for determination of the shear strength of a fiber/resin interface[J]. Composites Science and Technology,1987,28:17-32.
    [100]Kelly A., Tyson W. R. Tensile properties of fiber-reinforced metal:copper-tungsten and copper-molybdenum[J]. Journal of the Mechanics and Physics of Solids,1965,13:329-350.
    [101]Chua P. S., Piggott M. R. The glass fibre-polymer interface:III—Pressure and coefficient of friction[J]. Composites Science and Technology,1985,22(3):185-196.
    [102]Jiang K. R., Penn L. S. Improved analysis and experimental evaluation of the single filament pull-out test[J]. Composites Science and Technology,1992,45(2):89-103.
    [103]Hsueh C. H., Young R. J., Yang X., et al. Stress transfer in a model composite containing a single embedded fiber[J]. Acta Materialia,1997,45:1469-1476.
    [104]Butler M. H., Bannister D. J., Young R. J. A study of transcrystalline polypropylene/ single-aramid-fibre pull-out behaviour using Raman spectroscopy[J]. Composites:Part A,1996, 27(9):833-838.
    [105]So C. L., Young R. J. Interfacial failure in poly(p-phenylene benzobisoxazole) (PBO)/epoxy single fibre pull-out specimens[J]. Composites:Part A,2001,32:445-455.
    [106]Nairn J. A. Analytical fracture mechanics analysis of the pull-out test including the effects of friction and thermal stresses [J]. Advanced Composites Letters,2000,9:373-383.
    [107]Quek M. Y., Yue C. Y. Axisymmetric stress distribution in the single filament pull-out test[J]. Materials Science and Engineering:A,1994,189:105-116.
    [108]Marotzke C, Qiao L. Interfacial crack propagation arising in single-fiber pull-out tests[J]. Composites Science and Technology,1997,57:887-897.
    [109]Zhandarov S. F., Pisanova E. V. The local bond strength and its determination by fragmentation and pull-out tests[J]. Composites Science and Technology,1997,57:957-964.
    [110]Andersonsa J., Joffe R., Hojo M., et al. Glass fibre strength distribution determined by common experimental methods[J]. Composites Science and Technology,2002,62:131-145.
    [111]Mandell J. F., Chen J. H., McGarry F. J. A microdebonding test for in situ assessment of fibre/matrix bond strength in composite materials[J]. International Journal of Adhesion and Adhesives,1980,1(1):40-44.
    [112]Correa E., Mantic V., Pan's F. A micromechanical view of inter-fibre failure of composite materials under compression transverse to the fibres[J]. Composites Science and Technology,2008,28: 2010-2021.
    [113]Goutianos S., Peijs T., Galiotis C. Mechanisms of stress transfer and interface integrity in carbon/epoxy composites under compression loading Part I:Experimental investigation [J]. International Journal of Solids and Structures,2002,39:3217-3231.
    [114]Kessler H., Schuller T., Beckert W., et al. A fracture-mechanics model of the microbond test with interface frictionfJ]. Composites Science and Technology,1999,59:2231-2242.
    [115]Craven J. P., Cripps R., Viney C. Evaluating the silk/epoxy interface by means of the Microbond Test[J]. Composites:Part A,2000,31:653-660.
    [116]Ash J. T., Cross W. M., Svalstad D., et al. Finite element evaluation of the microbond test: meniscus effect, interphase region and vise angle[J]. Composites Science and Technology,2003,63: 641-651.
    [117]Kang S. K., Lee D. B., Choi N. S. Fiber/epoxy interfacial shear strength measured by the microdroplet test[J]. Composites Science and Technology,2009,69:245-251.
    [118]Bennett J. A., Shyng Y. T., Young R. J., et al. Analysis of interfacial micromechanics in microdroplet model composites using synchrotron microfocus X-ray diffraction[J]. Composites Science and Technology,2006,66:2197-2205.
    [119]Eichhorn S. J., Young R. J. Composite micromechanics of hemp fibres and epoxy resin microdroplets[J]. Composites Science and Technology,2004,64:767-772.
    [120]Nairn J. A. A variational mechanics analysis of the stresses around breaks in embedded fibers [J]. Mechanics of Materials,1992,13(2):131-154.
    [121]Young R. J., Thongpin C., Stanford J. L., et al. Fragmentation analysis of glass fibres in model composites through the use of Raman spectroscopy[J]. Composites:Part A,2001,32:253-269.
    [122]Kong K., Hejda M., Young R. J., et al. Deformation micromechanics of a model cellulose/glass fibre hybrid composite [J]. Composites Science and Technology,2009,69(13):2218-2224.
    [123]Yallee R. B., Young R. J. Evaluation of interface fracture energy for single-fibre composites[J]. Composites Science and Technology,1998,58:1907-1916.
    [124]Mahiou H., Beakou A., Young R. J. Investigation into stress transfer characteristics in alumina-fibre/epoxy model composites through the use of fluorescence spectroscopy[J]. Journal of Materials Science,1999,34:6069-6080.
    [125]Zhou X. F., Wagner H. D. Stress concentrations caused by fiber failure in two-dimensional composites[J]. Composites Science and Technology,1999,59:1063-1071.
    [126]Morais A. B. D. Stress distribution along broken fibres in polymer-matrix composites[J]. Composites Science and Technology,2001,61(11):1571-1580.
    [127]Ramirez F. A., Carlsson L. A., Acha B. A. A method to measure fracture toughness of the fiber/matrix interface using the single-fiber fragmentation test[J]. Composites:Part A,2009,40: 679-686.
    [128]Henstenburg R. B., Phoenix S. L. A comparative study on the mechanical and degradation prope of plant fibers reinforced polyethylene composites[J]. Polymer composites,2011,32(10):1552-1560.
    [129]Piggott M. R. Micromechanics of fibre-polymer interfaces. In:Verpoest I, Jones FR, editors. Interfacial phenomena in composite materials[M]. Oxford:UK:Butterworth Heinemann,1991: 2-8.
    [130]Nairn J. A. On the use of shear-lag methods for analysis of stress transfer in unidirectional composites [J]. Mechanics of Materials 1997,26:63-80.
    [131]Kelly A., McMillanN. H. Strong solids[M]. Oxford:Clarendon Press,1986.
    [132]Andrews M. C., Young R. J. Analysis of the deformation of aramid fibres and composites using Raman spectroscopy[J]. Journal of Raman Spectroscopy,1993,24:539-544.
    [133]Desaeger M., Verpoest I., Lacroix T., et al. Modelling of critical fibre length and interfacial debonding in the fragmentation testing of polymer composites[J]. Composites Science and Technology,1992,43:379-387.
    [134]Bannister D. J., Andrews M. C., Cervenka A. J., et al. Analysis of the single fibre pull-out test by means of Raman spectroscopy:Part II. Micromechanics of deformation for an aramid/epoxy system.[J]. Composites Science and Technology,1995,53:411-421.
    [135]Piggott M. R. Load bearing composites[M]. Oxford:Pergamon Press,1980.
    [136]Nayfeh A. H. Thermodynamically induced interfacial stresses in fibrous composites[J]. Fibre Science and Technology,1977,10:195-209.
    [137]Kao C. C, Young R. J. A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites[J]. Composites Science and Technology,2004,64(15): 2291-2295.
    [138]Chou C. T., Penn L. S. Chemical bonding and physical interaction by attached chains at the fiber-matrix interface[J]. The Journal of Adhesion,1991,36:125-133.
    [139]Piggott M. R. Why the fibre/polymer interface can appear to be stronger than the polymer matrix[J]. Composites Science and Technology,1997,57:853-857.
    [140]Herra-Fraco P. J., Drzal L. T. Comparison of methods for the measurement of fiber/matrix adhesion in composites[J]. Composites:Part A,1992,23(1):2-27.
    [141]Lei Z. K., Kang Y. L., Wang H. W., et al. Micromechanical tensile characterization of single fiber[J]. Experimental Mechanics,2005,1(20):72-76.
    [142]雷振坤,工权,仇巍等.微拉曼光谱研究M55JB碳纤维/微滴的拉伸变形行为[J].实验力学,2012,27(1):30-36.
    [143]刘丽,张翔,黄玉东等.芳纶表面及界面改性技术的研究现状及发展趋势[J].高科技纤维与应用,2002,27(4):12-17.
    [144]Gibson R. F. Principles of Composite material mechanics[M].3rd ed. Boca Raton:CRC Press, 2011.
    [145]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [146]Kim J. K., Baillie C., Mai Y. W. Interfacial debonding and fibre pull-out stresses. I. Critical comparison of exiting theories with experiments.[J], Journal of Materials Science,1992,27: 3143-3154.
    [147]Bennett J. A., Young R. J. The effect of fibre-matrix adhension upon crack bridging in fibre reinforced composites[J]. Composites:Part A,1998,29(9):1071-1081.
    [148]Bennett J. A., Young R. J. A strength based criterion for the prediction of stable fibre crack-bridging[J]. Composites Science and Technology,2008,68:1282-1296.
    [149]Galiotis C., Robinson I. M., Young R. J., et al. Strain dependence of the Raman frequencies of a Kevlar 49 fiber[J]. Polymer Communications,1985,26:354-355.
    [150]Lei Z. K., Qiu W., Kang Y. L., et al. Stress transfer of single fiber/microdroplet tensile test studied by micro-Raman spectroscopy[J]. Composites A,2008,39(1):113-118.
    [151]Graff. K. F. Wave Motion in Elastic Solids [M]. Dover, New York,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700